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Figure	 1.	 Timeline	 of	 the	 three	 Landsat	 sensors	 used	 in	 the	 giant	 kelp	 canopy	 time	 series.	
Landsat	5	Thematic	Mapper	acquired	 imagery	 from	1984	–	2011,	while	Landsat	7	Enhanced	
Thematic	Mapper+	and	Landsat	8	Operational	 Land	 Imager	are	both	currently	 in	operation.	
Landsat	7	ETM+	experienced	a	scan	 line	corrector	error	 in	May	of	2003,	shown	as	the	 light-
yellow	section	of	the	timeline.	

	
Overview	
	
	 The	Landsat	sensors	have	acquired	30	m	spatial	resolution	multispectral	imagery	nearly	
continuously	from	1984	–	present,	with	each	sensor	imaging	the	globe	every	16	days.	We	use	
these	images	to	estimate	the	canopy	biomass	of	giant	kelp	(Macrocystis	pyrifera)	along	the	coast	
of	 California,	 USA.	 Compared	 to	 seawater,	 emergent	 kelp	 canopy	 presents	 relatively	 high	
reflectance	in	the	near	infrared	region	of	the	electromagnetic	spectrum,	and	allows	for	accurate	
and	consistent	retrievals	of	the	fraction	of	kelp	canopy	in	each	Landsat	pixel	across	variable	ocean	
conditions.	 By	 relating	 the	 estimated	 kelp	 fraction	 to	 long-term	 diver	 estimates	 of	 canopy	
biomass,	 we	 validated	 these	 fractional	 estimates	 and	 applied	 this	 relationship	 to	 giant	 kelp	
forests	along	the	California	coast.	
	
Methods	
	

The	following	describes	the	semi-automated	classification	process	that	was	developed	to	
estimate	 giant	 kelp	 canopy	biomass	 from	 Landsat	 imagery.	 Images	with	 clear	 coastline	 areas	
were	 identified	 and	 downloaded	 from	 the	 USGS	 EarthExplorer	 webpage	
(earthexplorer.usgs.gov).	A	single,	cloud-free	 image	was	selected	from	the	middle	of	the	time	
series	and	radiometrically	and	atmospherically	corrected	to	apparent	surface	reflectance	using	
the	Atmospheric	Correction	Now	 (ACORN)	 software.	We	standardized	 the	 radiometric	 signals	
from	all	other	images	to	this	corrected	reference	image	using	50	pseudo-invariant	targets	that	
were	assumed	to	be	stable	across	the	time	series	(i.e.	airport	runways,	highways,	sandy	beaches,	
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lakes;	 Furby	 &	 Campbell	 2001;	 Baugh	&	 Groeneveld	 2008).	 The	 number	 of	 pseudo-invariant	
targets	was	increased	to	85	for	the	Landsat	7	ETM+	images	with	the	SLC	corrector	error	due	to	
missing	data	 lines	across	the	image.	Outliers	were	manually	removed	to	reduce	the	effects	of	
temporal	 changes	 in	 some	 of	 the	 targets.	 This	 procedure	 accounted	 for	 all	 atmospheric,	
radiometric,	 and	 processing	 differences	 between	 the	 scenes	 and	 created	 a	 time	 series	 of	
standardized	imagery.	

We	estimated	 relative	 kelp	 canopy	density	 from	 the	 calibrated	 reflectance	data	 using	
multiple	endmember	 spectral	mixing	analysis	 (MESMA;	Roberts	et	al.	1998).	 Spectral	mixture	
analysis	 models	 the	 fractional	 cover	 of	 two	 or	 more	 endmembers	 within	 a	 pixel.	 Each	
endmember	represents	a	pure	cover	 type	and	endmembers	are	assumed	to	combine	 linearly	
(Adams	et	al.	1993).	Standard	spectral	mixture	analysis	uses	a	uniform	set	of	endmembers	for	
the	entire	image.	This	approach	was	problematic	for	the	estimation	of	giant	kelp	canopy	because	
of	varying	water	conditions	across	the	image	and	through	time.	The	reflectance	of	seawater	in	
the	near-shore	marine	is	influenced	by	sun	glint,	breaking	surface	waves,	phytoplankton	blooms,	
dissolved	 organic	 matter,	 and	 suspected	 sediment.	 Due	 to	 the	 highly	 variable	 seawater	
reflectance,	a	single	seawater	endmember	cannot	be	used.	

	

	
Figure	2.	Panels	a.	and	b.	are	false	color	images	of	San	Miguel	and	Santa	Rosa	islands,	located	
in	the	Santa	Barbara	Channel.	In	these	images,	the	near	infrared	reflectance	is	displayed	as	
red	and	floating	giant	kelp	canopy	 is	shown	as	the	orange	features	along	the	coasts	of	the	
islands.	 Panels	 c.	 and	 d.	 show	 the	 MESMA	 kelp	 fractions	 derived	 from	 the	 imagery	 with	
warmer	colors	signifying	greater	fractional	cover	of	kelp	canopy	in	those	pixels.	
	
The	MESMA	process	allows	endmembers	to	vary	on	a	per	pixel	basis	by	selecting	from	

multiple	 endmembers	 for	 one	 or	 more	 cover	 types.	 This	 technique	 can	 better	 capture	 the	
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spectral	variability	of	a	cover	type	through	space	and	time.	We	modeled	pixel	reflectance	as	the	
linear	 mixture	 of	 reflectance	 from	 two	 endmembers:	 giant	 kelp	 canopy	 and	 water.	 Thirty	
seawater	 endmembers	 were	 selected	 from	 consistently	 non-kelp	 covered	 areas	 within	 each	
Landsat	 scene.	 The	 locations	where	 these	 endmembers	were	 collected	 did	 not	 change	 from	
image	 date	 to	 image	 date,	 but	 the	 spectral	 information	 collected	 at	 these	 locations	 varied	
between	images.	A	single	kelp	endmember	was	selected	by	extracting	kelp	covered	pixel	spectra	
from	each	image	and	finding	the	single	spectrum	that	fit	the	entire	library	of	kelp	spectra	with	
the	lowest	root	mean	square	error	(RMSE;	Dennison	&	Roberts	2003).	The	pixels	of	each	image	
were	modeled	as	a	two-endmember	mixture	of	kelp	and	each	of	the	30	water	endmembers	that	
were	free	of	cloud	contamination.	The	final	model	(out	of	30)	chosen	for	each	pixel	was	the	model	
that	minimized	the	RMSE	when	fit	to	the	spectrum	of	that	pixel.	The	result	of	this	process	was	a	
measure	of	 the	relative	 fraction	of	each	pixel	covered	by	kelp	canopy	(Figure	2).	The	MESMA	
process	 successfully	 estimated	 the	 relative	 canopy	 fraction	 of	 giant	 kelp	 under	 a	 variety	 of	
conditions	including	large	amounts	of	sediment	runoff	and	high	levels	of	sun	glint	(Cavanaugh	et	
al.	2011).	

	

	
Figure	3.	Image	showing	the	spectral	bands	of	the	three	sensors	used	in	this	dataset.	Note	the	spectral	band	
width	in	the	Landsat	8	OLI	sensor	compared	to	Landsat	5	TM	and	Landsat	7	ETM+.	This	difference	is	most	
apparent	in	the	near	infrared	band	5	for	OLI,	compared	to	band	4	for	TM	and	ETM+.	Bands	1	–	4	are	used	for	
the	MESMA	process	for	TM	and	ETM+	and	bands	2	–	5	are	used	for	OLI.	

	
Each	 Landsat	 sensor	 differs	 in	 signal	 to	 noise	 ratio,	 radiometric	 calibration,	 and	 the	

number	and	width	of	their	spectral	bands.	The	most	important	difference	for	the	Landsat	kelp	
time	series	was	the	“optimization”	of	the	Landsat	8	OLI	spectral	bands	relative	to	the	Landsat	5	
TM	and	Landsat	ETM+	sensors	(Figure	3).	Due	to	the	lack	of	temporal	overlap	between	Landsat	
5	and	Landsat	8,	the	dynamic	nature	of	the	giant	kelp	canopy,	and	the	fact	that	each	image	is	
acquired	8	days	apart	 for	the	overlapping	sensors,	 the	best	way	to	compare	the	kelp	fraction	
retrievals	 from	 each	 sensor	 was	 by	 using	 simulated	 imagery.	 We	 took	 advantage	 of	 aerial	
hyperspectral	imagery	over	the	Santa	Barbara	Channel	collected	by	the	Airborne	Visible/Infrared	
Imaging	 Spectrometer	 (AVIRIS)	mounted	on	an	ER-2	 aircraft	 flying	 at	 65,000	 feet	 to	 simulate	



hyperspectral	satellite	imagery.	We	resampled	a	hyperspectral	image	collected	in	April	2013	to	
all	 three	 Landsat	 sensors’	 spectral	 bands	 using	 published	 spectral	 response	 functions.	 The	
MESMA	process	was	then	applied	to	each	simulated	image	using	30	seawater	endmembers	from	
the	 same	 locations	 in	 each	 simulated	 image	 and	 the	 kelp	 endmember	 discussed	 above.	 Kelp	
fractions	were	 then	 compared	 between	 each	 simulated	 sensor	 pair	 (Figure	 4).	 Kelp	 fractions	
estimated	from	the	Landsat	5	TM	and	Landsat	7	ETM+	were	comparable	however	Landsat	8	OLI	
kelp	 fractions	were	 consistently	 lower	 for	 the	 same	 amount	 of	 kelp	 canopy.	 To	 address	 this	
difference,	we	adjusted	the	Landsat	8	kelp	fractions	using	equation	(1)	to	match	those	of	the	
previous	Landsat	sensors.	
	

					 	 	 																	Eq.	1	
	
	

	
Figure	 4.	 Scatterplot	 matrix	 of	 MESMA	 derived	 kelp	 fractions	 from	 the	 simulated	 images	 of	 each	
Landsat	sensor,	compared	against	every	other	Landsat	sensor	used	in	the	kelp	canopy	biomass	time	
series.	 The	 dashed	 black	 lines	 show	 the	 1:1	 line	while	 the	 red	 lines	 are	 the	 best	 fit	 lines	 for	 each	
individual	scatterplot.	TM	represents	the	Landsat	5	Thematic	Mapper,	ETM+	is	the	Landsat	7	Enhanced	
Thematic	Mapper	+,	OLI	is	the	Landsat	8	Operational	Land	Imager,	and	OLI_c	it	the	Operational	Land	
Imager	kelp	fraction	corrected	to	match	the	TM	and	ETM+	kelp	fraction	estimates.	
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The	retrieved	kelp	fractions	from	each	sensor	were	then	compared	to	giant	kelp	canopy	
biomass	observations	that	were	collected	by	divers	at	permanent	plots	maintained	by	the	Santa	
Barbara	Coastal	Long	Term	Ecological	Research	(SBC	LTER)	project	at	the	Mohawk	and	Arroyo	
Quemado	kelp	forests	(Figure	5).	The	data	and	the	methods	used	to	measure	giant	kelp	canopy	
biomass	 from	 diver	 surveys	 are	 described	 in	 detail	 in	 Rassweiler	 et	 al.	 (2008).	 Briefly,	 divers	
measured	 the	 length	of	all	 fronds	along	5	 transects	 (40	x	1	m)	within	a	plot	 (40	x	40	m)	and	
converted	these	lengths	to	biomass	using	validated	length	to	weight	relationships.	Each	plot	was	
overlapped	 by	 four	 30	m	 Landsat	 pixels.	 For	 each	 image,	 we	 compared	 the	 diver	measured	
canopy	 biomass	 of	 each	 plot	 to	 the	 mean	 kelp	 fraction	 of	 the	 four	 pixels,	 weighted	 by	 the	
proportion	of	the	transect	area	in	each	pixel.	We	compared	biomass	estimates	to	kelp	fractions	
from	 each	 sensor,	 and	 all	 sensor	 measurements	 together,	 using	 reduced	 major	 axis	 linear	
regressions	(Figure	6).	
	

	
Figure	5.	Landsat	8	Operational	Land	Imager	image	displaying	a	portion	of	the	study	area,	
including	the	two	SBC	LTER	research	sites	(red	triangles)	where	diver	surveys	of	canopy	
biomass	were	conducted.	
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Figure	 6.	 Validation	 of	 Landsat	 satellite	 estimates	 of	 the	 three	 sensors	
versus	diver	estimated	canopy	biomass	from	the	two	SBC	LTER	sites.	The	
black	line	represents	the	reduced	major	axis	linear	regression	line	across	
all	three	sensors.	

	
A	strong	positive	linear	relationship	was	found	between	the	Landsat	derived	kelp	fractions	

and	giant	kelp	canopy	biomass	across	all	three	sensors	(Table	1).	The	relationship	between	kelp	
fraction	 and	 canopy	 biomass	 using	 the	 Landsat	 8	 sensor	 was	 significantly	 lower	 than	 that	
relationships	using	the	other	two	sensors.	However,	since	the	Landsat	8	satellite	began	to	acquire	
imagery	in	mid-2013,	the	SBC	LTER	calibration	sites	have	not	recorded	canopy	densities	higher	
than	3.5	kg	m-2.	When	the	relationships	were	examined	between	0	–	3.5	kg	m-2,	all	three	sensors	
presented	equations	that	were	statistically	similar.	This	result	hints	at	a	nonlinear	relationship	
between	kelp	fraction	and	canopy	biomass	which	will	be	examined	upon	the	next	dataset	update.	
Since	all	relationships	were	similar	across	the	range	of	canopy	biomass	measured	by	the	three	
sensors	we	were	confident	in	using	a	common	equation	(Figure	6),	which	we	used	to	transform	
images	of	kelp	fractional	cover	into	quantitative,	validated	maps	of	giant	kelp	canopy	biomass.	
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	 Landsat	5	TM	 Landsat	7	ETM+	 Landsat	8	OLI	 All	

Canopy	Biomass	
(r2)	 0.67	 0.63	 0.57	 0.64	

Equation	
(All	Canopy	
Biomass)	

y	=	6.54x	-	0.09	
(0.37,	0.13)	

y	=	7.30x	-	0.17	
(0.37,	0.13)	

y	=	4.68x	+	0.05	
(0.54,	0.13)	

y	=	6.91x	-	0.15	
(0.25,	0.09)	

Equation	
(<3.5	kg	m-2)	

y	=	4.64x	+	0.16	
(0.34,	0.10)	

y	=	5.01x	+	0.09	
(0.37,	0.09)	

y	=	4.68x	+	0.05	
(0.54,	0.13)	 	

Table	1.	The	coefficient	of	determination	and	reduced	major	axis	linear	regression	line	equations	for	each	Landsat	
sensor	and	across	all	sensors.	All	relationships	are	significant	at	the	p	<	0.001	level.	
	
	 Upon	examination	of	the	regional	kelp	biomass	data,	inconsistencies	in	biomass	estimates	
were	apparent	between	the	Landsat	5	and	7	sensors.	These	inconsistences	were	not	stable	across	
space	 with	 some	 Landsat	 scenes	 showing	 higher	 biomass	 estimates	 for	 one	 sensor,	 while	 a	
nearby	scene	would	show	the	opposite.	We	were	only	able	to	 fully	compare	Landsat	5	and	7	
canopy	biomass	estimates	between	1999	–	2003	(see	ETM+	SLC	Error	Gap	Filling	below).	These	
discrepancies	were	attributed	to	the	8-day	repeat	difference	between	the	satellites	synching	with	
tidal	 cycles	 across	 this	 time	 range	 (Figure	 7).	 Pixel-based	 canopy	 biomass	 estimates	 were	
aggregated	into	coastline	segments	and	compared	inside	the	San	Diego,	Los	Angeles,	and	Santa	
Barbara	Landsat	scenes.	Each	Landsat	scene	showed	a	biomass	difference	consistent	in	sign	and	
magnitude	with	a	tidal	effect,	and	when	each	segment	biomass	was	adjusted	based	on	local	tidal	
patterns,	these	effects	were	alleviated	(Figure	8).		
	

	
Figure	7.	The	cumulative	difference	in	tidal	height	between	Landsat	5	and	Landsat	7	sensors	
during	the	overlap	period	without	the	scan	line	corrector	error.	The	dashed	black	line	shows	
the	zero	line	where	the	cumulative	difference	between	the	sensors	is	zero.	If	the	lines	are	over	
the	zero	line	Landsat	7	was	at	a	higher	tidal	state	than	Landsat	5	and	if	the	lines	are	below	the	
zero	line,	the	opposite	is	true.	
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Figure	8.	Relationships	between	the	summed	canopy	biomass	of	all	500m	coastline	segments	across	
three	Landsat	scenes,	both	before	and	after	tidal	height	adjustment.	The	dashed	black	line	is	the	1:1	
line	and	the	colored	lines	are	best	fit	regression	lines.	

	
	

	 Cloud-free	imagery	of	the	California	coastline	is	available	about	every	1-2	months	during	
the	time	series.	This	frequency	increases	when	multiple	satellites	are	acquiring	imagery.	Rather	
than	correct	for	tidal	state	explicitly,	we	decided	to	take	the	mean	of	all	biomass	estimates	within	
a	quarter	(3-months).	The	current	version	of	the	dataset	 includes	eight	Landsat	scenes,	which	
cover	the	entire	region	of	dominance	for	giant	kelp	in	California,	roughly	from	Año	Nuevo	Island	
to	the	US/Mexico	border	(Figure	9).	The	dataset	is	provided	as	a	netCDF	file	that	includes	the	
mean	canopy	biomass	of	every	 identified	kelp	containing	pixel,	 for	each	quarter,	 from	1984	–	
2015,	along	with	relevant	metadata.	
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Figure	9.	Landsat	8	OLI	mosaic	showing	the	coastal	area	covered	by	this	dataset,	from	Año	Nuevo	Island	in	the	
north,	to	the	US/Mexico	border.	
	
ETM+	SLC	Error	Gap	Filling	
	

In	 mid-2003	 the	 scan	 line	 corrector	 (SLC)	 of	 the	 Landsat	 7	 ETM+	 sensor	 failed.	 This	
corrector	compensates	for	the	forward	motion	of	the	satellite	and	merges	the	imagery	collected	
from	the	‘whisk	broom’	type	sensor	into	a	complete	image.	With	the	permanent	failure	of	this	
hardware,	a	zig-zag	pattern	of	missing	data	lines	is	present	in	each	image,	with	the	width	of	the	



lines	increasing	towards	the	image	edge	(Figure	10).	The	location	of	the	missing	data	lines	change	
from	image	date	to	image	date.	

	
a. 																		 	 	 	 									b.	

	
Figure	10.	a.	Scan	line	corrector	error	lines	near	the	center	of	the	Landsat	image	tile	showing	missing	
data	lines	over	San	Miguel	and	Santa	Rosa	islands	in	the	Santa	Barbara	Channel.	b.	Error	lines	near	the	
edge	of	a	Landsat	 image	tile,	showing	thicker	missing	data	 lines	near	Point	Sur	 in	central	California.	
Giant	kelp	canopy	is	shown	as	the	bright	green	features	along	the	coast	in	both	images.	

	
Soon	after	the	failure	of	the	SLC,	the	United	States	Geological	Survey	implemented	a	Phase	

1	gap	filling	methodology	using	a	localized	linear	histogram	technique	to	fill	the	scan	line	gap	with	
previously	acquired	Landsat	7	imagery	(Scaramuzza	et	al.	2004).	Since	the	maximum	width	of	a	
scan	line	gap	is	14	pixels,	a	17-pixel	wide	window	was	chosen	to	move	across	the	missing	pixels	
and	use	the	valid	pixels	inside	the	window	to	establish	a	corrective	gain	and	bias	value	for	the	
missing	pixel	in	the	center	on	the	window.	This	corrective	gain	and	bias	was	then	applied	to	valid	
co-registered	pixels	from	a	Landsat	7	image	captured	close	in	time	to	fill	the	missing	pixels	with	
corrected	spectral	data.	Soon	after	this	Phase	1	methodology	was	implemented,	it	was	replaced	
with	 a	 Phase	2	 gap	 filling	 algorithm	using	 an	 adaptive	window	 logic	 for	 increased	processing	
speed	as	well	as	allowing	users	to	choose	multiple	images	as	valid	fill	data	(Storey	et	al.	2005).	
Heterogeneous	landscapes	necessitated	the	development	of	a	segmentation	model	that	divided	
landscapes	 into	contiguous	sub-regions	and	avoided	the	use	of	square	windows	for	averaging	
(Maxwell	et	al.	2007).	Segmentation	models	were	developed	from	global	cover	maps	and	missing	
SLC	pixels	were	filled	with	the	dominant	spectral	values	from	inside	each	of	three	progressively	
larger	segments.	Later,	a	similar	pixel	method	was	employed	that	searched	for	a	missing	pixel	in	
a	Landsat	5	TM	image	close	in	time.	Pixels	which	resembled	the	targeted	pixel	were	identified	in	
the	Landsat	5	image	within	a	5	x	5	pixel	window,	which	increased	in	size	if	these	similar	pixels	
could	not	be	found	in	the	Landsat	7	image.	Similar	pixels	were	weighted	based	on	similarity	in	
spectral	 shape	 and	 distance	 to	 the	 target	 pixel	 and	 were	 then	 used	 to	 predict	 the	 spectral	
information	 for	 the	missing	 pixel	 (Chen	 et	 al.	 2011).	 Following	 this	 progression	 in	 gap	 filling	
methods,	 we	 aimed	 to	 estimate	 giant	 kelp	 biomass	 in	 missing	 data	 pixels	 using	 known	
relationships	through	both	space	and	time.	



Giant	kelp	canopy	biomass	is	known	to	display	high,	but	exponentially	decreasing,	spatial	
synchrony	over	the	first	several	hundred	meters	in	distance	(Figure	11;	Cavanaugh	et	al.	2013).	
We	leveraged	this	phenomenon	to	predict	canopy	biomass	in	missing	pixels	using	a	combination	
of	the	biomass	state	of	nearby	pixels	and	the	relationship	between	these	nearby	pixels	and	the	
missing	pixel	through	time.	We	first	determined	all	known	kelp	pixels	that	were	covered	by	a	scan	
line	 gap	 across	 the	 Landsat	 time	 series.	 A	 known	 kelp	 pixel	 is	 defined	 as	 any	 pixel	 that	 has	
contained	kelp	canopy	at	least	five	times	in	the	combined	Landsat	5	and	7	time	series.	All	pixels	
within	 a	 300-meter	 radius	 from	 the	 missing	 pixel	 are	 located	 and	 the	 linear	 relationship	 of	
biomass	through	time	between	the	missing	pixel	and	each	nearby	pixel	is	found	using	a	reduced	
major	axis	linear	regression.	For	each	significant	relationship	with	a	correlation	coefficient	>	0.8,	
a	biomass	estimate	for	the	missing	pixel	is	generated	using	the	regression	slope	and	offset.	The	
mean	of	these	estimates	is	used	as	the	missing	pixel	fill	value	and	the	standard	error	is	retained	
as	a	measure	of	uncertainty.	Missing	pixels	where	>	70%	of	nearby	pixels	show	zero	detected	
canopy	biomass	are	 filled	with	a	value	of	zero.	Missing	pixels	with	no	nearby	kelp	pixels	with	
correlation	coefficients	>	0.8	are	filled	using	a	piecewise	cubic	interpolation	of	the	missing	pixel	
through	time.	

	

	
Figure	11.	Nonparameric	spatial	correlation	function	(solid	line)	
and	 double	 exponential	 fit	 (dashed	 black	 line)	 for	 giant	 kelp	
canopy	 biomass	 (adapted	 from	 Cavanaugh	 et	 al.	 2013).	 Grey	
shaded	area	shows	the	95%	bootstrapped	confidence	interval.	
The	 blue	 dashed	 line	 shows	 the	 300	m	 cutoff	 for	 the	 spatial	
synchrony-based	gap	filling	algorithm.	

	 	
To	validate	this	synchrony-based	gap	filling	algorithm	we	selected	six	Landsat	5	

images	across	the	study	period	and	masked	out	pixels	using	a	scan	line	gap	mask	from	a	
Landsat	7	image	(Figure	12).	The	dates	used	for	validation	were:	November	16th,	2000;	
October	5th,	2002;	July	14th,	2004;	November	22nd,	2005,	August	8th,	2008;	and	January	



17th,	2009.	We	then	filled	these	missing	pixels	and	validated	the	predicted	biomass	using	
the	actual	canopy	biomass	measured	by	the	sensor.		
	

	
Figure	 12.	 Results	 of	 gap	 filling	 algorithm	 across	 three	 kelp	 forest	 canopies	 in	 the	 Landsat	 5	 validation	
images.	In	the	first	column,	kelp	forest	pixels	are	masked	with	multiple	dark	blue	simulated	scan	line	error	
missing	data	lines.	The	second	column	shows	the	results	of	the	gap	filling	algorithm.	The	third	column	shows	
the	actual	images	before	the	scan	line	error	missing	data	lines.	
	

Across	the	six	dates,	the	algorithm	was	used	to	fill	80,286	missing	kelp	pixels.	Of	
that	total,	59%	were	filled	using	spatial	synchrony	and	41%	were	filled	using	temporal	
interpolation	based	on	whether	 the	pixel	 to	be	 filled	had	nearby	kelp	pixels	with	high	
spatial	synchrony.	Pixels	filled	using	spatial	synchrony	had	a	correlation	coefficient	of	0.91	
(p	<	0.0001)	and	a	linear	equation	of	y	=	0.94x	+	74	(Figure	13).	Pixels	filled	using	temporal	
interpolation	had	a	correlation	coefficient	of	0.73	(p	<	0.0001)	and	a	linear	equation	of	y	
=	0.74x	–	6.	The	overall	relationship	had	a	correlation	coefficient	of	0.88	(p	<	0.0001)	and	
a	linear	equation	of	y	=	0.92x	+	16.	The	results	show	that	the	pixels	filled	using	the	spatial	
synchrony	 method	 were	 closer	 to	 actual	 canopy	 biomass	 than	 those	 filled	 using	
interpolation	between	two	close	dates.	Overall,	the	total	gap	filling	algorithm	performed	
well	in	estimating	the	canopy	biomass	on	a	pixel	scale,	leading	to	general	confidence	in	
the	algorithm	to	fill	the	scan	line	missing	data	gaps.	
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Figure	13.	Actual	versus	filled	pixel	values	from	the	validation	imagery.	Red	points	show	
pixels	filled	using	spatial	synchrony	and	blue	points	show	pixels	filled	using	temporal	
interpolation.	The	dashed	 line	 is	 the	1:1	 line.	The	section	of	no	data	between	0	and	
1300	kg	on	the	x-axis	represents	the	minimum	detection	limit	for	the	Landsat	satellites.	

	
	 Since	most	studies	have	combined	pixels	together	into	coastline	segments	or	patches,	we	
also	compared	the	total	canopy	biomass	of	coastline	segments	affected	by	scan	line	missing	data	
gaps.	We	 aggregated	 pixels	 into	 500-meter	 coastline	 segments	 by	 assigning	 each	 pixel	 to	 its	
closest	 coastline	 point	 along	 a	 500-meter	 grid.	We	 then	 determined	 if	 part	 of	 that	 segment	
contained	any	missing	data	lines	and	excluded	those	that	did	not	from	the	analysis	(Figure	14).	
The	overall	relationship	had	a	correlation	coefficient	of	0.98	(p	<	0.0001)	and	a	linear	equation	of	
y	=	0.98x	+	16000.	This	analysis	shows	that	the	gap	filling	algorithm	provides	excellent	data	for	
studies	that	aggregate	data	into	coastline	segments	or	patches.	One	cautionary	note	is	that	the	
algorithm	did	assign	biomass	to	some	coastline	segments	which	have	zero	biomass	in	the	actual	
imagery.	This	is	probably	due	to	fill	values	generated	from	kelp	pixels	in	adjoining	segments.	
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Figure	 14.	 Actual	 versus	 filled	 coastline	 segment	 values	 from	 the	 validation	
imagery.	The	dashed	line	is	the	1:1	line	and	the	red	line	is	the	best	fit	line.		
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