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The theory of  measurement scales is used to show that there is no foundation for attempting to extend the SI 

system to measurements o f  quantities and properties which are described by ordering and naming scales or 

by absolute scales. It is proposed that the units of  planar and solid angles shouM be considered to be outside 

the system. Dimensionless quantities are conditionally classified. An analysis is made of  specified order 

scales in which the concept o f  a "'unit of measurement'" is not applicable and fbr which it makes no sense to 

attribute dimensionali~ to the numbers and scale points used in them. 

A number of publications have appeared in recent times which contain discussions of questions associated with dimen- 

sionless (relative) units which are widely used in metrological practice. Attempts are made to allot "zero dimensionalities" to 

them. Particular attention is devoted to the units for measuring angular quantities. An analysis of publications such as [1] con- 

vincingly shows that their authors are unfamiliar with the theory of  measurement scales [2, 3] and with a number of articles pub- 

lished in periodical joumals dealing with these questions [4-7]. Since an incorrect understanding of the problems discussed can 

have an adverse effect on practical metrology and can form erroneous concepts in the minds of students and junior metrologists 

we shall attempt to introduce the necessary clarity. 

It can be assumed that the primary factor in the appearance of real and invented difficulties in the use of dimensionless 

quantities and their units is the superficial and somewhat incorrect idea of the role and place of the SI system of international 

units in contemporary metrology, science, and technology [8]. The proposition familiar from school that the metric system, 

whose present-day embodiment is the SI system, has been "created for all time and for all people" is frequently understood as 

implying its uniqueness and universal sufficiency, and this does not correspond to reality. We shall not be concerned with the 

fact that some countries still use the foot-pound-second system and we shall formulate the limitations inherent in the SI system 

independently of  the time and place of its use. 

The principal limitation follows from the actual name "system of units." In the language of the theory of scales this 

denotes that the SI system is not extended (and cannot be extended) to properties and quantities describing nonmetric naming 

and ordering scales which do not possess units of measurement [4, 8, 9]. Moreover, the requirement of tbrming dimensionali- 

ties of derived units out of symbols allotted to the basic SI units fails to leave room for dimensionless quantities and their units 

in this system. And the only principle recognized by the SI system of forming multiples and fractions of units which does not 

include many widely used traditional units (such as the minute, the hour, the day, etc.) predetermined the existence of quite a 

large set of units outside the system which are used on a par with SI units. 

It is necessary to precede a further exposition with a detailed consideration of the concept and term "dimensionality." 

There is a quite clear and unambiguous definition of "dimensionality" that it is an expression in the form of a monomial com- 

posed of the products of the symbols of basic quantities in various powers and reflecting the relationship of a given quantity to 

quantities adopted in this system as its basic units and to a coefficient of proportionality equal to unity [10]. Despite this defi- 

nition, which fails to contain any allusions to the fact that it is assumed that dimensionality reflects a deep physical essence of 

some particular quantity, such investigations continue [1]. Attempts are also being made to attribute dimensionality to funda- 

mentally dimensionless quantities. Our doubts concerning the competence of authors of such investigations are not unsubstan- 
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tiated. It is sufficient to say that they fail to distinguish and confuse the dimensionality of units of measurement with their 

expressions in terms of  the basic units of the system and even with their names (for example, see [1]). The authors are evidently 

not aware of the statements of such scientists as Max Planck, E Bridgman, and others. Max Planck wrote the following: "... it 

is clear that the dimensionality of  any physical quantity is not a property associated with its essence but simply represents some 

arbitrariness determined by the choice of the system of measurements" [7, 11, 12]. This point of view is contirmed by the 

dependence of dimensionalities on the chosen system of units, by the coincidence of dimensionalities possessing different phys- 

ical natures, by dimensionalities of a number of quantities which are difficult to interpret physically, and by the fact that quan- 

tities which are dimensional in one system may be dimensionless in another (and vice versa). We finish this digression on the 

dimensionalities of  measured quantities with the following quotations from [13]: "... in a case when only one set of basic units 

of measurement is taken, the dimensionality formula ... can be expressed by only one method. However, when the basic units 

are changed, the form of the formula can also change. It should be noted that whereas two dimensionality formulas cannot cor- 

respond to one physical quantity, one dimensionality formula can correspond to two different physical quantities" (page 29). 

Further: "No such concept as the absolute dimensionality of a physical quantity exists .... Dimensionalities are relative by defi- 

nition. We hold to the following point of view. A dimensionality formula of a physical quantity is based on a definition of this 

quantity which in itself depends on the method of measuring the quantity utilizing basic units of measurement whose choice 

(within certain limits) is arbitrary" (p. 133). It can be seen from this that dimensionality symbols are specific logical operators 

which are functionally defined only as part of the corresponding units of  measurement. It must not be fo~otten that it makes 

no sense to use these operators outside systems of units. One must also not speak of "the magnitude of dimensionalities" [1], 

since dimensionality symbols are not ordinary quantities and the abstract algebra of operations with them differs from ordinary 

algebra. 

How does one then understand dimensionless quantities and their units? The theory of measurement scales makes it 

possible to give a clear answer to this question. Dimensionless quantities expressed by abstract numbers can be divided into two 

classes: absolutely dimensionless and conditionally dimensionless. Absolutely dimensionless quantities are quantities described 

by absolute scales (see Table 1). Absolute scales possess natural units of measurement (which are independent of any system 

of units). In all else they are similar to metric ratio scales [5, 9]. Absolute scales and their units can be realized without stan- 

dards but such standards may exist in technically and economically well-founded cases. Any units of  absolute scales are dimen- 

sionless since they are defined without relation to any system of units, although the units of absolute scales are associated with 

any systems of  units as units outside the system. There is no need to include them in any system as system units. They are 

closely harmonized with SI units and units of other systems. They are essentially units outside or even above the system [ 14]. 

Conditionally dimensionless quantities (see Table 2) are dimensional quantities, transformed by dividing dimensional 

quantities by some fixed (reference) values of the same quantities. The logarithms of such ratios form logarithmic scales with 

a fixed zero [15]. Thus, it is possible to express the values of  dimensional quantities in dimensionless units. The addition or 

subtraction of quantities expressed in such logarithmic units reduces to a determination of the logarithm of the sum or differ- 

ence of the quantities whose logarithms are known. 

A search for the dimensionalities of units of absolute scales is useless and futile. Enlisting the equations of fundamental 

physical laws to such attempts does not and cannot help [1]. For example, ascribing the dimensionality (L2MT-2) ~ to efficien- 

cy and introducing the corresponding units (joules to the power zero) does not add any clarity and is simply inconvenient. Is it 

the case for example that an efficiency of 0.5 is half a joule to the power zero? Why? Here, without belittling the role of dimen- 

sionalities, it is necessary to remember that in practice what interests us is not the dimensionalities as such but the expressions 

linking the units of  measurement with the basic units of the system and with each other. Their structure is similar but they are 

not identical. Sometimes they are not distinguished and this leads to the typical errors which also characterize [1]. It is not by 

chance that there is no "dimensionality" column in tables of an international document [ 16], only expressions for the relation- 

ship between the different units of measurement being given, since it is these which are widely used in practice. The fears of 

the author of [1] that confusion can arise from the use of dimensionless units are far-fetched and unfounded. This problem has 

never arisen and moreover could not arise. The specific application of dimensionless units is simply manifested by the name of 

the quantity (efficiency, gain, Q-factor, etc.) or by its designation. An arithmetic unit is never written after numerical values of 

a dimensionless quantity; there is no point in writing one. 

Let us now consider yet another question which causes particular worry [1]. This concerns the planar and solid angles. 

This question is indeed of a specific nature, but is not as complex and confused as this author considers. In 1960, the category 

of "supplementary units" was introduced into the SI system and the radian and steradian were included in it. The fact that the 
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TABLE 1. Units o f  Absolute  Scales 

Quantity Natural measurement unit 

Relative quantities (ratio of Arithmetic (dimensionless) 
similarly named quantities)* unit, "1" (not written after a 

numerical value of a quantity) 

Planar angle, geographic 
latitude and longitude, phase 
of harmonic oscillations 

Solid angle 

Eogarithmic quantities 
(logarithms of ratios of  
arbitrary values of quantities 
of the same kind) 

Total angle (one revolution), 
period, cycle 

Total solid angle (sphere, 
assembly of all elementary 
solid angles in all directions 
in space around a point) 

Name 

Percent 
Per thousand 
Per hundred 

thousand 
Millionth 

Radian 
Angular degree 
Angular minute 
Angular second 
Metric degree 
Right angle 
Rumb 

Mil 

Steradian 
Square degree 

Arithmetic unit of logarithm Bel 
of relative quantity Decibel 

Neper 

Frequency intervals Arithmetic unit 

Arithmetic unit 

i Binary arithmetic unit 

! Arithmetic unit 

Arithmetic unit 

Accounting (piece) 
quantities 

Information content 

Refractive index 

Similarity criteria (Reynolds 
number, Froude number, 
Mach number, Knudsen 
number, Euler number, etc.) 

Multiples and fractions 
Notation 

Ratio to natural unit 
Russian international 

% % 10 - ot the dimensionless unit (d.u.) 
a/~ c/o~ 10 -3 d.u. 

%co %co 10 -5 d.u. 
mil -I ppm 10 4 d.u. 

tad tad 1/2g of total angle (full revolution) 
...o ...~ 1/360 of full revolution 

�9 ...' 1/21600 of full revolution 
. . . .  1/1296000 of full revolution 

grad (gonl gon or ...g 1/4(10 of full revolution 
...k ...k 1/4 of full revolution 

rumb R 1/32 or 1/16 of full revolution 
respectively in navigation and 
meteorology 

T 1/(2m103) of full revolution 

sr sr 1/4n of total solid angle 
ao co (rt/180) 2 of toral solid angle 

B B Ig l0  = 1 

dB dB 0.1 B 
Np Np Ine = 1 

Decade Dek Ratio of limiting frequencies: 
Octave Oktava 10 for a decade, 2 for an octave 

~3 Einstein I~ E 6.0221367-10" d.u. 
Item sht 1 d.u. 
Pair para 2 d.u. 
Ten desyatok 10 d.u. 
Dozen dyuzhina 12 d.u. 
Gross gross 144 d.u. 
Thousand tys 103 d.u. 
Million units mln 106 d.u. 

of  goods** 

Bit bit bit 1og22 = 1 
Byte bait B 8 bits 
Kilobyte kbait KB 1024 B 
Megabyte Mbait MB 1024 kB 
Gigabyte Gbait GB 1024 MB 
Nat nat - 0.693 bits 

* Examples of relative quantities: efficiency; Q factor;, coefficients of  transmission, reflection, absorption, attenuation, gain; albedo; 
modulation depth, etc. 
** Accounting units associated with the name of a commodity: cans, bobbins, manufactured components, coils, packs, sets, containers, 
canisters, consignments, rolls, packages, tanks, copies, boxes, etc. 
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SI is the only system in which such a category is present and that there is no definition of this term has been emphasized many 

times in the literature. This situation has given grounds for discussions [10]. These resulted in the exclusion from the SI sys- 

tem of a separate category of "supplementary units" and their accommodation in the international standard ST ISO 1000-1992 

of the International Standards Organization with a reference to an amendment by the 1980 International Conference on Weights 

and Measures to the table "Specially named derived units including supplementary SI units" [6, 17]. In 1995, a resolution of 

the Twentieth State Conference on Weights and Measures proposed that the radian and steradian be "interpreted" as dimen- 

sionless derived SI units [16]. This resolution is formally acceptable, but it would have been preferable directly to name the 

radian and steradian as off-system dimensionless units utilized in the SI system. 

In this case, the theory of measurement scales gives a simple and clear explanation. The radian and steradian, as units 

of absolute scales, are not related to the basic SI units. They are typical units outside (or above) the system. It is now difficult 

to reestablish the logic of the arguments which led the International Conference on Weights and Measures to decide to include 

the radian and steradian with SI units, but the tendency to an all-embracing nature of the SI system is clear. 

In addition to the search for the dimensionalities of angular units by the author of [1], there is concern over the appli- 

cation in practice of degree units along with the radian (we mainly disct~ss units for measuring planar angles) and the possibil- 

ity of confusion arising (as in general with the units of absolute scales which we discussed above). Strangely enough, the author 

mentioned does not list all such units. Beside the radian and the angular degree (with its fractional units) the grad and compass 

points are in use (see Table 1). In military affairs (for example in artillery) mils are used. It is easy to remark that all these units 

originate from one natural unit, the full angle of revolution, the angle through which a material body rotates tbr all of its points 

to occupy their previous positions. In mathematical operations and their applications [18], in accordance with the definitions 

and properties of trigonometric functions, it is necessary to use only one radian unit, namely one period of revolution (a cycle) 

equal to 2~x radiums. In practical work it is preferable to use de~ee  units. The values of planar angles are reproduced in degrees 

in the State Russian Standard GI~T 22-80. The reasons for this are generally known and there is no need to repeat them [6]. We 

just emphasize yet again than nobody has yet confused radians and angular degrees and that the conversion of the values of 

angles from one set of units to the other does not give rise to additional errors since the value of ~ is known with a clearly excess 

number of significant figures. 

In order to supplement what has been said concerning the units of measurement of planar and solid angles, let us elu- 

cidate the other units in Table 1. 

When forming relative units, one takes the ratio of the arbitrary values of similarly named quantities, and so the units 

of such quantities cannot in principle be associated with dimensional units. Widely used fractions of dimensionless units have 

the special names and notations indicated in Table 1. It is far rarer to use special notations of multiple dimensionless units to 

express the values of relative quantities. Absolute scales are used to describe a fairly large class of relative units such as coef- 

ficients of transmission, reflection, division, gain, and multiplication, Q factor, albedo, efficiency, etc. 

The units of logarithmic quantities (the logarithms of relative quantities) also possess the indicated special names and 

notations. Examples of such logarithmic quantities are attenuation and optical density. 

The distinctive units of frequency intervals, the decade and the octave, are given separately in Table I. A whole series 

of dimensionless units for measuring frequency intervals are used in acoustics and music, in addition to these interval units [ 19]. 

These include the half-tone, full-tone, minor and major third, fourth, diminished and pure fifth, minor and major sixth, minor 

and major seventh, the Savart, the millioctave, the cent, the half-octave, third octave, and sixth octave. Frequency intervals dis- 

tinguished by the ratio of the limiting frequencies are relative quantities. It should be noted that the linking of any frequency 

interval to a specific frequency value gives evidence of a quantity of another type, a conditionally dimensionless quantity (see 

Table 2). 

The units of accounting quantities (the item, pair, ten, etc.) are widely used in accounting and trading operations encom- 

passed by the spheres of State metrological monitoring and inspection. Agreements are known in the Council for Mutual 

Economic Aid and the Commonwealth of Independent States (CIS) concerning the accounting units whose use is permitted. A 

unit of measurement for the number of photons of optical radiation, the Einstein, was used in photochemistry. This is numeri- 

cally equal to the Avogadro constant (number). Incidentally, the amount of a substance expressed in moles is also essentially an 

accounting quantity and therefore its unit of measurement could by agreement have been dimensionless (in the SI system the 

mole is one of the basic units with its own dimensionality, although there are no standards for the mole, nor will there be). 

Integer counting units are widely used in the SI system in order to form derived units of such quantities as frequency (Hz = 1 c/s), 

nuclide activity (Bq = 1 s-t), the flux (1 s - l)  and fluence (1 m -2) of ionizing particles, aerosol concentrations (1 m3), etc. 
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TABLE 2. Units of Conditionally Dimensionless Quantities 

Quantity 

Level (energy quantities) 

Level (force quantities) 

pH value 

Name 

Logarithmic unit 

Logarithmic unit 

Unit of 
logarithm 
of dimensionless 
quantities 

Measurement unit 

Notation 

Russian internation',d 

dB (relative dB (re. P0) 
to Po) 

dB (relative dB (re. Fo) 
to F o) 

I 1 

Definition, reference quantity and its value 

IOlg(P/P o) where P is the measured quantity and P0 is 
the reference value, for example, 1 W for an electric 
power level or 10 -12 W/m 2 for a sound intensity level 

201g(F/Fo) where F is the measured quantity and F 0 is 
the reference value, for example, 1 mV for an electric 
voltage level or 2-10 -5 Pa for a sound pressure level 

pH = -lg(mHTH/m ~ where m R is the molarity of 
hydrogen ions, moles&g; 'YH is the molar activity 
coefficient, dimensionless; m ~ is the molarity of 
hydrogen ions in the standard state, equal to 1 mole&g, 
the reference value 

Relative permittivity E Arithmetic unit 1 1 E = Ea/~ where Ea is the absolute permittivity, F/m; 
~0 is the absolute permittivity of free space, equal to 
8.854-10 -12 F/m, the reference value. 

Sound pitch in music Octave Oktava - Ratio of octave limiting frequencies is 2. Reference valu~ 
of sound pitch scale is the frequency 440 Hz, the note 
A of the first octave. 

Note. The symbol 1 is usually omitted in association with a numerical value. 

It is possible to qualify a distinctive group of units of information content only as dimensionless units above the sys- 

tem. However, these units are naturally used in conjunction with SI units in order to form derived units such as the surface den- 

sity of recording information (MB/cm2). 

Refractive index is also a relative quantity. It is the ratio of the velocity of light in a vacuum to that in the medium. A 

particular feature of this ratio quantity is that the numerator always contains a limiting velocity, and so the dimensionless value 

of a refractive index is always greater than unity. The latter remark does not apply to a relative refractive index (the ratio of light 

velocities in adjoining media). A ne,;v edition of a document of the International Organization of Legislative Metrology on SI 

[16] the refractive index and its unit (the number  1) are given in a table of examples of derived units expressed in terms of basic 

units (with a remark that the symbol "1"  is usually omitted in combination with the numerical value). According to the theory 

of measurement scales, there is no justification for placing the refractive index in this table of the document [ 16]. 

The numerical values of dimensionless similarity criteria remain unchanged on passing from one system of units to 

another within the limits of a stipulated class of phenomena. This limitation must  be kept in mind when using the theory of sim- 

ilarity and dimensionality. 

In the State system for providing traceability of units of measurement there are more than 20 State standards and 

devices of higher accuracy which originated in Russia and which reproduce absolute scales (dimensionless units) of  measure- 

ment. These standards include measurements of the following quantities: planar angle, volumetric moisture content, relative 

humidity of gases, g a i n  moisture content, mass fraction of moisture in liquids, moisture content of photographic materials, 

humidity of disperse media, fraction of components in gases, mass fraction of  matter, electrical Q factor, coefficient and angle 

of scale conversion, refractive index and its relative distribution, spectral transmission and reflection coefficients of  optical radi- 

ation, phase shift angle of electric voltages, attenuation and phase shift of electromagnetic oscillations, attenuation of an optical 

signal, complex reflection coefficient of  electromagnetic waves. 

A typical representation of scales of conditionally dimensionless quantities (see Table 2) is given by logarithmic scales 

with a fixed zero determined by the initial (reference) value of the quantity [15]. The result of measurements in such scales are 

usually expressed in bels (B), decibels (dB), or nepers (Np) and are referred to as the level of the measured quantity. A mea- 

sured value in these logarithmic units shows the extent to which a quantity has increased (by what factor its level has risen) rel- 
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TABLE 3. Order Scale Numbers and Points 

Me~u~do~ect 

Metals and alloys 

Measured quantity 
Name 

Hardness number on the scales: 
Brinell 
Rockwell 
Vickers 
Shore 
Yield point hardness, GOST (State All-Union Standard) 22762-77 

Minerals Hardness numbers (points) on the Mohs scale 
I 

Rubbers Hardness numbers on international scale 
I 

Metals Scratch microhardness, GOST 21318-75 

Plastics Hardness on Rockwell scale, GOST 24622-91 
Hardness, GOST 4670-91 

i 

Paint coatings Hardness, GOST 5233-89 
I 

Chipboards Hardness, GOST 11843-76 
I 

Coal and anthracite Microhardness. GOST 21206-75 
I 

Grinding tool Degree of hardness on discrete scale. GOST 19202-80 
I 

Photographic materials Light sensitivity, GOST 9160-91 
; Monochromatic sensitivity, GOST 2818-91 

Motor fuel I Octane number GOST 8226-82 and GOST 511-82 

Diesel fuel Cetane number, GOST 3122-67 
Cetane index, GOST 27768-88 

Petroleum products Acid number. GOST 5985-79 
Iodine value, GOST 2070-82 

Petroleum products and lubricating oils Neutralization number, GOST 29255-91 
I 

Residual fuel Bromine number of fraction, GOST R 50837.2-95 
Peptization number, GOST R 50837.5-95 

Ductile lubricants Index of penetration classes, GOST 5346-78 
I 

Hydrocarbons of the aromatic benzene series Bromine number, GOST 2706.11-74 
I 

Paints Acid number, GOST 23955-80 
I 

Lacquer, alkyd, and polyester resins Hydroxyl number, GOST 26194-84 
I 

Polyesters for polyurethanes Acid number. GOST 25210-82 
! Iodine value, GOST 25240-82 
i Hydroxyl number, GOST 26261-82 
I 

Anhydrous hardeners for epoxy resins ' General acid number, GOST 25523-82 
I 

Methanol, technical poison Permanganate number GOST 25742.5-83 

Dark-colored raw material for PVA Acid number, GOST 26028-83 

Cellulose Copper number, GOST 9418-75 
Kapp number, GOST 10070-74 

Natural latex rubber KOH number, GOST 28864-90 

Rubber mixture ingredients, industrial carbon Iodine value, GOST 25699.3-90 

Bentonite clay for fine and building ceramics Bentonite number, GOST 21282-93 
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Notation 

HB 
HRC 
HV 

HSD 

H0.2 

IRHD 

Hop 

Hvp 

HR 
HK 

H 

H 

S 
S~ 

X 

m 



Continuation of Table 3 

Fruit and vegetable juices Formol number, GOST R 51122-97 

Essential oils and products of essential oil production Acid number, GOST 30143-94 
Ester number. GOST 30144-94 

Vegetable oils Acid number, GOST 5476-80 
Iodine value, GOST 5475-69 
Peroxide number, GOST 26593-85 

Sunflower Acid number, GOST 26597-89 

Higher fatty alcohols Saponification and ester numbers, GOST 26549-85 

Synthetic fatty acids Ester number, GOST 22385-94 

Cereal cultivation, grain and products of its processing Settling number, GOST 30498-97, GOST 27676-88 

Dimensions of figures of servicemen Scale of sizes, GOST 20881-91 

Woollen fabrics Points of stability against moth damage, GOST 9.055-75 

Wind force Points on the Beaufort scale 

Earthquake force Points on the Richter scale 

Accidents at nuclear power stations Points on the IAEA scale 

ative to its reference value (which possesses dimensionality). In the case of  energy quantities, abel,  a decibel, and a neper sig- 

nit'), increases by factors of respectively 10, 1.259, and 7.389. For force quantities, these factors are respectively 3.162, 1.121, 

and 2.719. The reference values for various quantities are usually selected from considerations of convenience, traditions, inter- 

national agreements, etc. For example, in acoustics the reference values for the levels of sound intensity and acoustic pressure 

are chosen taking account of the psychophysiological properties of human hearing and are respectively 10 -12 W/cm 2 and 

2-10 -5 Pa. In order to avoid errors, it is recommended by the standard MI~K 27-3-1974 that one should indicate the reference 

value following a specific numerical value of a level, for example an acoustic pressure level of 9 dB (relative to 2-10 -5 Pa). It 

is thereby emphasized that this is a dimensional quantity which is conditionally presented as being dimensionless. 

The pH value is a conditionally dimensionless quantity since by definition its value is obtained by dividing a dimen- 

sional quantity by a specific reference value of it and taking the logarithm of this dimensionless result of  the division. 

Incidentally, we note that there is no requirement to introduce a special dimensionality or name for the pH unit since it makes 

no sense to attempt to use a pH value in conjunction with any property in order to form derived units. 

Relative permittivity is also by definition a conditionally dimensionless quantity. 

The example in Table 2 of the pitch of a musical sound is distinctive as a conditionally dimensionless quantity having 

a reference frequency of 440 Hz (the note A of the first octave). Octaves (the counter octave, first and second octaves, etc.) form 

a logarithmic scale and each of the octaves is marked out into a family of the well-known basic musical notes [19]. It should 

be mentioned that other forms of sound series exist for intervals in a musical octave. The scales of conditionally dimensionless 

quantities are naturally reproduced with reference to the SI system. In the State system for providing traceability of measure- 

ments there are State standards and devices of higher accuracy, originating in Russia, which reproduce the following condition- 

al dimensionless quantities: the level of acoustic pressure in air and in water, pH and ionometric (pX) values, and relative per- 

mittivity. 

Of particular importance is the case of numbers and scale points used to express measurements of  quantities described 

by order scales (Table 3). It is well known [3-5, 8, 9] that on account of the undetermined nonlinearity in order scales (most 

frequently of the logical impossibility of establishing the proportionality of the quantities) it is meaningless to utilize the con- 

cept of a unit of  the measured quantity. It is therefore also meaningless to accompany the expression of the results of measure- 

ments in such scales by words concerning units. The absence of units of measurement logically predetermines the lack of mean- 

ing in the question of the dimensionality of such quantities. Mathematical expressions used to calculate the values of numbers 

in terms of order scales are not definitive equations for dimensionality since they include not the interdependent properties of 
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the measurement object but the parameters of a standardized measurement procedure (scale specifications): the parameters of 

experimental devices, those of factors acting on the measurement object, and those of the measurement action. The expression 

of the values of these parameters in dimensional units (such as SI units) is not justified in order to combine them into a mean- 

ingless unit of a quantity measured in terms of  a scale. Thus, the procedure for measuring hardness using the Brinell scale is 

specified by the following parameters: the diameter (millimeters) of the indented hardened steel ball, the indentation force (new- 

tons), the indentation duration (seconds), and the diameter (millimeters) of  the impression of the ball on the surface of  the metal 

sample. 

In the light of what has been said about order scales, it is evidently totally meaningless to attempt to introduce a con- 

ditional unit for the acid number, for example, and arguments concerning the dimensionality of this "unit" [20, 21 ]. There is no 

justification for representing the procedure adopted to determine acid number values, in which KOH alkali is used to neutralize 

an acid group in a test sample of fat, in terms of  a "determining equation" of the quantity and to consider the specific designa- 

tion of this procedure (milligrams of KOH per gram) as a unit of measurement. If the scale of the acid number of  fats is exper- 

imentally established to be linear, it will not even then be justified to introduce dimensionality for this number in view of the 

above discussion. 

We share the concern of the authors of [22] over the need to legitimize measurements in terms of nonmetric scales, and 

in particular of measurements of an octave number (see Table 3). However, we do not share the proposal of introducing "con- 

ditional units" with a normative document. The explanations presented above demonstrate the error of this proposal. In this 

case, there is no justification or need to introduce "conditional units" 

Unfortunately, the mistaken proposals considered, and other such proposals, related to numbers and scale points of an 

order scale are far from unique. A rather preliminary choice of active order scales is given specially in Table 3 in order to raise 

awareness of th~ scale and seriousness of the problem. Many of these scales are regulated not only by State standards but also 

by international standards of, for example, scales of hardness, light sensitivity, settling number, classifications of accidents at 

nuclear power stations, etc. However, some socially significant order scales in Russia are not standardized at the State level 

(scales of wind force, earthquake force, nuclear power station accident classification). 

Table 3 brings to light multiple repetition of various hardness numbers, acid numbers, iodine values, etc. Formally 

operating standardizers have a desire to eliminate such repetition and to introduce (for example in [20, 21]) one general acid 

number for different objects. This desire reveals a misunderstanding of the fundamental impossibility of such a unification. The 

acid numbers of  different objects, even in the case when they are measured using similar procedures, are the results using dif- 

ferent scales of  measurements which cannot be compared. For example, the formal equality of the acid number values of 

petroleum products and vegetable oils does not equalize the useful properties of  these objects. There is also no sense in com- 

paring with each other the hardness of  steel, rubber, and plastics. Even for a fairly homogeneous class of  objects, metals and 

alloys, several hardness scales exist each of which describes the hardness of  the material in accordance with its specific defini- 

tion. It is shown in practice that all these have their own range of application. 

Unfortunately, there are inaccuracies in several of the standards shown in Table 3 which it would be desirable to elim- 

inate when reviewing them. For example, in certain standards for hardness scales comment is made of conditional or relative 
�9 " )  

units, or the results of measurements are accompanied by the notauon MPa, N/m ' ,  or kg/mm 2 which are understood as units of 

measurement. Frequently it is not the median of the measurements which is used, as should be the case in order scales, but the 

arithmetic mean of the observations. The recommendations of [9] will be useful in eliminating these and other shortcomings in 

the normative documents on order scales. 

The majority of the order scales given in Tabte 3 have been subjected to metrological assurance. A number of  State 

standards of hardness scales exist with corresponding State verification schemes. When necessary, measuring instruments are 

tested for the purpose of confirming their type and they are entered into the State register of measuring instruments. Thus, in 

recent years tests have been made of  several models of an instrument for measuring the settling number, one of the characteris- 

tics of flour, and they have been entered in the State register. For many scales, the measuring procedures are carded out using 

legitimized measuring instruments borrowed from other forms of measurement. Some order scales are of no interest for instru- 

mental metrology, although they are necessary in order to perform State metrological inspection. Examples of this are the 

dimensions of  the figures of servicemen or the stability scale for woollen fabrics against moth damage, etc. 

The above discussion provides evidence that dimensionless units and numbers represent an extremely diverse set which 

is successfully utilized for presenting the results of  measurements. There is no need to attempt to introduce them into any "sys- 

tem of units." The realization of this fact leads to a more satisfactory understanding of the real structure of metrology. 
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