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Retrofitting a Data Model to Existing Environmental Data

Bill Howe David Maier

Department of Computer Science
Portland State University

Portland, Oregon
{howe, maier}@cs.pdx.edu

Abstract

Environmental data repositories are frequently stored as
a collection of packed binary files arranged in an intricate
directory structure, rather than in a database. In previous
work, we 1) show that environmental data is often logically
equipped with a topological grid structure and 2) provide a
data model and algebra of gridfields for manipulating such
gridded datasets. In this paper, we show how to expose na-
tive data sources as gridfields without preprocessing, bulk-
loading, or other prohibitively expensive operations. We de-
scribe native directory structures and file content using a
simple schema language based on nested, variable-length
arrays. This language is capable of describing general bi-
nary file formats as well as custom formats such as those
used in the CORIE Environmental Observation and Fore-
casting System. We provide optimization techniques for ex-
tracting arrays by 1) analyzing file structure and 2) gener-
ating specialized code. Using extracted arrays, we assem-
ble gridfields for more sophisticated manipulation and visu-
alization. We show results using CORIE data. We find that
generic access methods allow logical manipulation of phys-
ical data sources via the gridfield algebra without reformat-
ting existing data.

1. Introduction
Integration of data within institutional and regional envi-

ronmental systems is hindered, in part, by the heterogeneity
of data formats. For example, the Northwest Association of
Ocean Observing Systems (NANOOS) [1], chartered in re-
sponse to a congressional initiative, aims to federate various
institutional systems to provide a more comprehensive view
of the coastal ocean in the Pacific northwest. The NANOOS
charter acknowledges the significant number of ocean ob-
serving systems, but warns that these systems are not in-
tegrated in that they “do not share standards or protocols.”
In the interest of accelerating federation efforts in the envi-

ronmental sciences, we have been studying the logical and
physical structure of environmental data.

Environmental simulation and observation data are fre-
quently defined over a topological grid structure. For ex-
ample, a timeseries of sensor measurements might be de-
fined over a 1-dimensional (1-D) grid, while the solution to
a partial differential equation using a finite-element method
might be defined over a 3-dimensional (3-D) grid. Datasets
can be bound to a grid structure, producing what we term a
gridfield. In previous work [6, 8], we develop a data model
and associated query language for manipulating gridfields.

The salient feature of the gridfield model is that the grid
structure of the datasets is explicit. Traditionally, data were
stored and manipulated as arrays; the logical grid structure
appeared only in the code itself. By reifying this hidden grid
structure, we are better able to describe and implement a
variety of manipulations using a small set of algebraic op-
erators. Further, the data model helps separate logical and
physical concerns, insulating software layers from chang-
ing physical representations.

However, in order to use gridfields to manipulate data
from existing disparate sources, we must be able to read and
interpret existing stored data; that is, we need appropriate
access methods. Environmental datasets (indeed, most sci-
entific datasets) are stored directly on a filesystem in packed
binary files. Legacy applications can interpret these files,
but new applications based on gridfields cannot.

One approach is to convert existing datasets to a special
format already equipped with a gridfield interface. Indeed,
database vendors frequently assume this approach: Before
your data can be manipulated using the relational model,
you must surrender control to the RDBMS via bulk-load
operations. Unfortunately, the growth rate of collected sci-
entific data is sufficiently large that sweeping conversion
efforts are unlikely to succeed. Besides scalability issues,
legacy analysis tools dependent on a particular format are
common in scientific domains; mandatory rewrites of these
tools would be unpopular.
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Our initial solution was to hand-code custom access
methods for each file format and directory structure we en-
countered. To generate a gridfield, routines to iterate over
multiple files are layered on routines to interpret each file’s
format. The results are used to assemble gridfield objects
suitable for manipulation with the gridfield algebra. Cre-
ation of these routines became repetitive enough to motivate
a more general abstraction. We presented the vision for this
approach in previous work [7]. In this paper, we describe
languages and tools for accessing filesystem data with ar-
bitrary structure without resorting to mass conversion. We
do not discuss the output of gridfield expressions; results
are generally piped into a visualization system for interac-
tive analysis.

The context for our interest in grids is the CORIE En-
vironmental Observation and Forecasting System being de-
veloped at the OGI School of Science & Engineering at Ore-
gon Health & Science University [2]. The CORIE system is
a multi-purpose platform for studying the fluid dynamics
of the Columbia River estuary. Customers of CORIE’s data
products include commercial fisheries, environmental pol-
icy makers, and external research institutions. The CORIE
repository consists of forecast and “hindcast” simulations
covering 1998 to the present. Each day, forecast simulation
runs add about 5GB to the data repository, while batches of
hindcast runs, batches of calibration runs, and individual re-
searchers’ experiments are executed concurrently.

In a particular run of a simulation, 3-D spatial datasets
are produced at regular intervals of simulated time, for each
of several physical variables. These timestep datasets are
distributed across several checkpoint files, each one usu-
ally covering a 24-hour period of simulated time. Check-
point files have a custom binary format, and are arranged in
a directory structure by week, by code version, and some-
times by purpose; e.g., calibration runs as opposed to final
results. For example, the run directory names in the mid-
dle column of Figure 4(a) contain the week and the year,
while the checkpoint files in the right-most column contain
the day of the week. Every application accessing these data
must understand the semantics of file and directory names,
or interpret custom binary file formats, or both. The result-
ing situation is that much of the CORIE software is rather
brittle with respect to changes in either directory structure
or file format.

As we see with the CORIE system, logical datasets are
not necessarily one-to-one with the files that house them.
The physical organization of logical datasets is subject to
operational constraints, and can sometimes be inconvenient
for application writers. One dataset may span several files
due to file size limits of the OS, for example. Portions of a
dataset arriving at different times may be stored in separate
files, as are the checkpoint files described above. Several
datasets may be stored together in one file to simplify trans-

fer over a network or to share metadata in the path. Second,
files are arranged in a potentially intricate directory struc-
ture with embedded metadata.

The boundary between file name and file content is not
inherent in the logical structure of the data, and can change
depending on the situation. For example, the directory tree
illustrated in Figure 4(a) has a separate file for each day of
the week (per variable). In this case, the day of the week
and the week number are not stored within the file, and
are therefore inaccessible to tools that reason only about a
file’s content [13, 17]. This representation reflects the man-
ner in which the data was generated: A checkpoint file was
recorded for each day of the week to simplify recovery in
case of failure. An individual researcher’s ad hoc exper-
iment might not require such caution; she might lump a
week’s worth of results into a single file without saving any
checkpoints. In order to provide transparent access to either
of these two representations, the model must allow uniform
access to data stored in a file or data stored in the surround-
ing directory structure. Further, access methods should ac-
commodate changes in physical organization without sig-
nificant programming effort.

Since existing data comes in two forms – embedded in
the directory structure and inside files – two physical ac-
cess methods are required. However, adopting a single logi-
cal interface to both forms is desirable for conceptual econ-
omy.

Imagine we wish to visualize the average temperature
near the water’s surface for each week in 2004. The grid-
field model allows us to perform aggregation and visualiza-
tion, but first we must collect the appropriate data from the
filesystem. Pseudo-code to gather the data is of the form

for each run in 2004:
for the temperature variable:

for each timestep:
for each horizontal surface node:

for the 1st two vertical depths:
include the value in the result

The boundary between directory-level data and file con-
tent data is not apparent in the pseudo-code, nor should it
be. We want the system to accept queries in terms of the
logical structure, invoking the appropriate physical access
method as necessary. To provide such functionality, the sys-
tem must understand that a “run” corresponds to a direc-
tory, that “temperature” and other variables are each stored
in a separate file, and that each of these files contain hori-
zontal and vertical dimensions nested within a time dimen-
sion. Further, we need the ability to identify the runs for
2004, and the “first two” depths.

To communicate the physical structure of the data repos-
itory to the system, users write schema files in which they
declare relevant types. Each type is associated with either
1) a regular expression identifying a set of files, or 2) an ex-
pression describing a block of binary data. With an appro-
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priate schema file, we can express the pseudo-code above
as follows:

run[year=2004].temp.times.horizs.depths[0:2]

The result is an array built by copying the values to a se-
quential block of memory. This array can then be used as
part of a gridfield object for further processing. The code to
traverse directories, iterate over files, and interpret a file’s
content efficiently is provided by the system.

The flexibility of accessing directory structure data uni-
formly with file content data can degrade performance. To
maintain efficiency, a user can generate a specialized access
program for a schema to improve performance. For binary
files, programs can be further specialized by providing an
exemplar (i.e., a representative member) of a set of struc-
turally similar files. In this case, we can partially process
the exemplar to generate a program tailored for answer-
ing queries over other members of the set. For example, al-
though the structure of the checkpoint files can be highly
variable, files for the same simulation run often have the
same structure. By generating a program for one instance,
we can efficiently access all related instances.

1.1. Contributions

Our contributions are the following:
• A data model for describing binary file formats.
• A complementary data model for describing data embed-

ded in directory structures and file names. Together, we
refer to these two mini-models as the Native Data Model.

• Access methods derived from the Native Data Model for
extracting filesystem data.

• Optimization and code generation techniques to effi-
ciently evaluate extraction queries over native content.

• Evidence of utility from the CORIE project.
• Experimental evidence that suitably optimized generic

access methods can perform competitively with hand-
coded access methods.
We will present our two-level data model in a top-down

fashion. In Section 2, we review the salient features of the
gridfield data model. In Section 3, we give examples of
schema files for accessing binary file content as well as
data encoded in the directory structure. In Sections 4 and 5,
we focus on evaluation techniques and experimental results,
respectively, for accessing binary content. We end by dis-
cussing related work, future work, and some conclusions.

2. Gridfield Data Model
A gridfield consists of a grid, and one or more attributes.

A grid is a set of cells, partitioned by dimension. Cells of
dimension k are called k-cells. A grid has dimension d if
it contains no higher-dimensional cells. Cells are connected
through an explicit or implicit incidence relation. For exam-
ple, a triangle is a 2-cell to which three 0-cells (the vertices)
and three 1-cells (the edges) are incident. Every non-empty
grid must have at least one 0-cell. Each attribute is bound to

(a) (b) (c)

Figure 1. (a) A structured grid. (b) An unstruc-
tured grid. (c) A hierarchical grid.

the cells of exactly one dimension d, such that each d-cell
maps to exactly one value of the attribute. With this model,
we can have geometric attributes x and y bound to the ver-
tices of a triangle, and an area attribute a bound to the trian-
gle itself.

The gridfield model provides an algebra with which to
manipulate gridded datasets. Some operations in the alge-
bra are reminiscent of relational operators but equipped to
manage topology considerations. These operations include
Restrict and Cross, which are similar to relational selec-
tion and cross product, respectively, but extended to main-
tain topological invariants [6]. Other operators are specific
to gridfields. These include the Bind operator, which adds
additional attributes to a gridfield, and the Aggregate oper-
ator, which maps cells of one grid onto another and aggre-
gates the attribute values appropriately.

Grids are said to be structured or unstructured; our
model treats both cases uniformly. The grid in Figure 1(a) is
2-dimensional structured and the grid in Figure 1(b) is a 2-
dimensional unstructured grid consisting of triangles. Struc-
tured grids have implicit topology and can be modeled nat-
urally by multidimensional arrays. Unstructured grids re-
quire explicit topology; the connections between cells must
be included as part of the representation. Structured grids
are easier to represent and admit very efficient algorithms.
However, unstructured grids allow more precise modeling
of a complex domain such as a coastline. To model multi-
resolution grids (Figure 1(c)) and other hierarchical struc-
tures, we provide nested grids, where the attribute values
may themselves be gridfields [6].

The CORIE system uses a 2-dimensional unstructured
grid to model the surface of the water around the mouth of
the Columbia River Estuary (Figure 2(a)). This horizontal
grid is repeated at each depth in a 1-dimensional structured
grid, creating a 3-dimensional grid. The sloping bathym-
etry of the river causes many of the grid cells of this 3-
dimensional grid to be positioned underground. Figure 2(b)
illustrates the situation. Each dotted line represents a copy
of the horizontal surface grid repeated at a particular depth
and oriented perpendicularly to the plane of the paper. The
shaded region represents the bottom of the river. The hori-
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(b)(a)

Figure 2. (a) The horizontal unstructured CORIE
grid. (b) Illustration of the river’s bathymetry. The
shaded region is underground.

zontal levels towards the bottom contain fewer valid “wet”
cells than the levels near the surface. These invalid cells
must be removed to correctly interpret CORIE datasets.

Given a horizontal grid H and a vertical grid V , the fol-
lowing expression generates the appropriate 3-dimensional
gridfield for the CORIE system and associates a dataset salt
for further processing.

G = Bind(salt, 0, Restrict(b < z, Cross(H,V ))) (1)

The cross product of H and V (the Cross operator) rep-
resents the full 3-D domain of the Columbia River estu-
ary and surrounding ocean. The Restrict operator cuts away
the portion of the grid positioned underground (the shaded
region in Figure 2(b)). The Bind operator reads in an ar-
ray named salt and attaches it as an attribute of the grid’s
0-cells.

To use gridfields, programmers can construct them
“manually” in their code, or they may write and reuse grid-
field declarations. Examples of gridfield declarations
appear in Figure 3. Each gridfield declaration is writ-
ten as a function of lower-level types. A gridfield H can
be derived from a value of type sim results (Fig-
ure 4(b)). A gridfield G can be derived from a value of type
sim results and an integer representing a timestep.

Gridfield attributes and sequences of cells can both be
represented as arrays. The italicized expressions in Figure
3 are extraction queries over the schema in Figure 8. These
expressions will be described in Section 3.

The 0-cells of the grid are usually specified implicitly,
using the keyword implicit followed by an integer ex-
pression. Cells of higher dimensions are defined as se-
quences of integer references to 0-cells. A triangle will have
three references, and so on. Attributes are also specified us-
ing extraction queries. To bind the attribute x to cells of di-
mension 0, we use the syntax in line 4 of Figure 3.

Gridfields can also be declared through expressions in
the gridfield algebra, as in line 9 of Figure 3. Given two
gridfields H and V derived using the declarations on lines

1: GridField H(sim_results r)
2:  H.grid.cells[0] = implicit r.nodes
3:  H.grid.cells[d] = r.cells
4:  H.x[0] = r.nodedata.x
5:  H.y[0] = r.nodedata.y

6: GridField V(sim_results r)
7:  V.grid.cells[0] = implicit r.levels
8:  V.z[0] = r.zcor

9: GridField G(sim_results r, int t) = 
Restrict( b<v, Cross( H(r), V(r) ) )

10: G.salt[0] =    
r.timedata[t].horizontal.depths.vector.val

Figure 3. Examples of gridfield assembly syntax.

1 and 5, we construct their cross product on line 9. The
declaration on lines 9 and 10 specify the same gridfield as
in Equation 1. The details of the gridfield operators can be
found in a previous paper [6].

3. Native Data Model
In this section, we discuss the lower-level data models

for accessing data encoded in directory structures and data
encoded in binary files.

A filesystem-based data repository is described via a col-
lection of declarations housed in a schema file. There are
two types of declarations. FileType declarations describe
relevant directory structures and allow access to data en-
coded within file and directory names. BinaryBlockType
declarations describe the layout of portions of binary files.

3.1. Data From Directory Structures

Scientists frequently store and manage their data us-
ing direct filesystem interfaces, using filenames and
directory structures equipped with metadata. For ex-
ample, a dataset available from the National Climate
Data Center (NCDC) website is stored in a file named
meso-eta 215 20030803 1800 fff [14]. The string
“20030803” is evidently a date, but the other fields re-
quire some external information to parse. A schema file can
store this external information.

Consider the filesystem in Figure 4(a). The root direc-
tory runs contains directories with simulation results for
each week of 2004 in the form <week number>-2004.
Each week directory contains 14 files, one for each vari-
able (salinity, temperature) day of the week (1-7).

To access the data embedded in these file names, we can
write a path pattern in the style of the Unix scanf command.

[wk, yr, dy] = /runs/%i-%i/%i salt.63

The left-hand side of this expression is a tuple of variable
names. The right-hand side is a pattern matched against the
set of all files in some filesystem context. Anonymous wild-
cards may also be used, as in line 8 in Figure 4(b). Each
variable name corresponds to a sequence of values gener-
ated by evaluating the pattern in a particular filesystem con-
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/horiz.grd
/vert.grd

/grids

/do_run.pl/scripts

/1_salt.63
/1_temp.63
/2_salt.63
:

/02-2004

/1_salt.63
/1_temp.63
/2_salt.63
:

/01-2004/run

1: FileType weekly_run
2:   pattern[wk,yr] = /run/%i-%i/
3: FileType salt63
4:   pattern[day] = %i_salt.63
5: FileType temp63
6:   pattern[day] = %i_temp.63
7: FileType sim_results
8:   pattern[day] = %i_*.6?

(a)

(b)

Figure 4. (a) Simulation results stored on an ordi-
nary filesystem. (b) FileType declarations describ-
ing the filesystem.

text. For example, the variable wk corresponds to the se-
quence (01, 02) when the pattern is evaluated in the context
of Figure 4(a). Note that the sequence order is determined
by the manner in which the directory is traversed by the sys-
tem calls for a particular OS.

To extract data from a filesystem, we write a path-like ex-
pression navigating through the FileTypes, where the right-
most identifier is a variable name.

weekly run.salt63.day

This expression returns an “array” of all day values ex-
tracted from salt63 files in all weekly run directories. A nat-
ural extension to this basic form is to allow XPath-like con-
ditions.

weekly run[week=04].salt63[day<3].day

This expression restrict the results to a particular week
and particular days. To reflect the array semantics, we can
also allow array-style indexing expressions. An expression
name[n : m] returns all elements name[i] for n ≤ i < m.
For example, the expression

weekly run[0:2].salt63[1:3].day

selects the zeroth and first weekly runs, and the first and
second salt63 files. The indexes refer to the ordering of
the files as returned by the operating system, which does
not necessarily agree with the ordering imposed by the val-
ues of the day variable itself.

Note that FileType declarations are not linked to each
other; a schema does not prescribe a directory hierarchy.

Different queries may express different sequences of File-
Types. Any, all, or none of these sequences may be valid
with respect to a particular filesystem context. For example,
an individual scientist may have several “loose” salt63
files stored in his or her home directory. Queries can then
reference those files directly, without having to first navi-
gate through a run directory.

BinaryBlockTypes, described in the next section, do im-
pose a particular structure for the content they describe. If a
query attempts to navigate the binary data in an manner not
supported by the schema, an error is raised.

3.2. Data From Binary Files

Scientists frequently use packed binary encodings of
large datasets to conserve space and improve performance.
In this section we describe a model of this data and its inter-
face with the model of the directory structure. We model the
content of binary files as a sequence of one or more com-
ponents. Each component is either a primitive component
with an associated name and typecode, or an array compo-
nent, with a name, a length, and an element type. Our ex-
amples will use the primitive typecodes ‘f’, ‘i’, and ‘#c’,
representing floating point numbers, integers, and charac-
ter arrays of fixed length ‘#’. The element type of an ar-
ray is another sequence of components. In the tree resulting
from these nested sequences, each leaf is a primitive compo-
nent and each internal node except the root is an array com-
ponent. Arrays are one-dimensional; multidimensionality is
captured through nesting. Query results are 1-dimensional
for portability across programming languages. Multidimen-
sional results are collapsed to 1-dimensional arrays via con-
catenation, if necessary.

A file format for storing a simple ragged array is de-
scribed in Figure 5(a), an instance of the file, in ASCII, is
shown in Figure 5(b), and a hexadecimal representation is
shown in Figure 5(c). The root component in Figure 5(a) is
labelled as a BinaryBlock and given the name ragged.
The top-level components, in order of their appearance in
the file instance, are a 10-character string named header,
an integer n, an array r sizes and an array outer. Prim-
itive components are written name : type. Array compo-
nents are written x ∗ {components}, where x is a length
expression evaluating to an integer and components is a se-
quence of components describing structure of the array’s el-
ements. The length expression of an array can be an integer
literal, a reference to a primitive component appearing ear-
lier in the file, or an arithmetic expression. In Figure 5(a),
the length of the array outer is a reference to the compo-
nent n. The element type of the array outer is another ar-
ray component, inner, representing a second dimension.

Components referenced in a length expression may ap-
pear anywhere in the file prior to the reference. This free-
dom generalizes other binary description formats that re-
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BinaryBlock ragged : {
header : 10c
n : i
r_sizes : n * {

r_size : i
}
outer : n * {

inner : r_size * {
v:f u:f

}
}

}

“RAGGED_ARR”

4

1, 3, 1, 2

(0.6,0.4)
(0.2,0.9),(1,3),(1.7,2.6)
(2.1,9.4)
(3.8,8.9),(4.2,1.6) 

5241 4747 4544 5f41 5252 
0000 0400 0000 0100 0000 
0300 0000 0100 0000 0200 
0000 9a99 193f cdcc cc3e
cdcc 4c3e 6666 663f 9a99 
993f cdcc 4c40 9a99 d93f 
6666 2640 6666 0640 6666 
1641 3333 7340 6666 0e41 
6666 8640 cdcc cc3f

(a) (b) (c)

Figure 5. (a) A schema file for extracting binary file content. (b) An ASCII interpretation of a file instance. (c) A
hexadecimal representation. Each color of shading represents a different logical component in the schema.

quire that the length of a variable-length array be defined
immediately prior to the array’s elements [13, 17]. Many
formats, including netCDF [9], HDF [4], and CORIE’s own
internal format require this generalization.

Scanning the raw file instance in Figure 5(c) sequen-
tially, we can interpret the data as in Figure 5(b). First, we
encounter a ten-character header “RAGGED ARR”, then
the integer 4, then four integers 1, 3, 1, 2, and finally a
longer sequence of floating point numbers.

The length of the array inner is a reference to the inte-
ger component r size, which itself is a sub-component of
an array r sizes. For each element of outer, a different
size is specified by indexing into the array r sizes. The
portion of the instance in Figure 5(b) corresponding to the
component inner consists of 1 + 3 + 1 + 2 pairs of float-
ing point values. Each pair has a value for the component
u and the component v. Since the two arrays outer and
r sizes have the same expression for their array length
(the expression ‘n’), there is no ambiguity as to which par-
ticular element of r sizes is being referenced.

Programmers can access file data by writing path expres-
sions constructed as a sequence of named components from
the schema. At each nesting level, an array expression may
be used to further restrict which values should be returned.
An individual array element can be specified through con-
ventional integer indexing. An array can also be “sliced”
to produce another array as in APL or Matlab. All of the
following expressions are valid extraction queries over the
schema in Figure 5(a).

ragged.n
ragged.outer.inner[1]
ragged.outer.inner.u
ragged.outer[0:10].inner.u
ragged.outer.inner[0:20:2].v

4. Evaluating Queries Over Binary Data
In this section we describe the query evaluation engine.

We wrote the prototype in Python extended with the numar-
ray library for handling large numeric arrays efficiently. C
code was emitted for the code generation experiments. Af-

uuuun1v

u

v

u

v21

u21 r_size2

r_size

v

u
r_size1

n

header

n

r_size1

v11

u11

header

r_sizes

outer

n

r_size

inner

v

u

(a) (b)

r_sizen

uuuvn1

Figure 6. (a) Internal representation of a schema
file. (b) An illustrated instance of a schema.

ter writing a schema file, users can parse and process it by
calling Python functions. Figure 6(a) illustrates the inter-
nal representation of the schema file in Figure 5(a). Each
oval corresponds to a component and each arrow corre-
sponds to a pointer. Figure 6(b) illustrates an instance of
the schema. The dashed ovals represent individual data val-
ues from a particular file. Query answers are a sequence
formed from a subset of these values. For example, the
query outer[1].inner[0].u returns the value u21 in
Figure 6(b) and the query outer.inner.v returns all the
values in Figure 6(b) with labels of the form vij .

In order to read a datum from a file, we must know its
position within the file and its size in bytes. The position
of any datum is the sum of the sizes of the data that ap-
pear before it. The size of a primitive value is defined by its
type (e.g., 4 bytes for floats and integers). The size of an ar-
ray is its length multiplied by the size of its element type.
The length of an array may depend on other data appear-
ing earlier in the file. This situation can lead to significant
complexity in file formats.

We now illustrate a naı̈ve computation of size and posi-
tion using the schema and instance of Figure 6. For a given
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file, let pos(x) be the offset of the datum x, and size(x) be
the total number of bytes occupied by the datum x. Suppose
we wish to read the datum uxy in Figure 6(b) in order to an-
swer the query outer[x].inner[y].u. The required
computation can be expressed as follows.

pos(uxy) = pos(v11)

+

x−1X

i=1

r sizeiX

j=1

(size(vij) + size(uij))

+

y−1X

j=1

(size(vxj) + size(uxj))

= pos(v11) +

x−1X

i=1

8(r sizei) + 8(y − 1)

where

pos(v11) = size(header) + size(x)

+

xX

i=1

size(r sizei)

= 14 + 4x

This computation can be simplified, as shown, by ex-
ploiting static information such as the size of primitive types
and constant array sizes supplied in the schema. (The latter
case does not appear in this example.) We refer to this sim-
plification process as static optimization. Once the position
is computed, we can invoke a system call to seek there and
read the value.

To evaluate the query outer.inner.u, we could re-
peat the computation above for each value uij in Figure
6(b). To optimize this query, the goal is to minimize the
number of read calls required. Since we are subject to a
filesystem interface, we rely on the disk controller and the
operating system to prefetch data block by block; we con-
centrate only on minimizing the number of read calls and
ensuring that the calls are properly ordered with respect to
the physical layout.

The unknown quantities in the computation above, the
value of n and the values of the array r sizes, prevent us
from completing the computation statically. If we read these
data first, we can derive the position and size of every other
datum in the file, and read larger blocks of data at a time.
We refer to the process of prereading certain data to further
simplify the computations as dynamic optimization, since
the process requires a conforming file instance.

Static and dynamic optimization allow us to partially
evaluate the size and position computations required to eval-
uate queries. We offer two means of exploiting these par-
tially evaluated computations. The first is by annotating the
schema graph representation, in memory, with size and po-
sition information as it becomes available. The annotated
schema graph can then be used to evaluate queries more ef-
ficiently. We liken this evaluation method to an interpreter.

BinaryBlock transformed : {
header : 6c
n : i
sizes : n * {

size : i
}
outer_inner : (2 * sum(size)) * {

uv:f
}

}

u1, v1, u2, v2, u3, v3, u4, v4, u5, v5, u6, v6, u7, v7

Q = outer[0:2].inner.u

Q' = outer_inner[0:7:2].uv

(a)

(b)

Figure 7. (a) A transformation of the schema in
Figure 5(a). (b) A transformed query compatible
with the transformed schema.

The second method is to generate programs able to evalu-
ate queries efficiently. This method evaluates queries using
a compiled program.

In order to perform dynamic evaluation, we must phys-
ically read values from a file instance. Using the interpre-
tation method of evaluation, we can perform dynamic op-
timization on the fly as a query is received. However, we
cannot generate, compile, and execute programs at run time
in response to user queries without incurring significant
cost. The reader might assume that dynamic optimization
is therefore not available for use by the compiled program
method of evaluation. However, we find in practice that
many file instances share the same structure, even if they
are not guaranteed to do so. Therefore, we can use a typi-
cal file instance, called a file exemplar, to perform dynamic
optimization and generate programs specialized for answer-
ing queries over file that share structure with the file exem-
plar.

The programmer is responsible for supplying a file ex-
emplar and specifying the components that will be read and
used for specialization. For example, consider a set of files
S conforming to the schema of Figure 5(a). Consider fur-
ther that a substantial subset of these files R ⊂ S agree on
their values for n and r sizes. The programmer can pro-
vide a file r ∈ R as an exemplar, and specify the compo-
nents n and r sizes, and the system will generate an op-
timized program able to efficiently answer queries over all
the members of R.

4.1. Schema Transformation

By reading certain components early, we can partially
evaluate the computations required to answer queries. An-
other approach to optimization we have explored is to trans-
form and simplify a schema in response to a particular
query. By finding and exploiting a simplified schema, we
reduce the cost of evaluation.
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Consider the query outer[0:2].inner.u over the
schema of Figure 5(a). In Figure 7(a), we show a trans-
formed version of the schema. We have blended the two
components u and v into a single component named uv.
Further, the nested, ragged array has been flattened into a
one longer array. The new length is the sum of all the size
values times two (since there are two floats, u and v).

In Figure 7(b), we have a sequence of values represent-
ing the contents of the schema instance in Figure 5(b). The
query Q is the original, and Q′ is the result of transforma-
tion. The values to be returned by both queries are the same;
they appear in bold. The brackets represent the grouping
structure specified by the original schema (the top brackets)
and the transformed schema (the bottom brackets). The ad-
vantage of this type of transformation is that we can read
a large block of data and then “slice” the resulting array to
select the appropriate values. In the original structure, we
were forced to loop through the internal representation of
the schema, looking up the sizes of the inner dimension.
The transformed schema results in fewer iterations. In Sec-
tion 5, we show that this type of transformation can result in
significant performance improvement for our Python-based
implementation.

Although we identify and exploit simple instances of
this transformation, it remains future work to describe the
general form of these simplifications for arbitrarily nested
variable-length arrays.

5. Experimental Results
Figure 8 shows the schema for the simulation result files

on which we ran our experiments. Logically, these files
house a timeseries of three-dimensional datasets bound to
a grid. For each simulation run, one of these files is pro-
duced for each of 7 to 10 variables, for each day of sim-
ulated time. The sizes of these files range from 35MB for
two-dimensional variables such as surface elevation or wind
pressure at the surface, to 655MB for horizontal velocity
vectors for each three-dimensional point. The entire data
repository holds around 5000 simulation runs, with addi-
tional runs executed daily.

The header portion of each file, shown in plain type,
contains time-independent information, including the hor-
izontal and vertical grids and the river’s bathymetry. The
time-varying portion of the file, highlighted in bold type, is
a nested array component with four layers of nesting over
the actual values of the simulated variables: timedata,
horizontal, depths, and vector. The array surf,
similar to the array bathymetry, contains indices into the
vertical grid. This index represents the surface of the water:
the highest level that still holds valid data. However, the wa-
ter’s surface changes over time, so we need a surface array
for each timestep.

We compare the performance of four representa-

magic : 48c, version_string : 48c
start_time : 48c, variable_nm : 48c
variable_dim : 48c, nsteps : i, timestep : f
skip : i, rank : i, idim : i, 
vpos : f, zmsl : f, levels : i
zcor : levels * { z : f }
nodes : i
elements : i
nodedata : nodes * {

x : f,  y : f,  h : f,  bathymetry : i
}
cells : elements * { nodeids : 3 * { id :i } }
timedata : nsteps * {

tstamp : f, tstep : i
surfdata : nodes * { surf : i  }
horizontal : nodes * {

depths : (levels - bathymetry + 1) * {
vector : rank * { val : f }

}
}

}

Figure 8. A BinaryBlock describing the CORIE
simulation output.

tive queries using seven different techniques. The queries
are listed in Table 1 and the results are presented in Ta-
ble 2. Query 1 extracts the first complete timestep of data
from the file, copying it to an array in memory. Query 2 ac-
cesses all timesteps, but extracts only a relatively small
portion of the horizontal data; 2999 nodes. Query 3 ex-
tracts the first two depth levels for every horizontal node, for
every timestep. Since we do not know how many depth lev-
els exist at each node until we read the file’s header, we can-
not derive the result size statically; some nodes may have
as few as one depth level. Query 3 returned the largest re-
sult size in practice, at 5.6 million floating point numbers.
This query also proved most challenging for our soft-
ware. Query 4 extracts the surface information for
timesteps 30 through 44. This query does not directly in-
volve any variable-length arrays and is therefore eas-
ier to compute for most techniques. This query also had the
smallest result size.

The experiments were conducted on a platform almost
identical to the nodes of the cluster used to run the CORIE
simulations. The machine runs Linux on a 2.4 GHz proces-
sor with 4GB of main memory. We report the average of
eight experiments run on two different days with the ma-
chine unencumbered. The variance was less than 1% in all
cases, demonstrating stability of the results.

The simplest technique we tested was to use the inter-
nal representation produced by the static optimizer directly
(Experiment (a) in Table 2). While this basic tool worked
well on small files during testing and development, it strug-
gled on the large files of the CORIE system. After 500 sec-
onds, we stopped the experiments. The use of the Dynamic
Optimizer leads to improved performance (Experiment (b)).
The Dynamic Optimizer prefetches information from the
header during query evaluation, and is therefore able to sim-
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label query result size
Q1 timesteps[0:1].H.V.vector.v 3.3MB
Q2 timesteps.H[2000:5000].V.vector.v 16.3MB
Q3 timesteps.H.V[0:2].vector.v 22.7MB
Q4 timesteps[30:45].surfdata.surf 1.77MB

Table 1. Tested queries with result sizes.

plify or eliminate many computations.
Experiment (c) in Table 2 uses a small class of schema

and query transformations (see Section 4). These transfor-
mations act as shortcuts, allowing us to read large blocks of
data from the file and then “slice” them to extract the appro-
priate values. For example, Q1 returns an entire timestep.
The system can detect that there is no need to iterate over
each horizontal node and each vertical level; it can sim-
ply compute the size s of a timestep from the header in-
formation, seek to the beginning of the relevant section,
and read all s bytes. The result is dramatic improvement
in performance. The effect is especially pronounced due to
our choice of technology. The Python language can per-
form well when expensive routines are pushed down into
the compiled C code underpinning the language. Reading
and slicing arrays are examples of these fast operations.

Note that for Q3, we are unable to identify an appropri-
ate transformation. Since the vertical component has a vari-
able length, there is no simple pattern we can use to extract
the data values we want. We must access much more data
to navigate through the file. The hand-coded reader (experi-
ment (g) in Table 2) is able to evaluate this query efficiently
by precomputing cumulative sizes of the variable-length ar-
rays and striding through them as necessary. It remains fu-
ture work to incorporate the general form of this technique.

Experiment (d) executes identical code to Experiment
(c). For this case, we subtract the time spent prefetching and
optimizing. The rationale is that for large classes of similar
files, this work may be done once rather than for each file.

Experiments (e) and (f) use generated C programs to
compute the results. The first is a program generated di-
rectly from the static optimizer’s output. We performed
these experiments to see whether a compiled language
would outperform the Python routines even without sig-
nificant optimization. The results show that traversing
these large files without guidance is prohibitively ex-
pensive even for a compiled C program. The specialized
generated program is created from the results of the dy-
namic optimizer and is specialized for a particular class
of file instances. The rationale is that many of these spe-
cialized readers could be generated and stored by the
system. When planning evaluation of a query, the spe-
cialized programs could be considered as fast alternative
access methods. Unfortunately, these generated pro-
grams do not perform as well as expected. The reason is

Experiment Q1 Q2 Q3 Q4
(a) static >500 >500 >500 >500
(b) dynamic 28.1 138. 284. 8.64
(c) dynamic + transf. 0.83 1. 86. 0.85
(d) spec. + transf. 0.02 0.24 85. 0.26
(e) generated, gen. 65. 104. >500 3.2
(f) generated, spec. 4.7 22. 32. 2.6
(g) by hand 0.02 0.5 0.6 0.02

Table 2. Response time in seconds by query.

that the transformation optimizations that gave good per-
formance in Experiments (c) and (d) are not incorporated
in the generated code. In ongoing work we are improv-
ing the quality and performance of the generated programs.
Note that the specialized generated program exhibits stabil-
ity; it was able to evaluate Q3 without incurring the same
magnitude of penalty as the other approaches.

6. Related Work
Scientific applications today in some ways resemble

business applications circa 1977. Copious amounts of data
are stored in files with intricate formats. Skepticism regard-
ing database technology is prolific. Legacy systems are built
from efficient but brittle software components. To mitigate
the perceived (and real) risk of adopting unproven database
systems, early data models were implemented as file trans-
formation engines.

The EXPRESS system [15] provided two languages: one
for describing a file’s structure, and another for transform-
ing that structure. Transformations were used as a query fa-
cility, but also as a bulk-load facility to translate legacy data
into a new format. Our approach is similar, though we dis-
tinguish two data models: one for source data (directory
structures and file content) and another for target data (grid-
fields). We have not yet considered materializing gridfields
assembled using schema files. That is, we do not perma-
nently transform source data into gridfields, but rather retro-
fit a gridfield interface onto in situ data.

Batory gave a taxonomy of record-oriented file structures
used by commercial databases in terms of fields and point-
ers [3]. Our work similarly provides a description of file
structures in terms of arrays.

The Binary Format Description Language (BFD) [13] is
an XML dialect that describes binary formats and allows
transformation of binary data to XML data. While this tool
has a niche, our interest is to support efficient and flexible
access to binary data – converting binary data to XML is
clearly impractical for large datasets. The BinX [17] library
is also related to this proposal. Binary data file formats are
described using instances of a specialized XML Schema.
An API allows access to the data and automatic reformat-
ting according to the local machine’s byte order and bit or-
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der. The most recent version added support for nested ar-
rays, but only if their length is fixed.

The External Data Representation standard (XDR) [16]
is a data format language focused on machine-level number
representation issues. Variable-length arrays in XDR must
have homogeneous elements (i.e., their elements are not be
variable-length), and their lengths must be encoded directly
prior to the first element. Further, XDR obviously does not
describe directory structures, preventing access to datasets
that span multiple files.

Platforms for scientific query and analysis include
AQSIM [11] and the Active Data Repository [10]. Both
of these systems require preprocessing of data reposito-
ries in order to construct indices, compute statistics, or to
bulk load data into a managed environment. Other sys-
tems such as Chimera [5] and Godiva [12] supervise the ex-
ecution of data access code, but rely on users to write them
in the first place. We operate in a different space of require-
ments: We propose convenient and immediate access to
data that the user does not control.

7. Future Work and Conclusions

We plan to include constraints as part of the schema lan-
guage for binary block types. Constraints could be used
to validate files before processing. For example, many file
formats use a few bytes at the beginning of the file as a
“magic” code indicating the format type and version. Us-
ing constraints, we could validate that these magic codes
are sensible before continuing processing. Currently, non-
conforming file instances will cause undefined behavior.

We also plan to add support for value-based predicates
on arrays, in order to push some gridfield processing into
the native data model subsystem. We are also working on
“output schemas” that allow files to be restructured declar-
atively. Given 1) an input schema and 2) an output schema
with a subset of the input’s declarations, we aim to allow
instances of the input schema to be automatically and effi-
ciently transformed into instances of the output schema.

In conclusion, we advocate in situ processing of large
scientific data repositories. Converting Terabytes of data to
support new data models is infeasible, and continuously
writing access methods for changing formats is time con-
suming. Our results show that although file formats with
high variability can be expensive to process without pro-
grammer guidance, hand-coded access methods can be re-
placed with generic or generated access methods. We recog-
nize that a logical dataset can often span multiple files in
practice, and that the directory structure and filename can
encode part of the dataset’s structure. Our techniques can
facilitate data sharing between research groups and institu-
tions with heterogeneous data formats.
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Abstract 

As with many large organizations, the Govern-
ment's data is split in many different ways and is col-
lected at different times by different people. The result-
ing massive data heterogeneity means that government 
staff cannot effectively locate, share, or compare data 
across sources, let alone achieve computational data 
interoperability. The premise of our research is that it 
is possible to significantly reduce the amount of man-
ual labor required in database wrapping and integra-
tion by automatically learning mappings in the data. 
In this research, we applied statistical algorithms to 
discover column correspondences across environ-
mental databases. We have seen particular success in 
an information theoretic model, which we call SIfT, 
which performs data-driven column alignments. We 
have applied SIfT to mapping Santa Barbara and Ven-
tura County Air Pollution Control Districts’ 2001 and 
2002 emissions inventory databases with the Califor-
nia Air Resources Board statewide inventory data-
base. The application of SIfT yielded 75% precision 
and 72.2% recall on the column alignment task. On a 
task of integrating new district data with the statewide 
database, we achieved 55% accuracy for Ventura 
County and 59% accuracy for Santa Barbara County. 

1. Introduction 

Due to the wide range of geographic scales and 
complex tasks that the Government must administer, 
its data is split in many different ways and is collected 
at different times by different agencies. The resulting 
massive data heterogeneity means one cannot effec-
tively locate, share, or compare data across sources, let 
alone achieve computational data interoperability. A 
case in point is the California Air Resources Board 
(CARB), which is faced with the challenge of integrat-
ing the emissions inventory databases belonging to 

California's 35 air quality management districts to 
create a state inventory.  This inventory must be sub-
mitted annually to the US EPA which, in turn, must 
perform quality assurance tests on these inventories 
and integrate them into a national emissions inventory 
for use in tracking the effects of national air quality 
policies. 

To date, most approaches to wrap data collections, 
or even to create mappings across comparable data-
sets, require manual effort. Despite some promising 
recent work, the automated creation of such mappings 
is still in its infancy, since equivalences and differ-
ences manifest themselves at all levels, from individ-
ual data values through metadata to the explanatory 
text surrounding the data collection as a whole. 

Viewing the data mapping problem as a variant of 
the cross-language mapping problem in Machine 
Translation, we employed statistical text alignment 
and clustering algorithms developed in Natural Lan-
guage Processing to discover correspondences across 
comparable datasets. In this paper, we present an in-
formation theoretic model, which we call SIfT (Sig-
nificance Information for Translation), that performs 
data-driven column alignment. The key to our ap-
proach is to identify the most informative data ele-
ments and then match data sources that share these 
informative elements. For example, we expect that the 
word “the” will be present in many different columns. 
However, consider some word, like “carbon”, which 
occurs in very few columns. A random pair of col-
umns from two data sources that both contain the data 
element “the” are intuitively not as similar as if both 
columns contained the data element “carbon”. Our 
model automatically detects that “the” is less informa-
tive than “carbon” and will consequently assign a 
higher similarity to two columns that share only “car-
bon” rather than only “the”. 

This work has the potential to significantly reduce 
the amount of human work involved in creating sin-
gle-point access to multiple heterogeneous databases. 
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The remainder of this paper is organized as follows. In 
the next section, we review related work in database 
alignment. Section 3 describes the environmental da-
tabases that we use as a testbed for alignment and in 
Section 4 we present our information-theoretic model 
for alignment. Our experimental results are presented 
in Section 4.4. Finally we conclude with a discussion 
and future work. 

2. Related work 

A lack of standardization has made it very difficult 
to integrate various data sources. Integration and rec-
onciliation of data across non-homogeneous databases 
is an old but unsolved and ever-growing problem. 
Some mechanism is required to standardize data types, 
reconcile slightly different views, and enable sharing. 

For textual data, the information retrieval approach 
exemplified in web search engines such as Google and 
Yahoo! works reasonably well to find exact and close 
matches (around 40% precision & recall over the past 
decade, determined at the annual TREC1 conferences). 

For conventional databases, however, search en-
gines are inappropriate. Instead, two approaches are 
possible. Either one can build a central data model that 
integrates the specialized metadata for each database, 
or one can create direct mappings across the data 
(cells, columns, rows, etc.) of the databases them-
selves. Both approaches are difficult. With regard to 
the former, various methods have been developed. The 
“global-as” view method [2][3] assumes that the cen-
tral model is complete, but that local databases may 
deviate from it; access is via the central model. This 
model requires serious effort to extend. In contrast the 
“local-as” view method [8] assumes that the central 
model is incomplete, simply narrowing the sources to 
be further searched, which may require tedious addi-
tional search effort. In contrast, the “ontology method” 
uses a single overarching super-metadata model (the 
ontology) into which all databases’ metadata descrip-
tions are subordinated hierarchically [1][6]. 

The second general approach, creating mappings 
across individual (subsets of) data, is impossible to 
bring about for real-sized data collections unless  
(semi-) automated methods are used to find the map-
pings. Schema-based matching algorithms [13] align 
databases by matching the meta-data available in the 
databases (e.g., two tables with column name zip_code 
are aligned; most approaches will also match columns 
labeled zip_code and zip). However, since there is 
often no standardized naming scheme for meta-data, 
                                                 
1 The Text REtrieval Conference (TREC) provides the infra-

structure necessary for large-scale evaluation of text 
within the information retrieval community. 

schema-based methods often fail. Instance-based 
matching algorithms align databases using the actual 
data [5]. Such data driven methods typically fail when 
different columns share a common domain (e.g., busi-
ness vs. residence phone numbers) or when matching 
columns that exhibit different encodings (e.g., a phone 
number field stored as a text string in one database and 
stored as a numerical field in another). Kang and 
Naughton [7], whose work most resembles ours, pro-
pose an information-theoretic model to match un-
aligned columns after schema- and instance-based 
matching fails. Given two columns A.x and B.x that 
are aligned, the model computes the association 
strength between column A.x with each other column 
in A and column B.x and each other column in B. The 
assumption is that the highly associated columns from 
A and B are the best candidates for alignment. In this 
paper, we adopt a similar information-theoretic model, 
but for instance-based matching. Instead of matching 
highly associated columns, which requires seed align-
ments, we find the data elements that are most highly 
associated to each column and then match columns 
that share these important data elements 

3. Environmental databases 

We are working with the following set of domain 
data. Emissions inventories are being provided by staff 
at the California Air Resources Board (CARB) in Sac-
ramento, who annually integrate the emissions inven-
tory databases belonging to California's 35 Air Quality 
Management Districts (AQMD) to create a state in-
ventory. This inventory must be submitted annually to 
the US EPA which, in turn, must perform quality as-
surance tests on these inventories and integrate them 
into a national emissions inventory for use in tracking 
the effects of national air quality policies. 

To deliver their annual emissions data submittal to 
CARB, air districts have to manually reformat their 
data according to the specifications of CARB’s emis-
sion inventory database called California Emission 
Inventory Development and Reporting System (CEI-
DARS). Every time the CEIDARS data dictionary is 
revised (as has happened several times recently, for 
example in 2002), work is required on the part of 
AQMD staff to translate emissions data into the new 
format. Likewise, when CARB provides emissions 
data to US EPA’s National Emission Inventory (NEI), 
significant effort is required by CARB staff to trans-
late data into the required format. 

Our testbed for this research consists of the 2001 
and 2002 Santa Barbara County Air Pollution Control 
District (SBCAPCD) and Ventura County Air Pollu-
tion Control District (VCAPCD) emissions invento-
ries, two of the 35 California air districts. 
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4. Data-driven alignment 

The key to our approach is to first identify, using an 
information-theoretic model, the most informative 
data elements and then match data sources that share 
these informative elements. For example, in our case 
study of matching SBCAPCD and CARB schemas, 
since the source data is from Santa Barbara County, 
we expect that many of the columns in SBCAPCD 
will contain the word “Santa Barbara” (e.g., factory 
names, locations, addresses, etc.) However, only one 
column contains the word “Wingerden.” Therefore, a 
random pair of columns from SBCAPCD and CARB 
that both contain the data element “Santa Barbara” are 
intuitively not as similar as if both columns contained 
the data element “Wingerden.” Our model automati-
cally detects that “Santa Barbara” is less informative 
than “Wingerden” and will consequently assign a 
higher similarity to two columns that share only 
“Wingerden” rather than only “Santa Barbara.” 

4.1. Information theoretic model 

Informative elements are measured in SIfT using an 
information theoretic model called mutual informa-
tion. Similar columns are discovered using a clustering 
algorithm called CBC [9]. 

In any clustering application, the critical step is rep-
resenting the data such that elements group together 
according to the desired output. For example, if we 
want to cluster medical patients according to their pos-
sible diseases, we might represent them by their 
height, weight, age, gender, whether they smoke or 
not, etc.; we would not, however, represent them by 
their favorite board game or favorite movie since with 
this representation we would likely group the patients 
according to their entertainment preferences. 

The representation of an element is often called a 
feature vector (or vector space model). Each feature is 
simply a measurement of the element. For example, in 
clustering data points on a 3-dimentional graph, we 
would represent each point using three features: the x, 
y, and z coordinates. These three measurements com-
pletely describe the points. 

4.1.1. Feature representation 

In aligning inter-database columns s and t, we as-
sume that s and t contain similar but not necessarily 
identical fields (accounting for noise and discrepancies 
in the data). One representation for columns is simply 
the data fields they contain. Consider the following 
database columns taken from two databases S and A: 

 
S.phone.number: 

310-555-6789, 310-555-0987,  
780-433-9393, … 

A.area: 
310, 310, 780, … 

A.ph: 
555-6789, 555-0987, 433-9393, … 

We could represent these columns using their field 
values with a frequency of occurrence as measure-
ment. For the above example, the feature vectors using 
this representation would be: 

S.phone.number: 
310-555-6789 1 
310-555-0987 1 
780-433-9393 1 

A.area: 
310 2 
780 1 

A.ph: 
555-6789 1 
555-0987 1 
433-9393 1 

Notice that none of these features overlap and con-
sequently a clustering algorithm would not discover 
any similarity between the columns. In this research, 
we enrich the feature space by classifying data col-
umns within several feature domains (e.g., zip code, 
phone number, state, positive integer, …) Once a col-
umn is classified within a particular feature domain, 
the feature types associated with that domain are ex-
tracted for the column’s feature vector (e.g., zip5 – the 
first five digits of a zip code, zip4 – the last four digits 
of a nine-digit zip code, area – the area code of a 
phone number, exch – the 3-digit phone number ex-
change, phone – the seven-digit local phone number, 
ext – the extension of any digits after a 10-digit phone 
number). We also add domain specific feature do-
mains. We implemented a total of 20 feature domains. 

The algorithm we use for recognizing these do-
mains simply searches for patterns that describe the 
domain. For example, a 10-digit phone number is rec-
ognized if the first three digits are a known area code, 
the fourth digit is between [2-9], and the rest of the 
field is numeric. If our patterns do not fire on a par-
ticular column (e.g., a column containing international 
phone numbers), then the catch-all Text feature do-
main will always fire. 

We allow the user of the system to decide which 
feature domains and associated feature types are active 
for any given alignment. Suppose a column is identi-
fied as a phone number and we decide to extract fea-
ture types area and phone for all phone numbers. Then 
for each field such as “310-555-6789”, the system 
extracts two features with frequency 1: 

area:310  1 
phone:555-6789  1 
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Similarly, for fields such as “555-6789”, we extract 
a single feature: 

phone:555-6789  1 

Now, we see some overlap between the columns 
S.phone.number and A.ph from the previous section. A 
clustering algorithm could therefore discover a simi-
larity between the two columns. 

4.1.2. Mutual-information vector-space model 

Representing data for clustering requires both a fea-
ture representation and a measurement of the features. 
We now describe our model for measuring the feature 
types described in the previous section. 

Above, we measured each feature by its frequency 
of occurrence. However, certain features are more 
informative than others. For example, the common 
word ‘the’ will be present in many text strings. Two 
strings that happen to contain the word ‘the’ does not 
indicate as much similarity as if they contained an 
uncommon word such as ‘carbon’. 

Pointwise mutual information is commonly used to 
measure the association strength between two events 
[4]. It essentially measures the amount of information 
one event gives about another. For example, knowing 
that a column contains the word ‘the’ is not informa-
tive of the contents of that column (because the is 
common across many columns). Conversely, if very 
few columns contain the word carbon, then that word 
is an informative feature (i.e. if columns p and q from 
different databases happen to contain carbon, then 
they are more likely to be aligned than if they shared 
the word the). 

The pointwise mutual information between two 
events x and y is given by: 

( ) ( )
( ) ( )yPxP

yxPyxmi ,log, =  

Mutual information is high when x and y occur to-
gether more often than by chance. Mutual information 
compares two models (using KL-divergence) for pre-
dicting the co-occurrence of x and y: one is the MLE 
(maximum-likelihood estimation) of the joint prob-
ability of x and y and the other is some baseline model. 
In the above formula, the baseline model assumes that 
x and y are independent. Note that in information the-
ory, mutual information refers to the mutual informa-
tion between two random variables rather than be-
tween two events as used in this paper. The mutual 
information between two random variables X and Y is 
given by: 

( ) ( ) ( )
( ) ( )∑∑

∈ ∈

=
X Yx y yPxP

yxPyxPYXMI ,log,,  

The mutual information between two random vari-
ables is the weighted average (expectation) of the 
pointwise mutual information between all possible 
combinations of events of the two variables. 

For each element (column) e, we first construct a 
frequency count vector C(e) = (ce1, ce2, …, cem), where 
m is the total number of features and cef is the fre-
quency count of feature f occurring in element e. Here, 
cef is the number of times column e contained a feature 
f. For example, in column e = A.area from Section 
4.1.1, one feature is area:310 with count 2. 

We then construct a mutual information vector 
MI(e) = (mie1, mie2, …, miem) for each column e, where 
mief is the pointwise mutual information between col-
umn e and feature f, which is defined as: 
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A well-known problem is that mutual information 

is biased towards infrequent elements/features. We 
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4.2. Similarity metric 

To cluster elements, we need a measure of similar-
ity (or distance) between them. We construct a matrix 
containing the similarity between each pair of columns 
ei and ej using the cosine coefficient of their mutual 
information vectors [11]: 
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This measures the cosine of the angle between two 
mutual information vectors. A similarity of 0 indicates 
orthogonal vectors whereas a similarity of 1 indicates 
identical vectors. For two very similar elements, their 
vectors will be very close and the cosine of their angle 
will approach 1. A nice property of the cosine metric 
is that it is not very sensitive to 0-valued features. 
Hence, given a column containing all California EPA 
facilities and another containing only Santa Barbara 
facilities, cosine will find a similarity even though all 
non-Santa-Barbara facilities will have frequency 0 in 
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the second column. In other words, the absence of a 
matching feature is not as strong an indicator of dis-
similarity as the presence of one is an indicator of 
similarity. Other measures like the Euclidean distance 
do not make this distinction. 

4.3. Alignment 

Applying the clustering algorithm described in [9], 
SIfT generates a similarity matrix containing the co-
sine similarity between each pair of columns across 
databases. For each column from source database A, 
we simply align it with its most similar columns from 
target database S such that the similarity between the 
pair of columns is above a certain threshold θ. 

4.4. Scalability 

Computing the similarity matrix described in Sec-
tion 4.2 is daunting for large element and feature 
spaces. The complexity of a brute force algorithm is 
O(n2f), where n is the number of elements and f is the 
feature space. 

However, a simple heuristic drawing on the proper-
ties of mutual information drastically reduces the ac-
tual running time of the algorithm. For each element e, 
we must compute its similarity with every other ele-
ment by comparing their feature vectors. By sorting 
the features of element e in decreasing order of mutual 
information and applying a conservative minimum 
threshold (e.g., we used a threshold of 0.5 in our ex-
periments), we can reduce the feature vector to only 
the most informative features. Using reverse indexing 
on the features, we need only compare e with the ele-
ments, E, which share at least one of e’s features. Re-
member that a feature of an element will have high 
mutual information only if that feature does not co-
exist with many other elements. Consequently, the size 
of E will be much smaller than the total number of 
elements n. 

We use the above heuristic in our system. Another 
option is to use randomized algorithms, which have 
been shown to reduce the complexity of cosine from 
O(n2f) to O(nf); see [10] for details. 

5. Evaluation 

Given two heterogeneous databases, the goal of our 
task is to automatically generate the same alignment 
that a human expert would generate. A step forward is 
to greatly reduce the number of alignment decisions 
considered by a human expert. 

We evaluate our system on environmental data-
bases. In the next section, we describe our experimen-
tal setup. In Section 5.2, we measure the precision and 
recall of SIfT alignments against a manually con-
structed gold standard as well as measure the reduc-
tion in human effort to generate a manual alignment. 
Then, in Section 5.3, we measure SIfT’s accuracy in 
automatically integrating 2002 California air quality 
districts’ data with the California-wide emissions in-
ventory database using historical data. 

5.1. Experimental setup 

The source material we use for mappings, in the 
form of individual data sets, metadata schemas, etc., 
was provided by the Santa Barbara County Air Pollu-
tion Control District (SBCAPCD) and Ventura County 
Air Pollution Control District (VCAPCD). Both pro-
vided a complete archive of the emissions inventory it 
conducted for 2001 and 2002, covering facilities, de-
vices, processes, permitting history, as well as criteria 
and toxic emissions. Mapping target material, includ-
ing an integrated database and its metadata schema, 
was provided by the California Air Resources Board 
(CARB), in the form of the statewide emissions inven-
tories for 2001 and 2002. 

To be of practical use to our governmental partners, 
our challenge lies both in the post-analysis of a data 
transfer between district and state and on integrating 
new data as it becomes available each year. This is a 
challenge since the data formats may change on both 
sides (the collectors and the integrators). Since, how-
ever, changes year by year are not likely to be large, 
we can try to reconcile the possibly divergent evolu-
tions automatically, thereby closing the loop by auto-
matically generating the data integration. 

Figure 1 shows our experimental design for auto-
matically generating a data transfer between California 
districts and CARB for 2002 given historical 2001 
data. First, applying SIfT as a post-analysis to the 2001 
transfer (arrow a), we learn the mappings between the 
data columns for 2001 (evaluation of this step is 
shown in Section 5.2). Then, given the schema 

Figure 1. Experimental design for automatically generating a 
data transfer between VCAPCD/SBCAPCD and CARB for
2002 given historical 2001 data. 
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Figure 2. A correct alignment discovered by SIfT between the Process Description columns in the 
SBCAPCD and CARB databases. Here, the feature type is “TEXTP” so the fully qualified features are
“TEXTP:Flashing Loss”, “TEXTP:Working Loss”, … 

Figure 3. A view of the feature vectors for the Process Description columns in the SBCAPCD and 
CARB databases. The features are sorted in descending order of mutual information. Underlined fea-
tures are shared by both columns whereas dark gray features are solely from the SBCAPCD column and 
light gray features are solely from the CARB column. SIfT aligns the two columns because they share 
many high-mutual information features. 
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changes for both the districts and CARB for 2002 (ar-
rows c and d), we determine which mappings from a 
still hold. It is not unreasonable to expect that arrows c 
and d can be obtained from the district and CARB 
since schema changes are usually tracked from year to 
year within a department. Given a district’s 2002 data, 
we can then follow the arrows c, a, and d, to integrate 
it with the CARB 2002 database, which is arrow b 
(evaluation of this step is presented in Section 5.3). 

5.2. Alignment results 

In this section, we evaluate SIfT’s ability to align 
columns across data sources (arrow a in Figure 1). For 
the purposes of this evaluation, we focused on the 
2001 SBCAPCD and 2001 CARB data. The 
SBCAPCD and CARB emissions inventory databases 
used in our experiments each contain approximately 
300 columns, thus a completely naïve human must 
consider approximately 90,000 alignment decisions in 
the worst case. 

5.2.1. Gold standard 

We manually aligned the SBCAPCD and CARB 
emissions inventories from year 2001. This alignment 
noted and estimated the strength of probable intra-
source matches (e.g., likely foreign key or other join 
relationships) as well as inter-source links (typically, 
equivalence or subset relationships between columns 
of the two different databases). While some table-table 
correspondences and row-row partial equivalences 
were detected, the primary recorded results consisted 
of inter-source column associations. 

The methodology for constructing the "gold stan-
dard" alignment was informal. It would be preferable 
to have a column-to-column alignment catalog agreed 
upon by the two agencies, but this was not available as 
it would require a large investment of labor on the part 
of our local government partners to develop. The en-
tirety of the gold standard, including annotations, is 
available from the SIfT url: http://sift.isi.edu/. 

5.2.2. Precision and recall 

SIfT outputs for each column in a source database 
the columns to which it aligns in the target database2. 
Figure 2 illustrates a screenshot of a correct alignment 
discovered by SIfT between the Process Description 

                                                 
2 A customizable interface to the SIfT toolkit is available at 

http://sift.isi.edu/, allowing users to create new alignments, 
navigate the information theoretic model, and inspect 
alignment decisions. 

columns in SBCAPCD and CARB. Figure 3 illustrates 
why these columns are aligned by SIfT. It shows a 
view of the feature vectors for both columns. The fea-
tures are sorted in descending order of mutual infor-
mation; underlined features are shared by both col-
umns whereas dark gray features are solely from the 
SBCAPCD column and light gray features are solely 
from the CARB column. SIfT aligns the two columns 
because they share many high-mutual information 
features. 

The precision of the system is the percentage of 
correct alignment decisions: 

AT
CPrecision =  

where C is the number of correct alignment pairs and 
TA is the total number of alignment pairs in the system 
alignment. This type of precision is often called micro-
precision. Another precision, called macro-precision, 
averages the average precision of each column that is 
being aligned. 

The recall of the system is the percentage of gold 
standard alignment pairs, TG, which were retrieved by 
the system: 

GT
CRecall =  

Precision and recall measure the tradeoff between 
identifying alignments correctly and getting all the 
possible alignment. For example, a system that returns 
all possible alignment pairs would achieve a recall of 
100% but with an abysmal precision. Increasing the 
threshold θ from Section 4.3 increases the recall of the 
system but decreases the precision. 

It is sometimes useful to have a single measure that 
combines precision and recall aspects. One such meas-
ure is the F-measure [12], which is the harmonic mean 
of recall and precision: 
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F
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where R is the recall and P is the precision. Typically, 
α = ½ is used: 

PR
RPF
+

=
2  

F weighs low values of precision and recall more 
heavily than higher values. It is high when both preci-
sion and recall are high. 

Table 1 shows the results comparing the precision, 
recall, and F-measure of various different feature rep-
resentations. The Simple system simply represents 
each column by the data elements it contains. The Tri-
gram representation extracts letter trigram features for 
each field whereas the Rich representation extracts all 
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possible features domains and feature types described 
in Section 4.1.1. Each representation uses the informa-
tion-theoretic vector space model presented in Section 
4.1.2. 

Curiously, the F-measure of the simple representa-
tion is higher than the more complicated representa-
tions. This is due to the power of the mutual-
information vector-space model which in effect auto-
matically discovers the key values of a particular data 
domain. By inspection, we see that the feature do-
mains in the Rich representation are only useful if they 
have very high precision and recall (e.g., zip codes). 

Table 2 shows the precision of our system where 
the precision indicates the percentage of columns that 
have at least one correct alignment in the top-5 align-
ments. Interestingly, if the system can find a correct 
alignment for a given column, then the alignment will 
be found in the first two returned candidate align-
ments. Considering only two candidate alignments for 
each possible column will greatly reduce the number 
of possible decisions made by a human expert. Assum-
ing that each of the 90,000 candidate alignments must 
be considered (in practice, many alignments are easily 
rejected by human experts) and that for each column 
we output at most k alignments, then a human expert 
would have to inspect only k × 300 alignments. For k 
= 2, only 0.67% of the possible alignment decisions 
must be inspected, an enormous saving in time. 

5.3. Projecting SIfT alignments 

In the previous section, we evaluated SIfT’s ability 
to align columns across databases. Now, we evaluate 
the task of integrating new data as it becomes avail-

able each year (arrow b in Figure 1). Using the design 
in Figure 1, we automatically integrated 2002 
VCAPCD and 2002 SBCAPCD databases with 
CARB’s 2002 database using historical 2001 data. 
Unlike in Section 5.2, since CARB provided us with 
their 2002 databases, we have a true gold standard 
against which to compare our integration. 

For both VCAPCD and SBCAPCD, we randomly 
sampled 50 columns in the automatically integrated 
CARB 2002 databases. A human judge was asked to 
classify each aligned column according to the follow-
ing guidelines: 

Correct: The column is aligned correctly accord-
ing to the gold standard. 

Partially Correct: The aligned column is a subset 
or superset of the gold standard alignment. 
This situation arises when only a selection of 
the column is transferred to CARB or when a 
join must be performed on the district tables 
to match the CARB schema. We must look 
beyond simple column alignments to solve 
these problems, which is beyond the scope of 
this paper. 

Incorrect: The column is not aligned correctly ac-
cording to the gold standard. 

Table 3 shows the results of our evaluation. The 
accuracy of the system is computed by adding one 
point for each correct alignment, half a point for each 
partially correct alignment, no points for each incor-
rect alignment, and then dividing by the sample size. 

Some district columns do not get integrated into the 
CARB database (i.e., SIfT does not find any alignment 
for these columns). In our 50 random samples for 

Table 2. Top-5 precision of different feature representations

SYSTEM TOP-1 TOP-2 TOP-3 TOP-4 TOP-5 

Simple 71.4% 92.9% 92.9% 92.9% 92.9% 

Trigrams 66.7% 83.3% 83.3% 83.3% 83.3% 

Rich 62.5% 93.8% 93.8% 93.8% 93.8% 

 

Table 1. Precision, recall and F-measure of different feature 
representations. 

 PRECISION RECALL F-MEASURE 

SYSTEM MICRO MACRO MICRO MACRO MICRO MACRO 

Simple 75.0% 65.0% 72.2% 65.0% 73.6% 65.0% 

Trigrams 44.4% 44.4% 81.5% 80.0% 57.5% 57.1% 

Rich 62.5% 57.7% 79.6% 75.0% 70.0% 65.2% 
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VCAPCD, nine columns were left unaligned by SIfT, 
of which six were correct and three were incorrect. 

Error analysis shows that SIfT is particularly bad at 
aligning binary (Yes/No or 0/1) columns. Here, the 
mutual information vector-space model is not useful 
since binary values are shared by many columns. Such 
columns, which are easily identified, should be aligned 
by a separate process. For example, we might simply 
compare the ratio of 0’s vs. 1’s or even compare the 
raw frequency of 0’s and 1’s. Likely, however, more 
complex table and row analysis is needed. A possible 
avenue for future work is to use Kang and Naughton’s 
algorithm [7], described in Section 2, to align these 
uninformative columns using the other alignments 
discovered by SIfT as seeds. 

Each SIfT alignment includes a similarity score, as 
described in Section 4.2. This similarity can be viewed 
as SIfT’s confidence in each alignment. For both 
VCAPCD and SBCAPCD, we sorted the 50 randomly 
sampled alignments in descending order of SIfT 
confidence and measured the accuracy for the Top-K 
alignments, for K = {1, 5, 10, 25, 50}. Note that for 
binary columns, SIfT disregards the similarity score 
and assigns a 0 confidence score. The results are illus-
trated in Table 4. As expected, the higher the confi-
dence SIfT has in a particular alignment, the higher the 
chances that this alignment is correct. 

6. Conclusions and future work 

We proposed an information theoretic model, 
called SIfT, for performing data-driven column align-
ments. We have applied SIfT to the task of aligning the 
Santa Barbara County Air Pollution Control District 
and Ventura County Air Pollution Control District’s 

2001 and 2002 emissions inventory databases with the 
California Air Resources Board statewide inventory 
database. SIfT yielded 75% precision and 72.2% recall 
on the column alignment task. On the task of integrat-
ing new district data with the statewide database, we 
achieved 55% accuracy for Ventura County and 59% 
accuracy for Santa Barbara County. 

This work has the potential to significantly reduce 
the amount of human work involved in creating sin-
gle-point access to multiple heterogeneous databases. 
This problem is faced by thousands of large enter-
prises with numerous data collections, from Govern-
ment agencies at all levels to the chemical and auto-
motive industries to startup companies that link to-
gether and integrate websites. By automatically postu-
lating mappings across databases/metadata, our algo-
rithms can enable the database wrapper builder 
(whether fully manual or semi-automated) to work 
more quickly and effectively. It will also help with the 
creation of metadata standards. 

7. References 

[1] Ambite, J.L.; Arens, Y.; Gravano, L.; Hatzivassiloglou, 
V.; Hovy, E.H.; Klavans, J.L.; Philpot, A.; 
Ramachandran, U.; Ross, K.; Sandhaus, J.; Sarioz, D.; 
Singla, A.; and Whitman, B. 2002. Data Integration and 
Access: The Digital Government Research Center’s 
Energy Data Collection (EDC) Project. In W. McIver 
and A.K. Elmagarmid (eds), Advances in Digital 
Government. pp. 85–106. Dordrecht: Kluwer. 

[2] Baru, C.; Gupta, A.; Ludaescher, B.; Marciano, R.; 
Papakonstantinou, Y.; and Velikhov, P. 1999. XML-
Based Information Mediation with MIX. In 
Proceedings of Exhibitions Program of ACM SIGMOD 
International Conference on Management of Data. 

Table 3. Evaluation results for automatically generating a CARB 2002 data-
base from VCAPCD and SBCAPCD 2002 databases. A human judge evaluated 
random column alignments against a gold standard provided by CARB. 

 SAMPLE SIZE CORRECT PARTIALLY 
CORRECT INCORRECT ACCURACY* 

VCAPCD 50 25 5 20 55% 

SBCAPCD 50 22 15 13 59% 

* Alignments judged as partially correct count ½ points towards the accuracy. 

 
Table 4. Accuracy of the Top-K alignments, according to the similarity metric 
described in Section 4.2, for the 50 random samples from VCAPCD and 
SBCAPCD. 

 TOP-1 TOP-5 TOP-10 TOP-25 TOP-50 

VCAPCD 100% 100% 60% 70% 55% 

SBCAPCD 100% 100% 95% 76% 59% 

 

22



[3] Chawathe, S.; Garcia-Molina, H.; Hammer, J.; Ireland, 
K.; Papakonstantinou, Y.; Ullman, J.; and Widom, J. 
1994. The TSIMMIS Project: Integration of 
Heterogeneous Information Sources. In Proceedings of 
IPSJ Conference. Tokyo, Japan. pp. 7–18. 

[4] Church, K. and Hanks, P. 1989. Word association 
norms, mutual information, and lexicography. In 
Proceedings of ACL-89. pp. 76–83. Vancouver, 
Canada. 

[5] Doan, A.; Domingos, P.; and Halevy, A.Y. 2001. 
Reconciling schemas of disparate data sources: A 
machine-learning approach. In Proceedings of 
SIGMOD-2001. pp. 509–520. Santa Barbara, CA. 

[6] Hovy, E.H. 2003. Using an Ontology to Simplify Data 
Access. In Communications of the ACM, Special Issue 
on Digital Government. January. 

[7] Kang, J. and Naughton, J.F. 2003. On schema matching 
with opaque column names and data values. In 
Proceedings of SIGMOD-2003. San Diego, CA. 

[8] Levy, A.Y. 1998. The Information Manifold approach 
to data integration. IEEE Intelligent Systems 
(September/October), 11–16. 

[9] Pantel, P. and Lin, D. 2002. Discovering word senses 
from text. In Proceedings of SIGKDD-02. pp. 613–619. 
Edmonton, Canada. 

[10] Ravichandran, D.; Pantel, P.; and Hovy, E. 2005. Ran-
domized Algorithms and NLP: Using Locality Sensi-
tive Hash Functions for High Speed Noun Clustering. 
To appear in Proceedings of Association for Computa-
tional Linguistics (ACL-05). Ann Arbor, MI. 

[11] Salton, G. and McGill, M.J. 1983. Introduction to 
Modern Information Retrieval. McGraw Hill. 

[12] Shaw Jr., W. M.; Burgin, R.; and Howell, P. 1997. 
Performance standards and evaluations in IR test 
collections: Cluster-based retrieval methods. 
Information Processing and Management, 33:1–14. 

[13] Tova, M. and Zohar, Sagit. 1998. Using schema 
matching to simplify heterogeneous data translation. In 
Proceeding of VLDB-1998. pp. 122–133.

 

23



  
U.S. Air Force Weather Database and XML Web Services Implementation   

Daniel J. Hebert G. Jason Mathews Joseph S. Wood
       MITRE         MITRE       MITRE 
DHebert @MITRE.org                        Mathews@MITRE.org JSW@MITRE.org  

Abstract  

The Air Force Weather mission is to provide accurate, 
relevant and timely air and space weather information to 
many users.  Air Force Weather systems store, process, 
and disseminate large quantities of fine-scale, highly 
accurate weather information including observations, 
forecasts, imagery, warnings, and alerts. 

This paper discusses the Air Force Weather 
database based upon the Joint METOC Conceptual 
Data Model (JMCDM) and the Joint METOC Broker 
Language (JMBL). 

JMCDM is a logical data model that integrates the 
data requirements of the Defense Weather community.  
Physical database segments are being implemented in 
compliance with the JMCDM. Current data segments 
cover observations, gridded data, imagery, text bulletins, 
etc. 

JMBL is an XML data specification that provides the 
basis to broker the exchange of information between 
METOC data providers and user applications. 

JMCDM and JMBL ensure that terminology, formats, 
and metadata are standardized across the Defense 
Weather community.  

1. Introduction  

The Air Force Weather mission is to maximize our 
nation's aerospace and ground combat effectiveness by 
providing accurate, relevant and timely air and space 
weather information to Department of Defense, coalition, 
and national users, and by providing standardized training 
and equipment to Air Force Weather.  Air Force Weather 
systems store, process, and disseminate large quantities of 
fine-scale, highly accurate weather information.  Air 
Force Weather consists of two major capabilities: 
terrestrial weather and space weather.  Terrestrial weather 
systems provide weather information in the lower 
atmosphere (e.g., troposphere from surface up about 
50,000 ft or 10 km) and the stratosphere from 10-50 km 
above the earth s surface, while space weather systems 
provide weather information in the upper atmosphere to 
the sun  

(e.g., solar, interplanetary space, magnetosphere, 
ionosphere).  Air Force Weather systems collect and 
generate four terabytes of data, including observations, 
forecasts, imagery, warnings, and alerts each day. 

Air Force Weather is divided into three echelons, the 
strategic center, the operational weather squadrons, and 
the combat weather teams.  The strategic center builds the 
world's most comprehensive weather database of 
observation, forecast, climatological, and space weather 
products available on the World Wide Web.  Operational 
Weather Squadrons provide weather support covering 
specified regions of the world. Professional 
meteorologists and weather technicians operate the 
squadrons around the clock ensuring continuous 
monitoring of any terrestrial and space weather activity.  
The Combat Weather Teams are located at installations 
around the world and are the prime interface with that 
installation's flying and ground operations. They are the 
eyes forward, using real-time radar, satellite imagery, 
sensor readouts, and visual observations to observe and 
forecast local or deployed conditions. 

There are many different types of meteorological data 
that are generated and disseminated and therefore have to 
be accounted for in the database schemas and XML 
representations.   Surface weather observations, made at 
periodic times, measure sky cover, state of the sky, cloud 
height, atmospheric pressure reduced to sea level, 
temperature, dew point, wind speed and direction, amount 
of precipitation, and special phenomena that prevail at the 
time of the observation or have been observed since the 
previous specified observation.  Terminal Aerodrome 
Forecasts (TAFs) provide a forecast of weather conditions 
at airports.  Weather warnings indicate that severe weather 
is occurring or is highly probable and may be issued from 
six to twelve hours in advance.  Surface analysis charts 
contain fronts and analyzed pressure fields, with the solid 
lines representing isobars.  Upper Air observations are 
made in the free atmosphere either directly or indirectly 
and typically monitor temperature, pressure, relative 
humidity, wind speed and direction, and height of levels.  
Numerical weather prediction models present an objective 
forecast of the future state of the atmosphere by solving a 
set of equations that describe the evolution of variables 
(temperature, wind speed, humidity, pressure, etc.) that 
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define the state of the atmosphere.  Meteorological 
satellite (METSAT) data not only encompasses imagery, 
but also provides input to the preparation of numerical 
forecasts and research projects.  Space weather data 
includes measures of solar activities such as sunspots and 
solar flares, and calculations of the effects they may have 
on the Earth.  Radar data indicates motion toward or away 
from the radar as well as the location of precipitation 
areas.  Lightning detection data captures the number and 
location of lightning strikes.  Environmental effects data 
capture information on dust, smoke, and volcanic ash in 
the atmosphere.  

2. The Air Force weather database  

The Joint METOC (Meteorological and 
Oceanographic) Conceptual Data Model (JMCDM) is a 
conceptual/logical data model that integrates the data 
requirements across the Defense Weather community.  
Physical database segments are being implemented in 
compliance with the JMCDM, which ensures that 
terminology, formats, and attribution are standardized 
across the Defense Weather community.  There are ten 
database segments within the Air Force effort, covering 
imagery, gridded data, observations, etc.  Weather data is 
being ingested and stored to the standardized database 
segments, and all information provided is derived from 
this common database.  
The effort to build a common weather database, 
standardized across the Defense Community, started at the 
conceptual/logical level.  Over 100 individual user views 
of required weather data were modeled separately, using 
IDEF1X data models.  Examples are air temperature, 
atmospheric turbulence, cloud observation, etc.  The user 
views overlap with one another.  A set of data tables, 
common to the user views and fully attributed with data 
elements and primary keys, were then defined.  In the next 
step, mappings were derived between the user views and 
the central repository of common data tables and data 
elements. This data modeling and definition effort resulted 
in the JMCDM with more than 3000 data elements being 
defined.  

A set of physical data models were still required for 
implementation.  These were drafted by the Air Force, and 
then scrubbed by the Defense Data Standards Working 
Group to be in compliance with the JMCDM definitions.  
The overall data modeling approach, from individual user 
views to a conceptual view of all data tables/elements, 
resulting in a set of implementable physical data models 
compliant with the standardized data tables and elements 
is illustrated in figure 1 below.  The number of views, data 
tables, elements, and physical data models are shown on 
the right.                       

 

Figure 1. Joint METOC conceptual data model     

Everything above the dotted blue line is referred to as 
the JMCDM (user views, definitions, mappings).  The 
physical data models are derived from the JMCDM and 
are the most important, implementable subset, with 
efficiencies introduced such as packing of data tables and 
combining of data elements, where reasonable to do and 
when needed for efficiency.  The candidate physical data 
models are organized by major data type:  observations, 
bulletins, weather stations, gridded numerical weather 
prediction models, catalog, imagery/vector graphics, 
remote-sensed observations, climatology products, 
security, solar, meteorological satellite, oceanography, 
and mission effects.  The vision for much of the physical 
Joint METOC database is shown in figure 2 below.              

Figure 2. Joint METOC physical data model  

Individual User Views:

 
Air  

Temperature  
Atmospheric 
Turbulence  

Cloud 
Observation  

125 

Conceptual:

 
Data Entity (Table) Defin.  

Data Element Definitions 

 

Mappings: Views to Data Entities 
Data Entities to Database Segments 

600 

3000 + 

Physical Models:

 

JMGRID . . . 

 

10 + 

JMCAT
Owner, User/Subscriber
Security/Access Control

JMPLAT
Fixed   Mobile JMGRID

Metadata
Wx Model

JMR-SOBS
High Volume
Remote Sensors

JMIM
Finished
Imagery

JMOBS
Conventional

Surface   Upper Air

comprises

generates
initializes

locates

JMAN
Forecasts  Warnings

supplements

JMCLIM
Terrestrial  Space

contributes to

overlays

JMSEC
JMCOM

JMSESS
Space   Solar

JME
Effects

gener-
ates

JMSAT
Raw &

Proc. METSAT

contributes to

initializes

contributes to

JMAN JMOBS JMPLAT

 

25



3. The Joint METOC Broker Language 
(JMBL)  

JMBL is a specification for a set of XML Schemas and 
Web Service Definition Language (WSDL), which 
provides the basis to broker the exchange of information 
between METOC data providers and user applications.  
JMBL defines the XML tags to represent and query 
weather data and their associated metadata. Data is 
requested by data type with further restriction by 
geographic location, time, platform and other 
characteristics. JMBL is an abstraction layer on the 
physical database, where the end user is concerned only 
with which data types and weather parameters are needed. 

A weather parameter list table supports run-time 
access to the physical database segments from incoming 
JMBL requests.  The JMBL requests carry standard 
weather parameter names.  Data access layer software 
matches each parameter name in the request with 
parameter name table entries, and picks up the physical 
database segment s data element name associated with 
each of the JMBL request s weather parameters.  See 
figure 3 below.  

C2 System
JMBL

Request

Weather Parameter List

Physical DB
JMOBS JMGRID JMAN 

Table
Look Up

JMBL
Parameter

NameJMBL
Weather

Parameter
Name

Database
Element

Name

JMPLAT 
. . . 

Figure 3.   System access to Joint METOC database  

The JMBL request structure first decomposes the data 
into 10 data or product types (gridded data, imagery, 
observations, alphanumeric, climatology, remote sensed, 
product, platform, space weather, and best source) each of 
which has its own specific constraints and properties (e.g. 
forecast period, resolution, image type, etc). Common 
request criteria (e.g., time, location, format, distribution 
method, etc.) are also specified in the request structure. 
The data type combined with other request criteria 
represent the who, what, where, when and how to return 
the data.   

Extensibility of JMBL is assured with the addition of 
new data type choices as needed without breaking existing 
clients that are not aware of these new models. Likewise, 
the response structure parallels the request structure with 

the who, what, where, and when needed to describe the 
data.  

Consumers can request a catalog of available products 
or the raw weather products (GRIB, METAR, SPECI, 
TAF, etc.) or extract only the pieces of information that 
are relevant to them such as specific parameters (e.g., 
temperature and wind speed) and returned units of 
measure. A typical request such as one for surface 
observations at the Kerrville Municipal Airport (noted 
with the platformId KERV) is shown below. In this 
example the wind speed and air temperature are requested 
along with the raw observation data.  

<RequestList xmlns="urn:metoc:jmcbl"> 
<Request> 
<InformationType> 
<MetocDataType> 
<Observation> 
<PlatformCode> 
<PlatformList><PlatformId>KERV</PlatformId> 
</PlatformList> 
</PlatformCode> 
<ObservationParameters> 
<Parameter parameterName="observationDateTime" /> 
<Parameter parameterName="temperatureAir" 
parameterUnit="degreesCelsius" /> 
<Parameter parameterName="windSpeed" /> 
<Parameter parameterName="observationRawData" /> 
</ObservationParameters> 
<Time> 
<TimeRange startTime="2005-01-12T12:51:00Z"/> 
</Time> 
<ObservationReportTypeCode>FM-
15</ObservationReportTypeCode> 
<ObservationReportTypeCode>FM-
16</ObservationReportTypeCode> 
</Observation> 
</MetocDataType> 
</InformationType> 
</Request> 
</RequestList> 
Figure 4. JMBL request for surface observations  

A response for such a request would look something 
like the following if data was available:  

<ResponseList xmlns="urn:metoc:jmcbl:jmbl"> 
<Response> 
<DataItem> 
<Time> 
<TimeRange ns2:startTime="2005-01-12T12:51:00Z"/> 
</Time> 
<METOCdata> 
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<METOCdata dataElementName="observationDateTime" 
parameterUnit="dateTime"> 
<Value> 
<LongValue>20050112180500</LongValue> 
</Value> 
</METOCdata> 
<METOCdata dataElementName="temperatureAir" 
parameterUnit="degreesCelsius"> 
<Value> 
<DoubleValue>18.0</DoubleValue> 
</Value> 
</METOCdata> 
<METOCdata dataElementName="windSpeed" 
parameterUnit="metersPerSecond"> 
<Value> 
<DoubleValue>6.1</DoubleValue> 
</Value> 
</METOCdata> 
<METOCdata METOCtype="JMO_MESSAGE" 
dataElementName="observationRawData"> 
<Value> 
<StringValue>METAR KERV 121805Z AUTO 
18012G20KT 10SM BKN019 BKN023 BKN028 
 18/14     A2967 RMK AO2</StringValue> 
</Value> 
</METOCdata> 
</METOCdata> 
</DataItem> 
<ResponseStatus orderStatus="Request Filled"/> 
</Response> 
</ResponseList> 
Figure 4. JMBL response of surface observations  

With the representation offered by JMBL, weather 
data can be expressed in both requests and responses. 
Next, for a standard common across multiple 
implementations a number of business rules are needed. 
Air Force programs have defined business rules such as 
determining if an image matches the request criteria when 
the requested boundary region intersects the region of the 
image or is fully contained within. Likewise, rules are 
needed if a boundary region (request) is smaller than the 
available image, since returning a cropped image is one 
option.  Or, with a gridded data request, should the 
gridded data (response) be the full grid, or only a subgrid 
to the requested region. At present images are returned as-
is when the region is fully inside the image boundary 
while gridded data are subgridded to the requested region.  

4. Summary  

This paper has provided information on the 
development of XML and database schemas within the 
Air Force Weather systems.  It provided an overview of 

Air Force Weather operations and data and then provided 
a detailed description of the database design approach and 
the use of XML and SOAP-based web services.    
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Abstract 
 

The Science Environment for Ecological Knowledge 
(SEEK) [1] is an information technology project designed 
to address the many challenges associated with data 
accessibility and integration of large-scale biocomplexity 
data in the ecological sciences.  The SEEK project is 
creating cyberinfrastructure encompassing three 
integrated systems: EcoGrid, a Semantic Mediation 
System (SMS) and an Analysis and Modeling System 
(AMS). SEEK enables ecologists to efficiently capture, 
organize and search for data and analytical processes 
(i.e., scientific workflows) from their desktop in a user 
friendly interface -- ultimately providing access to global 
data and analytical resources typically out of reach for 
many ecologists. The prototype application is ecological 
niche modeling. 
 
 
1. Introduction 

 
The spread of the West Nile Virus, the emergence of 

invasive species and the effects of climate change on 
biodiversity and the environment are challenging 
ecological issues that rely heavily on acquisition of data 
from diverse sources and intensive computational effort.  
Ecological issues like these and others highlight the 
critical need of scientists, researchers and policy makers’ 
to have rapid access to available data.   The objective of 
the SEEK project is to increase the speed and efficiency 
of data acquisition, integration, analysis and synthesis in 
the biological and ecological sciences.  SEEK scientists 
and developers are building a three-tiered information 
technology infrastructure composed of the EcoGrid, the 
Semantic Mediation System and the Analysis and 
Modeling System (Figure 1). The EcoGrid is an open 

architecture for data access across organizational and 
institutional boundaries.  The Semantic Mediation System 
(SMS) is a “smart” data discovery and integration system 
based on domain-specific ontologies.  The Analysis and 
Modeling System (AMS) implemented thru the Kepler 
workflow system supports semantically integrated 
analytical workflows.  With the development of this 
infrastructure SEEK is poised, not only to provide global 
access to ecological data and information but also to 
facilitate ecological and biodiversity forecasting.   

SEEK enhances the national and global capacity for 
observing, studying, and understanding biological and 
environmental complexity in several ways.  First, through 
the development of intelligent analytical tools and an 
infrastructure capable of semantically integrating diverse, 
distributed data sources, it removes key barriers to 
knowledge discovery. Second, SEEK enables scientists to 
exercise powerful new methods for capturing, 
reproducing, and extending the analysis process. Third, by 
expanding access to distributed and heterogeneous 
ecological data, information, and knowledge, SEEK 
creates new opportunities for scientists, resource 
managers, policy makers and the public to make informed 
decisions about the environment.  Finally, it provides an 
infrastructure for educating and training the next 
generation of ecologists in the information technology 
skills that are critical for scientific breakthroughs in the 
future. This paper begins with a brief description of the 
SEEK project, describes the three-tiered information 
technology infrastructure of the SEEK project and the 
prototype application, and concludes with a report on 
significant findings to date.
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Figure 1. SEEK architecture 

 
2. SEEK Community 
 

SEEK is a multi-disciplinary, multi-institutional and 
multi-national effort designed to create 
cyberinfrastructure for ecological, environmental, and 
biodiversity research and to educate the ecological 
community about ecoinformatics. SEEK infrastructure 
development is supported by software engineers and 
computer scientists dispersed across the eight institutions 
involved in the project.  The design and development of 
the SEEK cyberinfrastructure is informed by three 
multidisciplinary teams of scientists organized in 
Working Groups.  The Biodiversity and Ecological 
Analysis and Modeling Working Group (BEAM) informs 
development through evaluation of SEEK efficacy in 
addressing biodiversity and ecological questions.  A 
Knowledge Representation Working Group (KR) 
develops formal ontologies that enable the assembly of 
analytical workflows in the Analysis and Modeling 
System and access to source data in EcoGrid. A 
Biological Classification and Nomenclature Working 
Group (Taxon) investigates solutions to mediating among 
multiple taxonomies for naming organisms.  Additionally, 
a multifaceted Education, Outreach and Training (EOT) 
program ensures that the SEEK research products, 
software, and information technology infrastructure 
optimally benefit the target communities via the project 
website (http://seek.ecoinformatics.org) [2, 3]. 
  
3. The EcoGrid  

 
The EcoGrid [4] is a collection of distributed 

ecological, biodiversity and environmental data and 
analytic resources (data, metadata, analytic workflows and 
processors) that are often located at different sites and in 
different organizations. The EcoGrid uses the Open Grid 
Services Architecture (OGSA, 
http://www.globus.org/ogsa/) framework to provide a set 
of standardized interfaces for accessing data resources 
through a service-oriented framework. The current 

prototype implementation of the EcoGrid uses the OGSA 
‘Factory” service to enable scalable deployment of the 
access services, but in other aspects is more similar to a 
traditional web service implementation.  As the Web 
Services Resource Framework (WSRF) matures we will 
investigate migrating our services to the WSRF 
specification.  EcoGrid combines features of a Data Grid 
for ecological data management and a Compute Grid for 
analysis and modeling services. EcoGrid forms the 
underlying framework for data and service discovery, data 
sharing and access and analytical service sharing and 
invocation.  

Biodiversity and ecological data include, but are not 
limited to the heterogeneous data collected at field 
stations, as well as remote sensing data and data from 
museum collections.  Computational models and analyses 
include well-known biodiversity and ecosystem models 
such as GARP (Genetic Algorithm for Ruleset 
Production; Stockwell and Noble, 1992 [5]; University of 
Kansas Center for Research, 2002 [6]) and CENTURY 
(Natural Resource and Ecology Lab, 2003 [7]) as well as 
custom models and analyses written for a single 
experiment or study.   The SEEK EcoGrid is being 
designed to provide the infrastructure for managing these 
diverse data and computational resources. 
 
4. Analysis and Modeling System 

 
The Analysis and Modeling System in SEEK is a 

multiplatform, open-source, visual programming tool (i.e., 
the Kepler [8, 9, 10] workflow system) that allows users 
to create executable analytical pipelines and workflows 
based on research models. Kepler, based on Ptolemy II 
[11], is a collaborative project involving contributing 
members from SEEK, the GEOsciences Network (GEON)  
http://www.geongrid.org/, the Scientific Data 
Management Center (SDM) part of the Scientific  
http://sdm.lbl.gov/sdmcenter/, the Ptolemy Project 
http://ptolemy.eecs.berkeley.edu/ptolemyII/, the 
ROADNet (Real-time Observatories, Applications, and 
Data Management Network) Project 
http://roadnet.ucsd.edu/ and  the EOL (Encyclopedia of 
Life) http://eol.sdsc.edu/. Scientific workflows are a 
formalization of the scientific research process (Figure 2).  
That is, typically a scientist will generate a research 
question, collect data, analyze the data using several 
models, programs, software and hardware, and physically 
coordinate the data transformation, exporting and 
importing.   

Kepler allows scientists to design, execute, monitor, 
re-run and communicate analytic procedures with 
minimal effort.  Therefore, scientific workflows in Kepler 
include the analysis steps as well as the data acquisition, 
integration, transformation, synthesis and archival 
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information.  Scientists can create and save workflows on 
the EcoGrid within Kepler. These workflows can then be 
searched and downloaded by other researchers for 
replicating or expanding upon the analysis. 

 

Figure 2. The Kepler workflow system showing 
the Lotka-Volterra predator-prey model. 

 
5. Semantic Mediation System 

 
The Analysis and Modeling System (i.e., Kepler) in 

the SEEK architecture leverages the Semantic Mediation 
System (SMS) [12, 13]. The goal of the SMS layer is to 
support scientists' workflow modeling and design 
processes. In particular, SMS exploits domain ontologies 
to facilitate (1) "smart discovery" of data sets and 
components (individual actors and complete workflows), 
(2) "smart binding" of data sets to components, and (3) 
"smart linking" of components to each other as part of the 
overall design process. 
 

The Semantic Mediation System provides a generic 
set of ontology-based languages and tools for storing and 
exploiting "superimposed" semantic annotations [15], 
which explicitly link existing data sets and workflow 
components to ontologies.  Through semantic annotations, 
the mediation layer provides knowledge-based data 
integration and workflow composition services [13,14], as 
well as basic services used in workflow modeling, such as 
ensuring that workflows are "semantically" type-safe 
(based on annotations) and component and data discovery 
via concept-based searching.  
 

Ontology development is a major part of SEEK. We 
have developed initial ontologies for ecological data and 
workflows, focusing on measurements, basic ecological 

concepts, symbiosis, and biodiversity. We are also 
building tools to support the editing and curation of  
ontologies, with the goal of making these tools accessible 
and easy to use for domain scientists. 
 
6. Prototype application 

 
A new and promising paradigm in biodiversity 

informatics is the use of ecological niche modeling to 
extrapolate and anticipate implications of global climate 
change for biological diversity [17, 18, 19]. Future 
scenarios based on general circulation models (GCMs) 
present diverse visions of global climate futures. The 
implications of these different futures for biodiversity are 
only now being explored.  While data suggest that 
climates are changing, the implications of these changes 
remain unclear and little explored. At this time there are 
no hemisphere-wide evaluations or broad comparative 
analyses of implications of different GCM modeling 
scenarios, due to the prohibitive time costs for large-scale 
analyses.  With the use of distributed resources and the 
building of analytic workflows for automated processing 
of climate change and biodiversity analyses, the first 
application for the SEEK project is a large scale 
ecological niche modeling assessment of mammals of 
Western Hemisphere to look at the implications of climate 
change on current and projected habitat range.   This 
application models distributions of all mammal species in 
the Western Hemisphere and generates projections of 
distribution change under multiple Intergovernmental 
Panel on Climate Change scenarios (http://www.ipcc.ch). 
This project includes the analysis of integrated field data 
for over 3000 mammal species, under 20+ climate 
scenarios, using 2-3 dispersal scenarios (180,000+ model 
runs).    
 
7. Significant results 

 
To date, a variety of SEEK tools have been created 
including a protoype of the Ecogrid has been created 
(Table 1).   

1. Currently the Ecogrid provides: access to different 
data catalogs (Metacat, SRB/MCAT, DiGIR); a 
search, read and write interface; and uploading of 
metadata and data.   

2. The first alpha-quality users' release of Kepler was in 
May 2004.  Kepler has an Ecological Metadata 
Language -aware data plug-in, an EcoGrid plug-in, 
web service actors and a web service harvester.  

3. Toolkit for reasoning and  data conversion, and an 
access API for ontologies called “Sparrow” was 
developed. A user-friendly editor for OWL 
ontologies (grOWL) is currently in its second alpha 
release.  
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4.  The Biological Classification and Nomenclature 
(Taxon) working group has created a “Taxonomic 
Object Service” (TOS) that provides information 
about the relationships among taxa via SOAP and 
web interfaces.   

 
Table 1. SEEK Tools 

Application Description url 
Kepler Is a flexible workflow system 

designed to process and 
ingest heterogeneous 
ecological data from 
ecologists and other domain 
scientists. 

http://kepler.ecoinform
atics.org 

Sparrow Aims at combining 
algorithms and techniques 
from logic-based knowledge 
representation and 
databases into a single, 
open-source toolkit. 

http://seek.ecoinformat
ics.org/ 

GrOWL Is a visualization and editing 
tool for Ontology Web 
Language (OWL) and 
Description Logics (DL) 
ontologies based on a 
semantic network knowledge 
representation paradigm 

http://ecoinformatics.u
vm.edu/dmaps/growl 

EcoGrid Is a thin layer to allow 
various data and computer 
services already in existence 
to interoperate base on 
GRID technology. 

http://seek.ecoinformat
ics.org/ 

Additional information about these and other SEEK 
tools can be found at http://seek.ecoinformatics.org. 
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Abstract

We describe a new approach to scalable data analysis
that enables scientists to manage the explosion in size and
complexity of scientific data produced by experiments and
simulations. Our approach uses a novel combination of
efficient query technology and visualization infrastructure.
The combination of bitmap indexing, which is a data man-
agement technology that accelerates queries on large sci-
entific datasets, with a visualization pipeline for generating
images of abstract data results in a tool suitable for use by
scientists in fields where data size and complexity poses a
barrier to efficient analysis. Our architecture and imple-
mentation, which we call DEX (short for dexterous data ex-
plorer), directly addresses the problem of “too much data”
by focusing analysis on data deemed to be “scientifically
interesting” via a user-specified selection criteria. The ar-
chitectural concepts and implementation are applicable to
wide variety of scientific data analysis and visualization ap-
plications. This paper presents an architectural overview
of the system along with an analysis showing substantial
performance over traditional visualization pipelines. While
performance gains are a significant result, even more im-
portant is the new functionality not present in any visual-
ization analysis software – namely the ability to perform
interactive, multi-dimensional queries to refine regions of
interest that are later used as input to analysis or visualiza-
tion.

1 Introduction

Bitmap Indices are index data structures for efficiently
querying high-dimensional data sets. Such queries form the
basis of data analysis, which is a central task in the scientific
process. Several data warehouses and scientific applica-
tions use bitmap indices to efficiently access large amounts
of read-only data. Over the last few years, we have devel-

oped and deployed bitmap index software (FastBit) that is
now used in production analysis of data produced by high-
energy physics experiments [26] and for feature extraction
and 2D/3D region growing in astrophysics and combusion
applications [24, 19]. The performance and functional gains
that bitmap indexing provide to data-intensive applications
are particularly germane to scientific visualization where in-
creasing data size and complexity often exceed the capacity
of current visualization architectures as well as overwhelm
the scientist with too much visual data.

FastBit software permits scientists to define the subset of
data cells that “are interesting” using compound Boolean
expressions. For example, in the field of combustion,
datasets typically have dozens of quantities per cell repre-
senting the concentration of various chemical species in-
volved in the combustion process along with fluid dynamics
variables like pressure, density and velocity. Combustion
researchers are often concerned with tracking combustion
processes on the flame front, but the definition of a flame
front turns out to be difficult to objectively define in a sim-
ple way. Instead, a flamefront is best defined as a set of
criteria expressed as a conjunction of boolean clauses: cells
where temperature exceeds some threshold and the concen-
tration of one or more chemical species lies within some
range. Modern scientific datasets are so large and complex
that applying visualization techniques to the entire dataset
often results in a “thicket of visual noise” where interesting
features are visually obscured. It is difficult to remove the
visual noise using the clipping, cropping, and sub-setting
techniques that are typically available in visualization tools
because the feature of interest, the flame front, is topologi-
cally complex. Instead, researchers construct a boolean ex-
pression specifying conditions likely to contain the flame-
front, then FastBit rapidly selects the volume of interest, or
data cells that match the selection criteria. Within the DEX
tool, these volumes of interest are then used as input to a
standard visualization pipeline where other methods can be
applied to visualize the data selected by the query operation.

FastBit keeps a bitmap for each distinct attribute value
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or attribute range (see Section 2). Queries are processed
by evaluating a subset of all bitmap indices, which is of-
ten considerably smaller than the entire data set. Hence,
bitmap indices are able to resolve complex queries using
only a fraction of the memory and time that would be re-
quired to process the entire dataset. As a consequence, the
time complexity of the visualization algorithm can also be
significantly reduced for large datasets.

Therefore, the advantages of DEX are two-fold. DEX
helps reduce the visual complexity of a visualization by
focusing the visualization algorithms exclusively on poten-
tially topologically complex regions of interest that are de-
fined by the query. DEX also offers significant advantages
for large datasets because the efficient indexing scheme en-
ables the visualization system to load only the data cells
selected by the query rather than examining all cells in the
entire dataset. We refer to this visualization methodology
as ”Query-Based Visualization.”

The main contributions of this paper are as follows:

• DEX combines highly efficient data management tech-
niques with visualization. The combination represents
a promising novel approach for high capacity and ca-
pability analysis and visualization implementations.
We describe our implementation of the DEX tool and
the underlying architecture of FastBit.

• We describe visualization methods enabled by ”query-
based visualization” technology and support them with
example use-cases in combustion and astrophysics re-
search.

• Using two scientific datasets, we compare the perfor-
mance of DEX with that of traditional visualization al-
gorithms.

This paper focuses on two datasets that are represen-
tative of the output from cutting-edge scientific codes
in High Performance Computing. The first dataset is
a temporally evolving reacting methane-air jet from
the TeraScale High-Fidelity Simulation of Turbulent
Combustion with Detailed Chemistry [21]. The sec-
ond dataset is a supernova explosion from the TeraS-
cale Supernova Initiative [22].

The paper is organized as follows. In Section 2 we re-
view the prior work on bitmap indices and visualization
problems that are within the scope of DEX. Section 3 dis-
cusses index-based data extraction and explains how bitmap
indices are used for region growing and feature extraction.
In Section 4 we introduce the architecture of DEX along
with an informal time complexity analysis. Typical scien-
tific data exploration and visualization use cases a given in
Section 5. Performance results are presented in Section 6.
We conclude the paper in Section 7 and introduce some fu-
ture research challenges.

2 Related Work

In the following section, we review the concept of
bitmap indexing with particular emphasis upon how the
bitmap index accelerates multi-dimensional data query op-
erations. One of the first visual query systems is VisDB
[14] that combines database techniques with novel visual-
ization methods. Our work also uses database techniques
for query processing but the main goal of our query process-
ing is to identify regions of interest for later processing. In
the examples we present in this paper, we display the cells in
the regions of interest using a cuberille-style rendering [11].
Future work will include using the selected regions of inter-
est as input to analysis algorithms, computation of derived
quantities, and more sophisticated visualization techniques.

To set the stage for later sections of this paper, we discuss
the visualization pipeline, with particular emphasis upon
isocontouring. Isocontouring is a staple visualization tech-
nique that performs an operation on cells that satisfy a sin-
gle criteria. To that end, the part of the isocontouring algo-
rithm that finds cells satisfying a single criteria is similar to
the more general and difficult problem of efficient, multi-
dimensional data searching.

2.1 Bitmap Indices

Bitmap indices are one of the most efficient indexing
schemes available for speeding up multi-dimensional range
queries for read-only or read-mostly data [17, 25]. For an
attribute withc distinct values, the basic bitmap index [6]
generatesc bitmaps withN bits each, whereN is the num-
ber of records (cells) in the dataset. Each bit in a bitmap is
set to 1 if the attribute in the record is of a specific value,
otherwise the bit is set to 0. For example, the integer at-
tributeI shown in Figure 1 can be one of four distinct val-
ues, 0, 1, 2, and 3. The corresponding bitmap index has four
bitmaps. Since the value in record 5 is 3, the fifth bit inb4

is set to 1 and the same bits in other bitmaps are 0. In short,
4 bitmaps are required to encode 4 distinct attribute values.

Bitmap indices are efficient for processing multi-
dimensional range queries such as “I < 2 and J > 3”.
The queries are evaluated with bitwise logical operations
that are well-supported by computer hardware.

For data sets where a given variable may span a large
number of distinct values, one concern with bitmap index-
ing is that the amount of space required by the bitmap index
could become quite large. One way of reducing the storage
requirement is to use bitmap compression. Another is to use
a binning strategy, which is described below. Note that an
efficient bitmap compression scheme not only has to reduce
the size of bitmaps but also has to perform bitwise Boolean
operations efficiently.

Several bitmap compression methods were studied in
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bitmap index
RID I =0 =1 =2 =3

1 0 1 0 0 0
2 1 0 1 0 0
3 3 0 0 0 1
4 2 0 0 1 0
5 3 0 0 0 1
6 3 0 0 0 1
7 1 0 1 0 0
8 3 0 0 0 1

b1 b2 b3 b4

Figure 1. A sample bitmap index where RID
is the record ID and I is the integer attribute
with values in the range of 0 to 3.

[1, 13]. The authors demonstrated that the scheme named
Byte-aligned Bitmap Code (BBC) [2, 3] shows the best
overall performance characteristics. More recently a new
compression scheme called Word-Aligned Hybrid (WAH)
[25] was introduced. It has been shown that even in the
worst case, the bitmap indices can be compressed to a size
that is comparable with a typical B-tree index. The time re-
quired to answer a range query using a compressed bitmap
index is in fact optimal. In the worst case, the response time
is proportional to the number of hits of the query [25].

The bitmap indices discussed so far encode each dis-
tinct attribute value as one bitmap vector. This technique
is very efficient for integer or floating point values with
low attribute cardinalities. However, scientific data is of-
ten based on floating point values with high attribute car-
dinalities. The work presented in [20] demonstrated that
bitmap indices with binning can significantly speed up
multi-dimensional queries for high-cardinality attributes.

2.2 Visualization

The initial demonstration of the DEX tool displays the
cells selected by the query. Visually, the selection appears
as a “blocky” isosurface. While there is visual similarity be-
tween an isosurface computed over a scalar field and the set
of cells returned from a complex multidimensional query,
the two methods – isosurfacing and bitmap indexing – can-
not be directly compared due to a fundamental difference
in generality. Specifically, bitmap indices are evaluating
multi-dimensional comparisons to define avolume of inter-
est whereas the isosurface is evaluating a scalar to find a
surface of interest.Despite the fundamental difference in
generality, a comparison between DEX and isosurface al-
gorithms is warranted because the isosurface is the one of
the most commonly employed visualization techniques. A
time-consuming processing step in any isocontouring algo-

rithm is the search for the data cells that satisfy a criteria,
namely, that a surface passes through a cell. We are focus-
ing our performance comparison between bitmap indexing
and isocontouring on the task of searching for cells that sat-
isfy a single criteria.

To satisfy a search consisting of multiple criteria in a tra-
ditional visualization pipeline, one can compute a “derived
field” that represents an evaluation of a multi-dimensional
objective function producing a scalar field that can then be
isosurfaced. Such derived values are akin to an expensive
join operation. The isosurface algorithm is then used to
draw a contour (equipotential surface) around the scalar to
identify the topologically complex region of interest. If the
objective changes, then the algorithm must reload all of the
data in order to derive a new scalar using the new objective
function. DEX provides this very functionality, but does
not need to reload data or derive new fields to evaluate a
new objective function. We will demonstrate the efficiency
benefits of our approach in Section 6 of the paper.

The bitmap indices are far more general than isosur-
faces because they identify avolume of interestrather than
a surface of interest. Not only do the bitmap indices sup-
port evaluation of equality (x = v, the definition of iso-
surface), they can find regions that are less than a value
(x < v), greater than a value (x > v), or any complex
expression that can be constructed from a Boolean combi-
nation of those expressions (x1 > v1 andx2 ≤ v2 and ... ).
The isosurface algorithm generates surface normals, which
can be used to implicitly identify the interior of a volume
of interest. However, using the surface normals to convert
the selected surface-of-interest into a volume of interest re-
quires an additional, potentially expensive algorithmic step.
Consequently, the locus of comparison between DEX and
the isosurface algorithm is restricted to evaluation of equal-
ity (surface finding). This artificial limit helps provide a
basis for comparing the performance of isocontouring to
bitmap index queries by evaluating simple equality expres-
sions (e.g. find all cells satisfying the expression( SELECT
data from t WHERE cell[i]=scalarvalue).

The most widely used isosurfacing technique is March-
ing Cubes [16]. Marching cubes improves the efficiency of
surface generation at each cell that intersects the surface,
but must examine every cell in the dataset to find the cells
that intersect the surface. Marching cubes accelerate sur-
face generation by using a state table that enumerates the
finite number of surface-edge intersections. A number of
algorithms have been developed to accelerate the process of
finding cells that intersect the desired surface. These oper-
ate by reducing the number of cells that must be evaluated
by culling cells that are either out of range (value based) or
are not visible due to occlusion (view based). According to
[8] isosurfacing algorithms can be classified as either view-
dependent or view-independent. The view-dependent algo-
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rithms mainly perform computation on regions that make up
substantial parts of the final image. View-independent al-
gorithms, on the other hand, generate geometry on all cells
containing the surface regardless of whether or not they are
visible. Since one of the goals of DEX is to perform inter-
active, feature-based analysis, view-independent algorithms
form the basis of comparison in this paper.

One key technique used in view-independent isosurface
acceleration is I/O-optimal isosurfacing where interval-tree
indexing structures help rapidly locate those cells contain-
ing the surface. A number of methods make use of octrees
[23] for searches, but the octree approach is impractical for
data containing small-scale fluctuations or noise since most
of the tree will be traversed. Another example of an index-
accelerated isosurfacing algorithm is NOISE [15], which
makes use of a k-d tree [4] to accelerate the search. NOISE
searches over points in 2D rather than a full 3D interval
search. ISSUE [18] further improves on NOISE by using a
2D regular lattice rather than a k-d tree in the search phase.

The isosurfacing algorithms described above rely on in-
dex data structures that remain entirely memory-resident to
speed up isosurface extraction. By contrast, FastBit can op-
erate almost entirely out-of-core, thereby minimizing the
memory footprint when used on extremely large datasets
that otherwise would not fit into main memory. An interac-
tive isosurface extraction method based on an out-of-core,
i.e. non-memory resident, index data structure, is presented
in [7].

The isosurface algorithms found in typical visualiza-
tion frameworks operate only on scalar data values. They
do not directly support multi-dimensional feature-based
searches for interactive refinement of feature values such as
temperature or pressure. As described earlier, locating
cells that satisfy a multi-dimensional feature query using
traditional visualization tools requires generating a derived
field, which is akin to an an expensive join operation. DEX,
however, evaluates multi-dimensional feature bitmap index
queries, which do not require expensive joins.

In DEX, isosurface extraction is only one of several sup-
ported features. Apart from computing scalar equipoten-
tial surfaces, we are mainly interested in reconstructing the
whole data volume of the extracted regions. Typically this
data volume is further processed in scientific applications
such as analysis of flame fronts [24].

3 Index-Based Data Extraction

Bitmap indices have been successfully applied in large-
scale scientific analysis. Recently we demonstrated that
bitmap indices can also be applied efficiently for 2D and 3D
region growing problems [24, 19]. In this section we will re-
view some of these fundamental assumptions and ideas that
are important for understanding the complete visualization

pipeline that we introduce in Section 4.
Many scientific datasets are spatio-temporal in nature be-

cause they compute or are measurements of physical quan-
tities that vary in space and time. For example, a simulation
of the combustion process computes the concentrations of
all chemical species along with pressure and temperature
[9, 12]. One common operation in mining these datasets is
to derive quantities on regions of interest, for instance, the
total heat output from an ignition kernel in the combustion
simulation. Computing derived quantities, which can itself
be an expensive operation, is accelerated by efficiently iden-
tify regions of interest (feature extraction).

Our assumption is that the datasets are based on regu-
lar discretization of space as used in the Direct Numerical
Simulations of combustion on uniform 2D or 3D meshes
[9, 12]. In these cases, the space is discretized into small
cells according to the raster scan order [24]. The quantities
on each cell are computed at varying time values and are
grouped by time steps.

After the user specifies the selection critera, the process
of identifying regions of interest is usually divided into two
steps. Thefeature extraction step(search step) locates cells
that satisfy the search criteria. Theregion growing step
groups the selected cells into connected regions.

In order to identify regions of interest, data structures
like the Quad-tree and R-Tree [10] partition cells according
to their spatial coordinates. Apart from the well-known fact
that these data structure are efficient only for relatively low
dimensional data, they also separate cells that are neighbors
in space. As a result of the spatial separation, the efficiency
of region growing algorithm is often impeded [24].

DEX preserves the spatial order of the cells, thus avoid-
ing the need for base data reordering and reducing the time
required to build the bitmap indices. Another benefit is that
the compressed bitmap, which is produced as the result of
the feature extraction step, can be easily turned into blocks
of connected cells.

4 DEX - Dexterous Data Explorer

4.1 Design and Functionality

The DEX tool combines the FastBit query engine with
3D visualization methods. The result is the ability to per-
form interactive feature-based analysis and region finding
for high-dimensional queries. By displaying the resulting
regions of interest, application scientists can quickly iden-
tify characteristic features of their data. We refer to this
approach to visualization asquery-driven visual data anal-
ysis.Query-driven data analysis methods allow a scientist to
define a search criteria as a Boolean expression. The search
only returns the subset of data that matches the search cri-
teria, thereby reducing load on the downstreaming visual-
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ization pipeline as well as reducing the “visual load” on
the scientist. Visualization processing and visual interpre-
tation is limited only to data defined to be relevant. The
scope-limiting afforded by query-driving visual data anal-
ysis represents a leap forward in capabilities for scientific
researchers.

Figure 2. Graphical User Interface of DEX.
2-dimensional query on supernova data.

The version of DEX we describe in this paper uses the
Fast Light Toolkit (FLTK) for the graphical user interface
(GUI), the Visualization ToolKit (VTK) for visualization
processing, and OpenGL for hardware accelerated 3D ren-
dering. The graphical user interface, shown in Figure 2,
demonstrates a two-dimensional query for extracting re-
gions of interest. The result of this query selection is then
visualized as shown in Figure 3.

The DEX user interface, seen in Figure 2, lays out the
typical pipeline for a data analysis task in a top-to-bottom
flow. The top portion of the user interface allows the user
to select a dataset by either typing a filename or using the
file browser dialog. The middle section of the GUI guides
the user through the process of building a complex query,
which is displayed just below the file selection dialog as
it is being constructed. Finally, the bottom section of the
GUI supports various ways of manipulating the regions of
interest identified by the region growing algorithm. Future
versions of the tool will add controls on the bottom portion
of the interface that control a broader range of visualization
techniques that could be applied to the cells returned from
the search. These techniques include but are not limited to
slicing, transfer function manipulation, thresholding, vec-
tor/tensor visualization algorithmic control, etc.

Figure 3. 3D Visualization of supernova
explosion based on user query of Figure 2.

Figure 4. A typical visualization pipeline in
VTK.

The majority of the code in DEX translates the query re-
sults into a dataset that can be processed efficiently using the
VTK pipeline shown in Figure 4. FastBit operates on uni-
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form structured grids like those stored in HDF or NetCDF
format. However, the data returned by a selection is ex-
pressed as a list of disjoint rectilinear regions that match
the selection criteria. Consequently, the selected data is
encoded as an unstructured grid comprised of hexahedral
cells. The resulting unstructured dataset is assembled in
memory as a vtkUnstructuredGrid dataset and handed off
to a standard VTK pipeline suitable for use with unstruc-
tured grids (see Figure 4). The user can then interactively
view the geometric model resulting from the selection in 3D
using the hardware accelerated graphics.

Figure 5. 3D Visualization of combustion sim-
ulation. The image is an example taken from
the combustion studies where the goal is to
track the ignition kernel of a flame.

The FastBit query engine can also rapidly find connected
regions of cells using region growing algorithms and assign
to each a unique region label. The connected regions are
identified by assigning each a distinct color as shown in Fig-
ure 5. However, the rendering of a depiction of the cells is
but a very limited example of the visualization methods that
are possible using a visualization pipeline. The unstructured
cell data generated by the query is amenable to the full com-
plement of visualization algorithms available within VTK
and other visualization tools. Future variations of DEX will
support a broader range of visualization techniques as well
as coupling with other visualization pipelines.

4.2 Time Complexity Analysis

To set the stage for our experiments and the results,
we present an informal analysis of comparing DEX’s time
complexity with that of traditional isocontouring algorithms
within the context and contraints set forth in this paper.
Specifically, we are comparing the performance of isosur-
face extraction with DEX to that of well-understood isocon-
touring algorithms. Using DEX, the isosurface can be ex-
tracted by specifying a simple query, e.g.,temperature >
C. In this case, the boundary of the region of interest is the
isosurface fortemperature = C.

For the purpose of this discussion, we consider three al-
gorithms: Marching Cubes, NOISE and ISSUE. We also
disregard the memory requirements and time complexity
for preprocessing of all algorithms. The time complexity
of Marching Cubes isO(n), wheren is the total number
of cells in the dataset. Since Marching Cubes does not at-
tempt to use any strategy to accelerate locating cells that
intersect the surface, all grid cells must be examined. In
contrast, the NOISE algorithm uses a spanning tree to ac-
celerate the search process, and was shown to have a worst-
case time complexity ofO(

√
n+ s), wheren is the number

of cells in the grid ands is the number of cells intersect-
ing the surface in [15]. ISSUE has a time complexity of
O(log(n/L) +

√
n/L + s), whereL is a tunable param-

eter [18]. Both NOISE and ISSUE are considerednearly
optimal because the optimal algorithm should have a com-
plexity of O(s).

In the case of DEX, the steps required to generate an
isosurface are: querying, region growing and surface com-
putation. Again, we are disregarding the cost of storage and
preprocessing. The querying step uses bitmap indices to
identify those cells that satisfying the specified conditions.
The complexity of this step is linear in the number of cells
selected [25]. On data from regular grids, the compression
scheme used in FastBit actually groups consecutive cells
into cell blocks. This reduces the time complexity to be
proportional to the number of cell blocks involved [24]. In
most cases, each of these blocks has two cells that touch
the isosurface, therefore, the time required for querying is
nearly proportional to the number of cells intersecting the
isosurface,O(s). In theory there are lower order terms in
the time complexity of this step, however, it is shown to be
negligible in practice [25].

The time required by the region growing step is also pro-
portional to the number of blocks [19, 24]. The main reason
for this is that we work with cell blocks in the region grow-
ing algorithms. The region growing algorithms requires
only one scan of the cell blocks [24]. During the scan each
cell block is visited a small number of times. On the aver-
age, the number of cell blocks is proportional to the number
of cells intersecting the isosurface. The time required for
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region growing is proportional to the number of cells inter-
secting the isosurface. The region growing step hands the
cell blocks to the VTK functions that actually prepare to
display the surface. The time required by this step is also
proportional to the number of cells intersecting the surface.

Overall, the total time required to extract an isosurface
with DEX is nearly proportional to the number of cells in-
tersecting the isosurface. This complexity is same as the
best isosurface extraction algorithms [15, 18]. To verify this
analysis, in Section 6, we will present some timing results
to compare DEX against the best isosurface extraction al-
gorithm available to us.

5 Use Cases

In this section we discuss two use cases where DEX
is employed to produce query-driven visual data analysis.
These two uses cases – one from Combustion and one from
Astrophysics – form the basis for our experiments, which
are described in the next section.

5.1 Combustion

Combustion research involves tracking numerous
species of molecules through complex chemical reaction
networks. Tracking the flame front helps researchers better
understand the properties required for efficient combustion.
However, the definition of the flame front is ambiguous
in practice – it is identified by a complex set of criteria.
DEX uses the FastBit infrastructure to rapidly select the
data satisfying a set of user-specified conditions believed to
characterize the flame front, then performs visual analysis
on the resulting data. Each distinct, fully grown region
representing a flame front is labeled with color to help the
researcher visually identify and track these features over
multiple time-steps of the dataset.

5.2 Astrophysics

Like the combustion research example, astrophysics
simulations produce data that have many fields at each grid
point. Simulations of stellar phenomena like supernovae re-
quire tracking the mass fractions of many different chemical
species, radiation emission and absorption profiles for radi-
ation transport, baryonic densities, along with typical fluid
dynamics properties (e.g. pressure, temperature, flow vec-
tors). DEX helps researchers understand the complex rela-
tionships between different fields in the data using query-
based exploration methods. The 3D viewing interface pro-
vides all of the advantages of typical interactive visualiza-
tion tool approaches, but the FastBit query mechanism en-
sures that even large datasets can be explored at interactive
rates via the accelerated searches.

6 Experiments

In this section we evaluate the efficiency of DEX with
two different scientific datasets. For one-dimensional
queries, we compare the performance of DEX with three
different isosurface algorithms of VTK. The isosurface
algorithms arevtkMarchingCubes, vtkContourFilter and
vtkKitwareContourFilter. The experiments were carried out
on a 2.8 GHz Intel Pentium IV with 2 GB RAM. The I/O
subsystem is a hardware RAID with two SCSI disks. In
our tests, we compare the performance of DEX with three
different isosurface algorithms provided by VTK.

6.1 Combustion

The first dataset is a temporally evolving reacting
methane-air jet from the TeraScale High-Fidelity Simu-
lation of Turbulent Combustion with Detailed Chemistry
[21]. The data set consists of some 2.7 million data points
with 10 feature values that include chemical species and
fluid dynamics variables. For each feature value we built
a compressed, range-encoded bitmap index with 100 bins.

Figure 6. Isosurface extraction for combus-
tion data. DEX vs. three different isosurface
algorithms of VTK.

In this set of experiments, we compare the performance
of DEX with three different isosurface algorithms of VTK.
We measure the time for extracting an isosurface with VTK
for the feature valueCH4 with 11 different, randomly cho-
sen isovalues covering the entire domain space. For our ex-
periments we are only interested in the data processing time
and do not report on the time for rendering. The results
are shown in Figure 6.vtkContourFilter is the least per-
formant algorithm,vtkKitwareContourFilteris the fastest
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Figure 7. Isosurface extraction for combus-
tion data. DEX vs. four different isosurface
algorithms of VTK. Note: We forced the us-
age of scalarTree for accelerating isosurface
extraction in VTK.

VTK algorithm. In all cases DEX performs significantly
better than any of VTK’s isosurfacing algorithms. On aver-
age DEX outperforms the best isosurface algorithm in VTK
by a factor of four. Note that DEX not only extracts an
isosurface, but also finds the entire volume of cells that lie
inside the surface. This is a notable functional difference
between DEX and traditional isosurface algorithms.

In the next set of tests we forced the usage of
“scalarTree” in VTK. This is an index structure for accel-
erating isosurface extraction in VTK. As we can see in Fig-
ure 7, the acceleration technique did not improve the per-
formance of VTK’s algorithm. On the contrary, the perfor-
mance gain of DEX is even more significant.

6.2 Astrophysics

The second dataset is based on a simulated supernova
explosion computed by the TeraScale Supernova Initiative
[22]. It consists of a2403 mesh, i.e. some 13.8 million data
points, with six variables per grid point. They are thex-
velocity, y-velocity, z-velocity, entropy, densityandpressure
of the supernova explosion. For each variable,we built a
compressed, range-encoded bitmap index with 100 bins.

As in the previous experiments, we measure the time for
extracting an isosurface with VTK for the variable valuex-
velocityusing eleven different, randomly chosen isovalues
covering the entire domain space. In our experiments, we
are interested only in the data processing time and do not
report on the time for rendering. The results for the three
different isosurface algorithms of VTK are shown in Figure

8. We can see that in all cases DEX is significantly faster
than the best VTK isosurface algorithm. On average, DEX’s
isosurface extraction is three times faster than the best VTK
isosurface algorithm.

Figure 8. Isosurface extraction for supernova
data. DEX vs. three different isosurface algo-
rithms of VTK.

We also ran the benchmarks using the “scalarTree” op-
tion in VTK. Similar to the results we obtained from the
combustion data, the performance gain of DEX is even
more significant (see Figure 9).

Figure 9. Isosurface extraction for supernova
data. DEX vs. four different isosurface algo-
rithms of VTK. Note: We forced the usage of
scalarTree for accelerating isosurface extrac-
tion in VTK.

42



The major advantage of DEX over traditional visualiza-
tion frameworks is that it also supports multi-dimensional
feature-based queries. This is a novel research area that is
not supported in previous visualization frameworks.

6.3 Observations

Our tests show that DEX outperforms the isosurface ex-
traction algorithms available from VTK. The scalarTree
used by VTK builds a spanning tree to accelerate the isosur-
face extraction algorithms. This is similar to the approach
used by DEX where compressed bitmap indices are used.
The spanning trees and bitmap indices all reduce the vol-
ume of data used during isosurface extraction. Testing re-
sults suggest that our bitmap index scheme is more effective
since it uses less time. Because the test data are from regu-
lar meshes, DEX directly takes advantage of this fact, while
the particular version of spanning tree used by VTK was
designed for irregular meshes. This may explain why the
VTK functions require more time in most cases.

7 Conclusions and Future Work

In this paper we presented the architecture of DEX (short
for dexterous data explorer). We showed that DEX com-
bines highly efficient data management techniques with tra-
ditional visualization pipelines to produce a new capability
we refer to as “query-driven data analysis”. Bitmap indices
are used to quickly locate features in data and grow them
into connected regions. The results are then used as input to
the visualization pipeline.

We compared the performance of DEX to traditional
isosurfacing, which is a common visualization task. We
showed that our approach outperforms the fastest isosur-
face algorithm in VTK by, on the average, a factor of four
when considering the time required to locate cells that sat-
isfy a search criteria. While traditional isosurface algo-
rithms find cells that meet a single criteria – where a sur-
face passes through a cell – our approach supports complex
multi-dimensional queries. The main advantage of DEX,
however, is that it combines multi-dimensional feature ex-
traction queries with 3D visualization. This new capability,
which is not supported in traditional visualization frame-
works, allows scientists to get a better visual understanding
of the analysis results and has to potential to open the door
for new science. It reduces the processing load in the vi-
sualization pipeline by limiting processing to data that is
“scientifically interesting,” and as such is a new approach
for visual analysis of large and complex scientific data.

To build on the results we present in this paper, we sug-
gest the following as logical next steps for future research.

• Expand the capabilities of DEX to support queries on
adaptive mesh refinement (AMR) [5]) data. Many

computational science projects make use of Berger-
Colella hierarchical adaptive mesh algorithms, but
these data structures pose unique challenges for Fast-
Bit methods because data values on refined grids over-
lap those on the coarser grids. A feature that is ap-
parent in the refined grid may not meet the selection
criteria in the coarser grid – or vice verse.

• Provide direct support for multi-resolution data
queries. Currently, a query may return selections that
are larger than the available memory of a worksta-
tion. A multi-resolution query operation will use a
low-resolution query to estimate the size of the selec-
tion and use that information to select an intermediate
level of resolution for the query. This can be keyed
off of the current viewing angle of the dataset so that
the queries only return with a Level-of-Detail that is
warranted by the current viewing angle and screen res-
olution so that no features that are smaller than a single
pixel in screen space need to be returned. This can also
be extended to support view-culled queries where por-
tions of the selection that would otherwise be outside
of the viewable screen area will be excluded from the
query.
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Abstract
Most caching and prefetching research does not take 

advantage of prior knowledge of access patterns, or does 
not adequately address the storage issues associated with 
multidimensional scientific data. Armed with an access 
pattern specified at run time as an iteration over a multi-
dimensional array stored as a disk file, we use prefetching 
to greatly reduce the number of disk accesses and mitigate 
the cost of read latency. We call this iteration aware pre-
fetching.

We assume the pattern of access is not known until 
runtime, in contrast to chunking methods that preprocess 
a file for a particular access pattern. Our approach results 
in dramatic performance improvements over file system 
caching. We also significantly outperform chunking with-
out having to reorganize the data, and can do even better 
by applying our approach on top of a chunked file. 

1 Introduction1 
Scientists often work with data represented in an n-

dimensional space in which data values are associated 
with a location in the space [Cigno97,  Hibbard95]. For 
example, satellite data is typically considered to be or-
ganized in a two dimensional space, while medical CT and 
MRI data usually exists in a three dimensional space. We 
consider these kinds of scientific data to be multidimen-
sional.  Multidimensional data presents special challenges 
when designing efficient access methods because elements 
that are nearby in the data space may not be nearby in the 
underlying data file. The caching and prefetching schemes 
present in most operating systems do not take into account 
the natural spatial relationships in the data, so they tend to 
cache, discard, or prefetch the wrong information. 

Over the last fifteen years there has been a thousand-
fold increase in processor speed, along with even larger 
gains in memory and disk capacity. During the same pe-
riod, the size of scientific data sets increased even into the 
terabyte range. However, the average seek time of hard 
disk drives has improved only modestly over the same 
period [Coughlin, Chang01]. The work described here is 
motivated by the need to minimize the now comparatively 

high latency or stalling costs associated with modern disk 
drive media. Using our system, a researcher can take ad-
vantage of improved I/O performance without spending 
time on the minutiae of efficient file access.

To implement this abstraction while still maintaining 
efficiency, the researcher must be able to define the appli-
cation’s data access pattern. We are developing a toolkit of 
iterators that succinctly describe the access pattern and 
also perform the iteration through the data space. Using 
knowledge of the access pattern, we can create a cache 
and a prefetching strategy that usually provides significant 
speedup for the application. 

A unique aspect of our approach is that we create and 
prefetch cache blocks with n-dimensional shape, as op-
posed to the 1 dimensional pages of file system caches and 
similar methods. N-dimensional cache blocks can be given 
a shape that is tuned to a particular iteration and to the 
storage organization of the data. We choose a shape that 
minimizes the total number of disk accesses while reading 
data that is sure to be visited in the near future by the it-
eration. We call this method spatial prefetching, an exam-
ple of iteration aware prefetching.

Unlike other methods for achieving efficient I/O per-
formance [Sarawagi94, More00], our approach does not 
require any reorganization of the data. That is, we work 
with the original data file, rather than making a copy with 
a different storage organization.  

The work described here is done in the context of the 
datasource component of the Granite Scientific Database 
System, which is in turn an implementation of our multi-
source multiresolution data model for scientific data 
[Rhodes01]. The datasource layer handles multidimen-
sional data in which sample points are arranged in a regu-
lar and rectilinear fashion throughout the domain. As with 
many other scientific databases, the design of the Granite 
system assumes that update operations are infrequent or 
entirely absent, so the work described here is aimed to-
ward a read-only data environment.

After a brief overview of related work, the next several 
sections describe the functionality and implementation of 
the datasource, iterator and cache classes, all of which 
contribute to the support of transparent and efficient out-

1  This work is supported by the National Science Foundation under grants IIS-0082577 and IIS-9871859
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of-core access. We then present performance test results 
that demonstrate the significant advantages of this ap-
proach. Finally, we end with future work and conclusions.

2 Related Research
Providing efficient access to huge scientific datasets is 

a challenging problem, and has attracted a lot of attention 
from both the operating system and scientific data man-
agement communities. Work has focused on either pro-
viding comprehensive scientific data management sys-
tems, or optimizing file systems using techniques like 
prefetching, caching and parallel I/O.

2.1 File Access
 Reorganizing datasets on disk to speed access has 

been explored by a number of researchers. Sarawagi and 
Stonebraker [Sarawagi94] describe chunking, which uses 
the expected access pattern to group spatially adjacent 
data elements into n-dimensional chunks which are then 
used as a basic I/O unit, making access to multidimen-
sional data an order of magnitude faster. They also arrange 
the storage order of these chunks to minimize seek dis-
tance during access. Following this work, many other 
reorganization methods have been developed. More and 
Choudary [More00] reorganize their data according to the 
expected query type, and the likelihood that data values 
will be accessed together. The Active Data Repository 
(ADR) uses chunking to reduce overall access costs and to 
achieve balanced parallel I/O [CChang00, CChangADR].  

2.2 Prefetching and Caching
Software prefetching has been used by many research-

ers to hide or minimize the cost of I/O stalling. In the file 
systems arena, approaches to this problem can be distin-
guished by whether or not prefetching is guided by ex-
plicit information about the access pattern. Albers et al. 
[Albers98] describe an algorithm that produces an optimal 
schedule for prefetching and discarding cache blocks 
when the entire access pattern is given in advance. Other 
researchers have explored the case where the access pat-
tern is disclosed less completely in the form of hints. Pat-
terson et al. [Patterson95] developed a framework for 
informed caching and prefetching based on a cost-benefit 
model. This model has been extended to account for stor-
age devices with very different performance characteris-
tics [Forney02]. Cao et al.  demonstrate success by letting 
applications have control of data cache replacement strat-
egy in their share of cache blocks [Cao96]. Brown et al. 
[Brown01]  describe a hint based method that effectively 
accelerates paged virtual memory performance using an 
operating system that takes advantage of compiler gener-

ated hints and multiple disks. Kotz [Kotz97] describes 
disk directed I/O, a method for aggregating and prefetch-
ing data requests in a parallel environment. Mowry [Mow-
ry94] presents software controlled prefetching for hiding 
or reducing the latency experienced by a processor ac-
cessing memory.

When no explicit information about access pattern is 
available, the history of prior accesses can be used to pre-
dict future accesses. Amer et al. group files together based 
on historical file access patterns [Amer02]. Other re-
searchers have used probability trees or graphs to repre-
sent the likelihood of future block accesses given past and 
current block accesses [Vellanki99, Highley03, Griffio-
en94]. Madhyastha et al.  use a hidden Markov model to 
automatically predict file access patterns over time; the file 
system adaptively selects appropriate caching and pre-
fetching policies according to the detected pattern [Madh-
yastha96, Madhyastha97].

At the application level, Chang [Chang01] adds a sepa-
rate thread to the user program that performs prefetching 
by mimicking the I/O behavior of the main thread and 
preloading data. Doshi [Doshi03]  describes a system that 
adaptively selects a prefetching strategy based on user 
behavior. The VisTools [Nadeau] system is most similar to 
our approach. It provides an application level data pre-
fetching and caching service for huge multidimensional 
datasets, using the Paged-Array schema.  It reads format-
ted pages of elements from the underlying files when the 
first element in the page is requested. The formatted pages 
are then stored in a page cache for fast future re-access. 
When the cache size limit is reached, the paged-arrays are 
deleted or written to a swap file. Like our own work, 
paged-arrays also support intelligent prefetching guided 
by the iterators that have an n-dimensional view of the 
dataset. However, the one dimensional nature of pages 
fails to take into account the proximity of elements in n-
dimensional space. By using pages as its unit of cache 
storage, VisTools and other page based methods may 
make poor decisions about what data to retain or discard. 
The following section examines this issue in greater detail.

 2.3 Advantages of the Granite Approach
Reorganizing data into chunks is a very effective and 

general technique, but the required reorganization (and 
implied duplication) of the dataset can be  inconvenient,  
especially when working with large datasets. Also, per-
formance may suffer if the data is accessed in a different 
way than was expected when the reorganization was per-
formed. The approach adopted by the Granite system 
works with the original data, and requires no such reor-
ganization.
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Systems that access the data in pages suffer from not 
taking into account the multidimensional nature of the 
data. In particular, elements that are nearby in n-
dimensional space may be far apart in the one dimensional 
file space. Since paging is essentially a one dimensional 
method, it may be inefficient for an n-dimensional access 
pattern.

Figure 1 shows a conceptual view of a portion of the 
39GB Visible Woman dataset, provided by the National 
Institutes of Health. This dataset consists of 
5186x2048x1216 elements of 3 bytes apiece [Rhodes05]. 
Each block in the figure represents a single element. The 
number in parentheses at the bottom of each block repre-
sents the byte offset of that element from the beginning of 
the file and the number at the top of each block represents 
the order in which that block will be visited by an iterator. 
The light gray blocks show the initial path of the iteration, 
beginning with the white corner element. When this initial 
element is accessed, the file system will load a page of 
data, typically 4K in size, indicated by the series of me-
dium gray elements. Unfortunately, the next element to be 
visited (the light gray block at offset 7471104) is not con-
tained in this page, so the disk must be read again. In fact, 
separate reads must be made for each element in the light 
gray series, since they are all separated by over 7MB in 
the one dimensional file. When, at step 5186, the iteration 
returns from the far end of the data set to begin a new 
“row”, a new page will still have to be read, since this 
element is not contained in any of the pages that have 
been read so far. In fact, the next medium gray element 
would be used at step 2490368 of the iteration, but this 
first page will certainly have been discarded at this point, 
unless the file system is able to retain 10GB of disk pages 
in memory. This is clearly beyond the capacity of today’s 
commonly available systems.

File systems also commonly prefetch pages following 
an explicitly accessed page in the hope that the prefetched 
pages will be accessed next, and reads to disk will be 
reduced. This helps slightly in this example, because ele-
ments that are vertically adjacent are only 6K apart. So, if 
the file system prefetches at least one additional page for 
each read to disk, the elements immediately beneath the 
light gray elements will be read from pages loaded during 
the traversal of the light gray elements. Although this is an 
improvement, it still means that only two elements will be 
read out of each 4K page before it is discarded, only to be 
reread later in the iteration. For datasets with even larger 
dimensions, the distance between vertically adjacent ele-
ments may be too large for pages to ever be used more 
than once before being discarded. In this case, prefetching 
just makes the situation worse by increasing the number of 
inappropriate pages loaded into memory. Because the file 
system has no information about the dimensionality of the 
data or the path of the iteration, it is grossly unsuited for 
the job.  

We address these issues by creating cache blocks that 
are n-dimensional, and shaped according to the iteration. 
Elements that are contiguous in the file are loaded in a 
single read() call. This method has several beneficial ef-
fects. First, it uses more data from each file system page 
that is read, thereby reducing the number of redundant 
reads made to disk. Second, it reduces the number of 
read() calls made to the operating system. Third, since the 
cache block can be filled in any order, we choose to fill it 
in a way that most closely matches the ordering of the data 
in the file. This allows us to sometimes take advantage of 
the file system prefetching that is otherwise a liability.

We utilize nearly complete information about the ac-
cess pattern given by our iterators. We don’t have to guess 
which data to prefetch, and we don’t discard needed data 
before it is used. Because of this, the various caches we 
have developed require at most two cache blocks to be 
maintained in memory at a time, which can extend the 
reach of an application to much larger datasets than would 
otherwise be possible. 

Figure 1. The elements fetched by the file system 
(medium gray, on the right) are not the elements 
needed by the iteration (light gray, on the left). 

The top number in each block indicates iteration 
order, while the numbers in parentheses indicate 

the offset in the file.
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Figure 2. Spatial prefetching and the Datasource 
data model serves as a bridge between the user 
access pattern expressed as an iteration, and 

the data as it lies on disk.
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3 The Multidimensional Data Model
Figure 2 is a conceptual diagram of the pipeline relat-

ing a user access pattern to the file. The datasource is the 
representation seen by a Granite user, and uses a storage 
model to help translate the n-dimensional data space to the 
one dimensional file space. The storage model may be 
able to work with more than one file format. For example, 
the rod storage model discussed later in this section repre-
sents both chunked data files and files that have been left 
in their native plane-row-column order.   

3.1 Datasources
We model the data to be processed as a datasource, 

which is conceptually an n-dimensional array containing a 
set of sample points.  We call the space defined by the 
array indices an index space. Each location in the index 
space has a collection of  associated data values, which we 
call a datum. Although our datasource model allows data-
sources to be built on top of other datasources or to be 
associated with a network stream, we limit our discussion 
in this paper to datasources that are associated directly 
with a file on disk. 

Datasources must handle two basic kinds of queries. A 
datum query specifies a single location in the index space, 
and is satisfied by the return of a single datum. A subblock 
query specifies an n-dimensional rectangular region of the 
index space, and is satisfied by the return of a data block, 
which is conceptually an array of datums, with a dimen-
sionality matching the datasource.

3.2 The Rod Storage Model 
While the file is a one dimensional entity, a datasource  

has an index space that is n-dimensional. The datasource 
is responsible for satisfying queries expressed in its index 
space by reading data from the file. It must therefore map 
its index space to file offsets. It does this with the help of 
an axis ordering, which is simply a ranking of axes from 
outermost to innermost. “Innermost” and “outermost” 
suggest position in a set of nested for loops used to access 
the file in its storage order on disk. The innermost axis 
changes most frequently and is called the rod axis when 
referring to the storage ordering of a datasource. Each 
axis is labeled with an integer that identifies the position 
of coordinates of that axis in a tuple used to specify loca-
tions in the index space. Consequently, an axis ordering is 
just a list of integers that defines an ordering of axis coor-
dinates from least to most frequently varying. For exam-
ple, an axis ordering of {0,2,1} indicates that coordinates 
of axis 0 change least frequently, followed by axis 2, and 
then by axis 1, which changes most frequently.

The number of separate read requests made to the stor-
age device strongly impacts I/O performance, so it is im-
portant to minimize the number of reads when satisfying a 
subblock query. Toward this end, the rod storage model 
views the datasource as being conceptually composed of 
rods. A rod is a one dimensional sequence of elements that 
are contiguous in both the n-dimensional index space and 
the 1-dimensional file space. Consequently, rods are al-
ways aligned with the rod axis. Because it is contiguous in 
the file space, a rod can be accessed in one read. Note that 
rods are composed of datums when the native file format 
is used, or whole chunks of datums with the chunked file 
format. When a subblock query is processed, the requested 
region of index space is decomposed into a collection of 
rod segments contained in the region. We then retrieve the 
subblock data from disk in rod-by-rod fashion where each 
rod segment corresponds to a separate read. To maximize 
locality, we read this set of rods according to the storage 
ordering. In the case where a set of rods is itself contigu-
ous (or nearly so) in the file, we issue only one read and 
retrieve the entire set of rods in one disk operation. 

Like the order line model described in [Wu03], the rod 
storage model does not take into account the physical 
layout of the file on the disk, but only the logical layout 
presented by the file system. However we have found that 
this approximation serves as an effective foundation for 
our iteration aware prefetching, which shows significant 
performance improvements over other techniques. In ad-
dition, applying the rod model to chunked data and other 
formats extends the reach of iteration aware prefetching to 
a wider range of data representations.

4 Iterators
Since our system aims to improve I/O performance for 

particular access patterns, we use iterators to represent 
access patterns as well as to perform the actual iteration 
through the datasource index space. Iterators have a value 
that changes with each call to the iterator’s next() method. 
This value might denote a single location in the index 
space, or perhaps a rectilinear region. In either case, the 
iterator value can be used directly in datum and subblock 
queries.

The pattern of iteration is determined when the iterator 
is constructed. An axis ordering is used to help represent 
the behavior of iterators that proceed through the index 
space in rectilinear fashion. In this context, the innermost 
axis of the iteration is called the run axis. While the data-
source is conceptually composed of rods, the space being 
traversed by a rectilinear iterator is conceptually com-
posed of runs. 

The iteration space is the space traversed by the itera-
tor. It may be the entire index space of a datasource, or 
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some subset of that space. We also represent the starting 
point and the stride through the iteration space in cases 
where the iterator skips over some locations. The iteration 
space, starting point, stride and axis ordering all contribute 
to the creation of a prefetching cache that is tuned to the 
iteration.

5 Iteration Aware Prefetching
As noted in section 2, much of the literature in caching 

and prefetching concerns when to load new blocks from 
disk, and choosing blocks to be discarded. Because we 
have nearly complete information about the access pattern 
from the iterator, these problems are vastly simplified in 
our system. We call our approach Iteration Aware Pre-
fetching.

The standard caching and prefetching view of files as 
one dimensional entities is not adequate for scientific ap-
plications involving multidimensional datasets because it 
misses the neighborhood relationships inherent in the data. 
The problem becomes even more acute as the dimension-
ality of the dataset increases. To address this issue we have 
designed a multidimensional cache that preserves the 
iterator’s spatial data view. The iteration space is concep-
tually partitioned into an n-dimensional array of n-
dimensional cache blocks. Data is read from disk one 
block at a time, and is retained in memory to quickly sat-
isfy user data requests. 

Our iteration aware prefetching approach includes two 
independent components — spatial prefetching and 
threaded prefetching.  Their different roles become clear 
when considering an iterator reading a series of blocks 
from  a datasource. Spatial prefetching reduces the latency 
costs incurred while reading data from a single block. 
Threaded prefetching reduces or eliminates the amount of 
time an application must wait for a complete block to be 
read by overlapping application processing with I/O.

5.1 Spatial Prefetching 
The key contribution of our prefetching strategy is 

based on adjusting the shape of the cache blocks to mini-
mize the number of separate reads made to disk. 

An important characteristic of our approach is that we 
can perform effective prefetching using a single concep-
tual cache block. Although there are sometimes practical 
reasons for breaking a single conceptual cache block into 
2 or more physical blocks, the discussion in this section 
addresses the construction of a single conceptual block 
that is tuned to the user's access pattern.

5.1.1 Examples
Figure 3 shows three potential cache block shapes. The 

numbered sequence indicates a column-by-column itera-
tion over a datasource stored in row-by-row fashion. 

Suppose that the shaded shape in the upper left region 
of the figure were assigned to the cache block. Such an 
assignment would be poorly suited for a single block 
cache since step 4 of the iteration causes the block to be 
discarded, only to be reloaded at step 8. The algorithm 
shown in figure 4 would extend the block shape all the 
way down to the bottom of the space before attempting to 
extend it in the horizontal direction. The cache block 
shape shown is poorly suited to a single block cache be-
cause step 4 of the iteration causes the block to be dis-
carded, only to be reloaded at step 8. 

The middle shaded shape in figure 3 does not have this 
problem, since it extends over the full length of the verti-
cal axis. However, this block cannot reduce the number of 
read operations. Since the rod axis is the horizontal axis, 
filling this cache block would require eight separate reads, 
which is the same number needed with no cache at all. 

The shaded shape on the right is much better, since it 
can be filled with 8 reads of length 3. The striped region 
represents a single rod subset for this block. Depending on 
the characteristics of the platform, this shape may produce 
a useful increase in performance.

5.1.2 Well Formed Cache Blocks
Typically, when a cache needs to load data from disk to 

satisfy a request, it loads a larger set of data in the neigh-
borhood of the original request. Hopefully, the nearby data 
can be used to satisfy future requests without returning to 
the disk. If the pattern of future accesses is already known, 
however, we can choose a cache block shape that guaran-
tees that all the needed contents will be used before being 
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Figure 3. For a {1,0} iteration over a {0,1} data-
source, the shape on the right is the only one 

that is both well formed and practical.
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discarded. We say such a cache block is well formed with 
respect to the iteration. A more formal definition follows:

Definition D1: 
We denote a rectilinear iteration I over a rectilinear 

iteration space D using an axis ordering A as I(A,D). Con-
sider a rectilinear region R of shape B that is a subset of D. 
We say  the shape B is well formed  with respect  to I(A,D) if 
for any region R of shape B  in  D, once I leaves R, it will 
not revisit  R.  
If we can construct a cache containing blocks that are 

well formed with respect to a given iterator, we can be 
assured that no cache block will need to be read more than 
once, and that once the iterator is done with a cache block, 
we can discard it. Therefore, most iterations only require a 
single cache block to be used at one time. Overlapping 
block iterators require at least two cache blocks, as does 
threaded prefetching.

Algorithm A1 generates a well formed cache block 
shape for a datum iterator that visits single elements in the 
index space. It must be given the iterator ordering, the 
space over which the iterator travels, and the amount of 
memory that is available for constructing a cache block. 

The algorithm works by marching through the itera-
tor’s axis ordering from innermost to outermost axis, 
setting the corresponding dimension of the cache block 
shape to equal the extent of the iteration region along that 
axis. Below is a proof that algorithm A1 produces a well 
formed cache block shape for a datum iterator.

Proof P1:
Claim:  Algorithm A1 produces a well formed shape B for 
the given iterator, iteration space, and available memory.

Base Case: An n-dimensional shape with a single ele-
ment, B0 =  {1, 1, 1  … 1} is well-formed with respect to an 
iterator I(A, D) using any axis ordering A.

Assumption: Algorithm A1 produces a shape at step k, 
Bk, that  is well  formed with respect to A.

Induction step: At step k+1, we know that block Bk ex-
tends across the entire extent of the iteration space for the 
k least  significant axes and that it is well-formed. Algo-
rithm A1 then extends the block along axis k+1 to  either 
the entire extent of the iteration space in that axis or as 
much as will fit in the available memory. In both cases the 
shape is well  formed since the iteration will not  return to 
that shape after leaving it. If the algorithm cannot  add the 
entire extent  of the iteration space in that axis, it termi-
nates, leaving a well formed block.
 
The algorithm and proof can be easily modified to ac-

count for block iterators rather than datum iterators. Since 
block iterators represent a sequence of block accesses, we 
can set the initial dimensions of the cache block shape to 
match a single iterator block. The algorithm then proceeds 
as before. The proof still holds for this case if we consider 
an element to be a block instead of a single position in the 
index space. The block version of the algorithm can also 
be used to handle the case where an iterator has gaps or 
overlap between visited elements. 

5.1.3 Practicality
Whether the shape of a cache block is well formed is 

related only to a particular iteration. It is possible that a 
well formed cache block will not enhance performance 
with a certain dataset because of the way the data lies on 
disk. In order to guard against this possibility, we must 
check to see if a cache block shape is practical with re-
spect to the storage model. We currently only consider the 
rod storage model, and our definition of practicality con-
cerns the extent of the cache block shape along the rod 
axis.

Definition D2:
A cache block shape is practical  with respect  to a rod 
storage model if it has extent greater than r  elements along 
the  rod axis, where the value of r is determined by cache 
overhead and the performance characteristics of the I/O 
subsystem, and must be greater than 1.

Algorithm A1: 
Input:  
 Iterator Ordering An = {a0, a1, a2,… an-1}, 
 Iteration space dimensions Sn = {s0, s1, s2,…sn-1}, 
 available memory M   

Output: 
 A set  of cache block dimensions B = {b0, b1, b2,…bn-1} that 
represent a cache block shape that is well formed with 
respect to the iterator ordering.

Note:
M(B) indicates the bytes occupied by a cache block of 
shape B  

begin
  B  = {1, 1, 1, …1}

  for i =  n-1  downto  to 0  // from innermost to outermost

     axis =  ai        // for the next innermost axis…
     baxis =  saxis  // extend B to end of iteration space

     if (M(B) > M) then  // is  memory exceeded?
       baxis = 1                  // then return B to previous shape
       baxis = M / M(B)     //  extend B as far as memory allows

       done
     end 
  end
end

Figure 4. Algorithm A1 produces a cache block 
shape that is well formed with respect to a 

given iteration.
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This definition is motivated by the fact that in order to 
get any gain in performance, we must reduce the number 
of reads made to disk. It follows that we must therefore 
make each read longer than would be performed without 
the cache. The extent of the cache block shape along the 
rod axis determines the length of these reads, so this value 
must be sufficiently long to provide a performance gain, 
even in the face of cache overhead.

5.2 File Formats
When the rod storage model is used on top of the na-

tive file format, the rods consist of a series of datums 
stored sequentially on disk. We refer to this file format as 
“native” because it requires no preprocessing — the file is 
handled “as is”. In this situation, using a well formed 
cache block also guarantees that no data is read from disk 
more than once. This is because the cache block is defined 
in terms of the same units (datums) as the file format. 

The rod storage model can also be used on top of 
chunked files. In this case, the rods consist of a series of 
contiguous chunks that can be loaded with a single read 
operation. Here, the file format is defined in terms of units 
different from what was used to define the cache block. 
Because of this, data may be read more than once, even 
with well formed cache block shapes. Currently, we solve 
this problem by ensuring that for each dimension a cache 
block will either extend through the entire iteration space, 
or have length equal to one chunk. This ensures that the 
cache block is well formed with respect to the n-
dimensional chunked space.

5.3 Threaded Prefetching
Threaded prefetching uses a separate I/O thread to 

fetch the next cache block while the current one is being 
processed.  Unlike other systems using I/O threads, we 
don’t have to guess which block should be read next, be-
cause that information is contained in the iterator.  Cur-
rently, we have only implemented and tested threaded 
prefetching for a single disk, so we can achieve at most 
the doubling of performance that occurs when the I/O time 
perfectly matches the computation time for each block. 

Our current approach is very effective in hiding the 
cost of loading a block of data from disk, but even greater 
performance improvements should be possible if multiple 
disks are available. 

When the rate at which an application consumes data is 
less than or equal to the rate at which data can be read 
from disk, threaded prefetching can yield performance 
similar to the in-core case.  The combination of threaded 
prefetching (even with only one I/O stream) and spatial 
prefetching can be particularly effective in an interactive 
application. Figure 5 shows an image created with the 

Slicer application described in [Rhodes05]. Slicer uses a 
combination of threaded and spatial prefetching to view 
progressive slices of a user defined subset of the 39GB 
Visible Woman dataset. By matching the frame rate to the 
capabilities of the I/O subsystem, threaded prefetching 
allows for smooth animation. 

6 Example Code
Figure 6 shows a small example of a datum iteration 

using the Granite system. We first create the datasource 
from an xml file that describes such properties as dimen-

Figure 5. A view of the 39GB Visible Woman 
Dataset produced with Slicer, an interactive 

slice based volume visualizer.

// Create datasource
Datasource ds = Datasource.createDS(“8gig.xml”);

// Create ordering for iterator
AxisOrdering 
 iterOrdering= new AxisOrdering(new int[]{0, 1, 2});

// Create an iterator that traverses the entire datasource
ISIterator 
    iter=new ISIterator(ds.getBounds(), iterOrdering);

// Create a spatial prefetching cache for the 
// given datasource and iterator
CacheDataSource 
    cds = CacheMaker.createCDS(ds, iter, freeMem);

// Create a datum to receive data values.
Datum d = new Datum(ds.getNumAttributes());

// Traverse the entire datasource index space,
// accessing the data through the cache.
for( iter.init(); iter.valid(); iter.next() )
{
    cds.datum(d,iter); // Process datum
}

Figure 6. Example code for a datum iteration 
over a cache.
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sionality, size along each axis, and the number of attrib-
utes at each location in the index space. Next, we define 
an axis ordering and iterator that will traverse the data-
source. We are now able to create a cache that is tuned to 
the iteration we wish to use. Finally, we create a datum 
object for retrieving data values and perform the iteration.

This code is very flexible, and requires very minimal 
changes in order to work with different datasources and 
iterator orderings. To make the code work on another file 
of entirely different size and shape, we only need to 
change the name of the xml file given in the first line of 
code. The iteration order is just as easily changed, and an 
appropriate cache will be created without further thought 
from the programmer. 

This flexibility is especially attractive in situations 
where a user wants to process a large file using several  
different traversals. With spatial prefetching, it is a simple 
matter to create caches that are tuned to each iteration. 
With preprocessing methods, some compromise must be 
made when deciding the chunked format, unless the user 
is willing to make a separate file for each iteration.

7 Results
We have run our tests on a variety of machines and 

found that machines with fast I/O show smaller perform-
ance improvement simply because the I/O is a smaller 
portion of the total execution time. 

We present results from the machine with the fastest I/
O available to us. This is a single processor Pentium 4 
machine with a 2.4Ghz CPU and 2GB of RAM running 
the Linux operating system. The disk on this machine is a 
fast 15,000 RPM SCSI disk with a 3.6ms average read 
seek time. Though we show here very substantial gains in 
performance, we saw even greater gains on other plat-
forms, since a fast disk actually minimizes the benefits of 
spatial prefetching.

The Linux file system cache loads and stores 4k blocks 
of data from disk whenever a file is accessed. Since the 

file system cache is persistent across task execution, it is 
possible for a task to request an I/O block for the first 
time, but still get a cache hit if another task had previously 
read that block. Although this is generally a good thing, it 
is problematic for our testing environment. We therefore 
ran all tests with a cold (i.e., empty) file system cache. In 
addition to guaranteeing a consistent environment by al-
ways starting with an empty cache, this approach more 
realistically portrays the behavior that a researcher might 
expect when dealing with very large datasets.

In the following sections, we present results for both 
datum and block iteration over the entirety of a three di-
mensional 8GB dataset. ([Rhodes05] examines subset 
iteration in an interactive context.)  On our test machine, 
running the unix cp command with this dataset takes 
approximately 400 seconds. The dataset has dimensions 
1024x1024x2048, where each datum is a single floating 
point value. Tests were run on both native and chunked 
file formats. In all cases, the files had a storage ordering of 
{0,1,2}.

Table 1 shows our results for three different iterator 
orderings over both native and chunked file formats. Both 
datum and block access were tested. We have performed 
extensive testing with a wide range of machine character-
istics, file sizes, and cache sizes. For clarity and simplicity, 
we present results here for a single 8GB data set on one 
machine configuration and we concentrate on a cache size 
of 512MB. Considering the current affordability of mem-
ory and the recent introduction of commodity 64 bit ma-
chines, we feel 512MB is a reasonable memory cost for 
working with very large data sets. However we still see 
significant performance improvements for smaller cache 
sizes.

7.1 Datum Iteration over Native Files
 Our datum iteration tests ran code very similar to the 

example in section 6. Columns a through d of table 1 
show the execution times for traversals using the file sys-

Datum Iteration over native file Datum Iteration over chunked 
file

643 Block Iteration over 
native file

643 Block Iteration over 
chunked file

a b c d e f g h i j k l m

Ordering
File 

System 
Cache

128MB
SP 

Cache

512MB
SP 

Cache

Max
Speed

up

512MB 
LRU 
Cache 

512MB 
SP 

Cache

Speed 
up

File 
System 
Cache

512MB 
SP 

Cache 

Speed
up

512MB 
LRU 
Cache

512MB 
SP 

Cache

Speed 
up

{0, 1, 2} 9963 868 961 11.5 4628 3634 1.27 705 304 2.3 3288 342 9.6

{1, 2, 0} 16786 1311 1294 13.0 9175 3880 2.4 664 279 2.4 3081 342 9.0

{2, 1, 0} 360000 
(est)

11349 3719 96.8 
(est)

9607 4485 2.14 7847 2777 2.8 3736 966 3.7

Table 1. Results for a complete traversal of an 8GB file of 1024x1024x2048 floats.  Native files are in 
plane-row-column order, while chunked files consist of 4K chunks.  All execution times are in seconds.
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tem cache and spatial prefetching (SP) caches of 128MB 
and 512MB. In all three iterator orderings, the SP cache 
provides a very substantial improvement in performance. 
Notice that the {0,1,2} ordering shows somewhat less 
improvement than the other orderings. This is because the 
file system is prefetching blocks in the same order that the 
iterator will request them. File system prefetching is much 
less effective for the other orderings, so our spatial pre-
fetching offers more improvement in these cases. In fact, 
the file system cache test for {2,1,0} ordering did not 
complete within twelve hours. We determined that the test 
was making forward progress in a linear fashion, but very 
slowly, due to the awkward nature of this access pattern. A 
very simple C program that mimicked the access pattern 
for this test but performed no type conversion or copying 
of data took over 37 hours to run, so we are confident that  
disk access is causing the excessive runtime. Using a sim-
ple extrapolation, we estimated the completion time for 
the Java implementation using the file system cache to be 
about 100 hours, and we report this estimated value in the 
table. 

The test with a 512MB Spatial Prefetching cache does 
considerably better in the {2,1,0} direction than the 
128MB cache. For this ordering, the rods span the shortest 
dimension of the cache block, so increasing the available 
memory increases the length of the rods, meaning more 
data is read with each read operation.

Clearly, it would be beneficial to develop an automatic 
means of choosing how much memory to allocate to a 
cache based on storage ordering, iterator ordering, system 
characteristics, and total memory available. We plan to 
extend  the notion of practicality to support this function-
ality in future work.

7.2 Datum Iteration over Chunked Files
Chunking is a common method for speeding access to 

spatial data, so it is important to compare spatial pre-
fetching alone with the performance of chunked file ac-
cess. The chunked format typically divides the file into 
chunks equal to the file system page size. The dimensions 
of the chunks are chosen to best suit a particular access 
pattern [Sarawagi94].

An important assumption of our work is that the user 
access pattern is not known until runtime. A generic  
chunking method chooses chunk dimensions that are equal 
or nearly equal in all directions. This method provides a 
substantial performance improvement for most access 
patterns without being tailored specifically to a particular 
one. We therefore chose to compare spatial prefetching 
with this form of chunking.  

Chunking generally requires some kind of cache in 
order to be effective with datum access, so we imple-

mented a simple LRU cache that holds a collection of 
chunks. We compared the performance of our spatial pre-
fetching cache against the performance of this LRU cache. 
In all of these tests, the memory used for both caches was 
always 512MB, and the file was in chunked format.

Columns e through g show the execution times for both 
caches. Comparing LRU performance with the file system 
datum iteration in column a, it is clear that chunking is a 
very effective technique. However, we get even better 
performance by applying spatial prefetching on top of 
chunked files, especially in the last two orderings listed in 
the table. On machines with larger disk latency, speedup is 
substantial even in the first case. 

Of even greater interest is the fact that the performance 
of spatial prefetching over a native file presented in col-
umn c is markedly superior to the performance of the LRU 
cache over a chunked file shown in column e. For each 
ordering, spatial prefetching produces speedups of 4.8, 
7.1, and 2.6 compared with chunking. That such perform-
ance can be achieved without preprocessing or duplicating 
the file makes spatial prefetching a particularly attractive 
technique.

7.3 Block Iteration over Native Files
Block iteration involves loading successive n-

dimensional subsets of the data from disk. The rod storage 
model by itself facilitates this form of access since it reads 
rods according to the storage ordering, which improves 
locality. However, spatial prefetching is still able to pro-
vide a useful performance increase by reading data for 
many blocks at one time. Columns h through j show the 
execution times for a 643 block traversal over the same 
dataset used in the previous section. 

7.4 Block Iteration over Chunked Files
Our fourth group of tests compared the performance of 

our spatial prefetching cache over a chunked file with the 
LRU cache on the same file. Columns k through m show 
that spatial prefetching over chunked files provides much 
more meaningful speedup for block access than for datum 
access. Since datum access involves many more cache 
lookup operations, it is likely that in this case, cache over-
head erodes gains in I/O efficiency.

8 Conclusions and Future Work
Mismatch between iteration and storage patterns is a 

well-known problem addressed by many systems in an ad 
hoc manner. Generally, these approaches are based on a 
one-dimensional view of the data and do not provide a 
convenient application level interface to the prefetching 
facility. We have developed a comprehensive environment 
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for seamless integration of the data access pattern and the 
prefetching mechanism. The future multidimensional 
access pattern is specified implicitly during construction 
of an iterator. The iterator, in turn, is used to determine an 
effective prefetching strategy tuned for the particular 
combination of file storage order and iteration pattern.

Spatial prefetching can provide a very meaningful 
performance increase when large data files are accessed in 
a rectilinear manner. We have shown that performance is 
superior to generic chunked file access, yet does not re-
quire a preprocessing step. Since spatial prefetching can 
be used “on the fly”, it is particularly well suited to situa-
tions where the pattern of access is not known until run-
time, or when several different patterns will be used on the 
same file. 

The Granite system lets the user take advantage of the 
efficiencies of spatial prefetching and other iterator aware 
prefetching methods while abstracting away the details of 
storage organization.

For future work, we plan to expand our use of iterators 
to include traversal through a collection of data values of 
interest to the experimenter. We will also expand our sup-
port of the current iterators to include a way to automati-
cally determine an amount of cache memory that provides 
a good tradeoff between performance and memory use. 
Lastly, we are exploring the application of our methods to 
a distributed context. Since network latency can be even 
more severe than disk latency, we expect promising results 
in that environment.
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Abstract 

 
A typical Internet map-server application allows only 
retrieval of maps and map-related data. We have been 
developing web-based GIS/database (WebGD) 
applications that allow users to insert, query, update, and 
delete geographical features and the data associated with 
them from standard Web browsers.  The code shared by 
these applications is organized as the WebGD framework. 
We have also built a WebGD application generator 
(WebGD-Gen) that automatically produces a WebGD 
application from a database schema. This application 
generator greatly simplifies the process of creating a 
complex Web-based GIS/database application and 
significantly reduces the development time and 
maintenance cost.  The WebGD framework and WebGD-
GEN currently support such advanced features as tight 
integration of a Web-based map interface with a 
database, automatic selection of the spatial reference and 
map layers for the current region, and automatic 
generation of Web forms.  The forms generated can be 
used to insert, search, update, and delete geographical 
features and the data associated with them. 
 
1. WebGD Applications 

 
The Web interface of one of the WebGD applications, 
Oregon Natural Heritage Information System, is shown in 
Figure 1. This application provides a map interface for a 
copy of the Biotics 4.0 database maintained by the 
Oregon Naural Heritage Information Center. Biotics 4.0 
is a desktop GIS application built on the database 
developed by NatureServe.  The key elements in this 
database are element occurrences (EOs), which are areas 
of land and/or water in which species are or were present 
[1].  EO records have both spatial and tabular data, and 
the database contain approximately 700 relational tables 
[2].  The Biotics Mapper implemented with ArcView by 
NatureServe provides a map interface that allows EO 
representations and associated data to be created, updated, 
and deleted.  In our implementation, we can perform 

these operations with standard Web browsers.  Also, Web 
forms, approximately 3500 in total, are provided for all 
the tables in the database. 

 
The NHIS application enables bi-directional movement 
of geospatial data as well as ordinaly data. Scientists 
and others with proper authentication can insert, query, 
and delete geographical features such as EO polygons, 
lines, and points, as well as the data associated with 
them. Queries can be executed by spatially selecting an 
area on the map or by using a traditional web form.  In 
addition, one-meter resolution digital orthographic 
quadrangles (DOQ), or aerial images, are included as a 
layer.  When DOQ images are combined with other map 
layers such as highways, county boundaries, streams, 
and streets, locations can be easily pinpointed by taking 
advantage of features between map layers [3]. 

 
The major operations supported by the map interface of 
a WebGD application are as follows. 

   
1. To retrieve information on the geographical features 
in the area of interest, the user can zoom in/out to that 
area by using the map navigation tools. If the user zoom-
in enough, in the case of the NHIS application, to the 
coastal areas or the areas along Interstate highways in 
Oregon, one-meter resolution aerial photos are 
displayed. The user can also go to a new area by 
selecting an entry in the Quick View menu. 
 

2. To get information about a geographical feature, the 
user can select a layer in the legend and Information in 
the function menu, and then click the boundary of the 
feature. 
 
3. Function Insert allows a geographical feature to be 
added with mouse clicks on the map. Done need be 
pressed after all points are entered. 
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Figure 1: Interface of WebGD Application: Natural Heritage Information System. 

 
[4] Function Search by Area allows the user to retrieve 
the list of features that are within a bounding box 
specified on the map and that satisfy a search condition. 
The features that satisfy the search condition are 
highlighted on the map. Furthermore, the user can select 
features in the list by marking the checkboxes associated 
with them. Then, if the map is refreshed, the selected 
features are highlighted. 
 
[5] The data administration interface can be activated by 
clicking on the Database entry in the menu bar below the 
banner. A tree icon can be clicked to display a treeview 
for browsing. The treeview for Higher Taxonomy is the 
major one.  
 
Several WebGD applications produced with the WebGD 
framework and WebGD-Gen can be accessed at the 
following URLs: 
  
http://yukon.een.orst.edu/ms_apps/nh
is_cs540/gmap75_main.phtml 
http://yukon.een.orst.edu/ms_apps/di
gir/gmap75_main.phtml 

http://yukon.een.orst.edu/ms_apps/ca
lflora/gmap75_main.phtml 
http://yukon.een.orst.edu/ms_apps/w6
grin_cs549/gmap75_main.phtml 
http://yukon.een.orst.edu/ms_apps/so
ilviewer3/gmap75_main.phtml 
 

The first application is Natural Heritage Information 
System. Although this application can cover the whole 
USA or the world, the data are currently available only 
for Oregon. The second application provides a map 
interface for a local database containing DiGIR records 
harvested from DiGIR providers, DiGIR (Distributed 
Generic Information Retrieval) is an XML-based 
communication protocol for a federation of databases 
managed by natural history museums. The third 
application provides a prototype map interface for flora 
occurrences in California. The fourth one is a Web-
based mapping application for a plant germplasm 
collection maintained at Western Regional Plant 
Introduction Station (USDA-ARS) [4, 5]. The fifth one 
allows the soil information at the location where a 
mouse click occurs on the map interface to be retrieved. 
The soil map displayed is for Yolo County in California. 
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The WebGD framework is built on Minnesota 
Mapserver [6] with MapScript [7] and PostGIS [8]. 
 
One salient feature of the current WebGD framework is 
dynamic switching of spatial references [9]. Typically, 
different geographic regions and localities have 
preferred map projections in order to avoid distortions in 
the maps created .  The framework allows the whole 
world to be covered with multiple-levels of maps, e.g., 
the world map, continent maps, and regional maps. The 
map interface then automatically selects the most 
suitable projection for the region whose portion is 
displayed.  For example, the world can use the 
geographical coordinate system, the United States the 
Albers equal-area projection, and Oregon the Lambert 
conformal conic projection.  Thus, spatial analysis can 
be performed with the most appropriate projection for a 
particular area. The dynamic switching of the spatial 
reference, the map file, the legend, and the quick view 
menu supported by the current WebGD framework 
allows any part of the world to be covered with its own 
scale and spatial reference, including regions with one-
meter resolution aerial images. Providing aerial images 
is a very important feature, especially now that the cost 
of storing aerial images for the entire US has dropped to 
affordable levels. Furthermore, many states are putting 
aerial images in the public domain. 
 

2  WebGD-GEN Application Generator 
 
Several tools have been developed to augment the 
WebGD framework and simplify application 
development. The WebGD Web-site generator 
(WebGD-Gen) can create an entire WebGD application, 
including a web-based mapping interface.  WebGD-Gen 
automatically generates a consistent set of Web scripts 
from configuration files, which are again automatically 
generated from a relational database schema.  Since form 
generation is automatic, the cost of application 
development is greatly reduced. For a database such as 
Biotics that contains approximately 700 tables, 
programming all the required 3,500 (700 x 5) forms 
manually can be very costly, even infeasible.  
 

WebGD-Gen is implemented as a collection of templates. 
Each template, combined with a corresponding 
configuration file, generates one of the following six 
types of Web scripts: search, select, edit, information, 
action, and treeview scripts. Templates and configuration 
files are written in PHP. The Web scripts generated by 
them are also in PHP. The generated scripts are executed 
on a Web sever by a PHP interpreter. Each script, except 

for an action script, creates a Web form that is displayed 
on a client computer by a Web browser.  
 
Furthermore, WebGD-Gen can automatically generate 
the statements for inserting, searching, and deleting 
geographical features if the following lines, e.g., are 
added to a configuration file: 
 
$web_gd = ‘MULTIPOLYGON’;  
$layer_name = ’grp_eo_py’ 
$geometry_column = ‘the_geom’;  
$gid_column = ‘gid’;   // primary key 
$db_table_srid = 6010; // spatial ref 
 

The forms generated for geographical features can 
perform the following additional functions compared to 
those for ordinary database tables 
 
[1] A search form can be activated from a map 
interface. In this case, the extent of a search box 
specified on the map is passed as additional search 
parameters.  
 
[2] A select form includes additional JavaScript code 
for highlighting geographical features retrieved or 
selected by the user. 
 
[3] An edit form can insert a record for a geographical 
feature, after transforming the coordinate values from 
the spatial reference used by the current map interface 
to the one used by the geometry column for the record. 

 
The forms related are automatically linked each other. 
For example, the edit form for a Student table. From 
this edit form, the user can open the forms for the 
department and courses related to the student. The 
information needed to create the links are extracted 
from the primary-key/foreign-key relationships among 
the tables in the database. 
 
3.  WebGD Development History 
The WebGD framwork and WebGD-GEN were 
developed incrementally and iteratively during the last 
four years. We first implemented in 2000 an application 
that allowed point features to be inserted on a map by 
using ASP with ArcIMS and ArcSDE. In 2001, we re-
implemented this application with ASP.NET, as 
ASP.NET provides Web controls, which are better 
building blocks for Web pages [10]. Based on this 
application, the first version of WebGD framework was 
created in 2002 in order to support multiple applications 
[11]. 
 

57



In early 2003, we re-implemented an application called 
Motels Oregon with MapServer, PostGIS, and 
PostgreSQL [12]. This version on Linux was more 
reliable and faster than the old one, as welll as being built 
with free software. While implementing the next 
MapServer application, which was a germplasm resource 
management system (GEM-GIS), we created the first 
version of WebGD framework for MapServer. This 
framework was then enhanced so that it can handle line 
and polygon features as well as point features.  
 
The two major enhancements made to the WebGD 
framework in 2004 were dynamic switching of spatial 
references for different regions [9] and automatic 
generation of Web forms that can be used to insert, 
query,  and delete geographical features.  The form 
generator is based on our earlier work [13]. 
 

4.  Conclusions and Future Work 
 
We have been developing the WebGD framework and 
the WebGD-GEN application generator for Web-based 
GIS/database applications. A Web-based GIS 
application generated by them are unique in the 
following respects. 
 

[1] The geographical features can be inserted, queried, 
and deleted from the map interface displayed on a 
standard Web browser. 
 
[2] Web-forms that manage data on geographical 
features and data in ordinary database tables can be 
automatically generated. 
 
[3] Dynamic switching of spatial references allows an 
application to cover different regions with different map 
files, map legends, and quick-view lists. This is an 
important feature needed for an application that covers 
the entire USA or the world. 

 
The cost of running our applications is extremely low. 
We could put copies of such large databases as Biotics, 
Fishbase, and a part of National Germplasm Resource 
Information System on a $800 PC.  The software tools we 
use, such as the University of Minnesota MapServer, 
PostgreSQL DBMS, PostGIS,  Apache, and PHP are all 
available for free. The GIS data used, such as those from 
USGS, TIGER/LINE, and Digital Chart of the World 
(DCW), are also in the public domain. Automatic code 
generation of a WebGD application will save a great deal 
of effort in the development of a spatial decision-support 
system.  Although some manual customization is 
required, the time needed to customize can be lowered to 

weeks or months compared to the years required to build 
a spatial decision-support system from scratch. 
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Abstract 
 

Archiving data online, as opposed to in tape silos, is 
attractive for its reduced complexity and access latency.  
Low-cost mass-market disk drives help make this 
affordable but are hard to scale to the petabyte range, 
with unknown reliability in archival use.  However, a 
“virtual” science archive, i.e., producing data on demand 
when requested by users, needs only a fraction of the data 
online.  Radiance data from the satellite-borne Moderate 
Resolution Imaging Spectroradiometer instrument 
provide an opportunity for a virtual archive at the 
Goddard Earth Sciences Distributed Active Archive 
Center (GES DAAC):  the raw data are only one-fourth 
the size of the derived radiances.  However, virtual 
science archives face special challenges in securing the 
raw data and assuring the quality of the derived products.  
The GES DAAC is prototyping a virtual archive to tackle 
these challenges and demonstrate feasibility. 
 
1. Introduction 
 

Despite their expense, tape silos are sometimes the 
only affordable option for petabyte-scale science data 
archives.  Though disks have been dropping fast in price 
per unit storage, they still have not surpassed tapes, and 
they have many logistical issues, such as data reliability, 
floor space, power and cooling load.  On the other hand, 
tape silos have their own disadvantages:  multiple layers 
of software and firmware needed to manage tape silos 
introduce a daunting complexity; continuous mounting, 
winding and dismounting of tapes are vulnerable to 
mechanical problems; and access latency to requested 
files can extend from minutes to hours in very active 
archives.  Thus, migrating data from tape to disk can be 
attractive to archives like the Goddard Earth Sciences 
Distributed Active Archive Center (GES DAAC), a 2-PB 
archive of earth science remote sensing data. 

Drastic reductions in low-cost mass-market PC hard 
disks (~$1/GB in January of 2005) would seem to make 
such a migration more affordable.  However, the cost is 
still relatively high, and it is challenging to scale 
assemblages of these disks to the petabyte range.  Also, 
their use as archive devices is untested. 

 
2. Solving the Cost Problem of Online 
Archives 

 
One approach to this dilemma is to store only the raw data 
online, and “virtualize” derived data products:  that is, 
offer the derived products to users but produce them only 
when requested by a user.  There are several such systems 
that employ “lazy” processing for satellite data, e.g.,  
“BigSur”[1] and the Earth Science System Workbench[2].  
This solution is especially attractive when derived 
products represent much greater data volumes than raw 
data.  At the GES DAAC, the raw data flow from the 
Moderate Resolution Imaging Spectroradiometer 
(MODIS) instruments on the Aqua and Terra satellites is 
140 GB/day, about one-fourth the volume of its derived 
radiance products (550 GB/day).  Thus virtualizing the 
MODIS radiance products reduces the amount of disk 
needed, making an online solution affordable. 

Still, we are faced with two immediate challenges.  
Storing all the MODIS raw data to date requires 185 TB 
of disk:  deploying low-cost mass-market disks in a disk 
subsystem (e.g., in a Storage Area Network) requires 
significant engineering, taking into account floor space, 
power, cooling load, interconnections, and management 
software, all of which threaten to eat up the savings from 
the disks themselves. Secondly, we need significant 
processing power to produce the derived products on 
demand.  For example, in March of 2005, the GES DAAC 
shipped about 300 GB of MODIS radiance and 
geolocation data per day to end users, or about 7000 data 
files/day.  At the GES DAAC, we are prototyping a single 
solution to solve both problems:  attaching the disks to the 
90-odd personal computers used by GES DAAC staff for 
terminals and office automation. This has the effect of 
dispersing the floor space, power and cooling load 
requirements, while at the same time serving as a 
processing cluster for computing the derived products.  
Office automation and terminal applications typically use 
small fractions of the CPU in today’s computers, leaving 
substantial power available for processing data. 

This low-cost archive/processing cluster is integrated 
in an end-to-end system from user interface to data 
delivery for the on-demand derived products (Fig 1).   
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Figure 1. Implementation of a virtual product system within the framework of an existing on-demand 
subsetting system. 
 

The GES DAAC currently operates an on-demand data 
subsetting system that is integrated with the overall 
EOSDIS search and order system, including the EOSDIS 
Data Gateway.  It is possible to represent a specific scene 
of a virtual product as a spatial subset of a virtual daily 
product.  Thus, the user searches for time periods of 
interest at a daily granularity and then specifies the spatial 
area for the results he/she wants to order.  The resulting 
subset request is sent to a central subsetting system 
running on a Sun server, where it is processed almost like 
any other subset request.  However, instead of subsetting 
the stub file that represents the virtual daily product, the 
“subsetting algorithm” places the request information in a 
predetermined directory for the remote PC that hosts the 
necessary raw data, and then waits for a response.  The 
PC polls this directory regularly for these “work orders”; 
when it detects one, it processes the raw data using the 
MODIS science processing software [3][4][5] to produce 
the requested products and returns the output to the 
central subsetting system, which handles the subsequent 
distribution to the user.   

The remote PC runs the processing job at a lower than 
normal priority so as not to interfere with the user’s main 
applications.  However, those applications use significant 
CPU only at rare intervals (e.g. startup, saving documents, 
printing), so this does not slow down the processing 
significantly.  This PC “cluster” is actually quite 
heterogeneous, consisting of Windows XP, Linux (Intel) 
and Macintosh (OS X) workstations.  As a result, the 
science processing algorithms had to be ported to a 
variety of platforms.  The Windows XP port is actually 

accomplished using the Cygwin environment, which 
serves as a kind of “Linux emulator” for Windows. 
 
3. Incorporating Robustness 

 
While implementing the end-to-end virtual product 

system is a simple matter of coding, incorporating 
robustness is more challenging.  In virtualizing a science 
archive, robustness takes on some unique aspects:  
integrity of the raw data; quality and reproducibility of the 
on-demand derived products; and availability of the 
derived products.  Each of these aspects requires a 
different approach. 

 
3.1 Raw Data Integrity 

 
For a science data archive, the integrity of the raw data 

is the most important factor.  In tape archives, the most 
serious threat is usually the loss of individual tapes.  
Similarly, loss of individual disks or disk packs represents 
a risk to disk archives.  This can be mitigated partially by 
using RAID, or almost completely by keeping a second 
copy of data on a disk that is physically distant.  However, 
the quick random access that makes online archiving so 
attractive for users also presents the most insidious threat, 
that of a virus or worm rapidly multiplying and corrupting 
huge numbers of data files.  Thus, it is essential that 
backup copies of disk archives be physically protected 
from possible corruption, such as by a hardware read-only 
switch, air-gap or even complete disconnection from any 
computer or network.  On the other hand, one of the 
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advantages of the disk based archive is that it is far easier 
and more feasible to conduct continual checking of the 
online data, now that we need no longer treat tape mounts 
as a precious resource. 

This requirement for offline disk backup affects the 
organization of data on disk.  Since user orders tend to 
favor data over the continents, it might be desirable to put 
such input data on the fastest workstations, with adjacent 
spatial areas on different machines to enable parallelism 
for orders that cover large spatial areas.  On the other 
hand, the data arrive continuously from the satellite; as 
backup disks are filled up, they are taken offline to protect 
the raw data.  Thus, data for a given time range are backed 
up on a small number of disks.  Were we to load up one 
primary disk with say, just North American continental 
scenes, the time range covered would be relatively large, 
so its backup images would be spread over many backup 
disks, which would all need to be physically reconnected 
to reconstruct the failed disk.  Also, the science algorithm 
requires data from adjacent input scenes within an orbit to 
execute correctly, which could force cross-disk transfers.  
As a compromise, we place one full orbit on a disk, with a 
one-scene overlap, moving to another machine for the 
next orbit.  With this scheme, time-sequential backups are 
supported, while requests with large horizontal extents are 
spread across several machines. 
 
3.2 Data Quality and Reproducibility 

 
A unique challenge faced by science data archives is 

acceptance of the concept by the end users.  When derived 
products are stored in a tape archive, the users have a 
certain degree of confidence in them as standard products, 
produced under controlled conditions.  Producing such 
data on the fly does not always produce such confidence.  
The science processing algorithms themselves record the 
input data files and algorithm version (i.e., the pedigree) 
of the derived products within their metadata, a crucial 
first step.  Beyond that, however, the calibrated radiance 
data are still produced routinely as the raw data are first 
received, so that gridded geophysical parameter products 
can be produced.  These routinely produced radiance 
products are made available on disk for a short period of 
time (~2 weeks) for immediate download by users (thus 
reducing the amount of ad hoc on-demand requests).  At 
the time of initial processing, subsampled versions of 
these products are also stored online permanently for use 
by scientists that do not need high spatial resolution (Fig 
2).  These subsampled products provide an opportunity to 
check the on-demand products to see if the data points are 
the same, so that we can assure that the latter are of equal 
quality to the routinely produced standard products.  This 
provides additional quality assurance information[6]. 

 

 
 
Figure 2. Quality control of  on-demand products 
using an online archive of subsampled 
radiances. 
 
3.3 Availability of Derived Products 
 

The most complex aspect of the robustness problem is 
the availability of the derived products.  This is a function 
of the availability of the individual computers, the 
correctness of the algorithm software and configuration 
on each computer, the availability of each data disk, and 
in rare cases, the load on the computers.   

This is an area where some of the initiatives in 
autonomic computing may be of use.  One relatively 
straightforward approach to part of the problem is to have 
each PC transmit a small signal file at regular intervals to 
the central subsetting Sun server.  While the presence of 
the file itself represents a useful heartbeat, we can add a 
small amount of information to the signal file itself, such 
as CPU load or data processing performance, i.e., a kind 
of pulse [7].  The heartbeat / pulse of each station can then 
be integrated into the overall monitoring interface for the 
GES DAAC, where it can be monitored by the operations 
staff on a 24x7 basis. 

However, it is also important to know if the science 
processing software is properly configured and working.  
One way to ensure this is for the PC to process small 
slices of raw data when no on-demand processing is 
happening.  (In a sense, this is analogous to the Folstein 
Mini-Mental Status Exam used by physicians to screen 
for cognitive disorders[8].)  The results of the mini-tests 
are included in the pulse sent back to the central 
subsetting server, with the useful side effect of continually 
checking the health and integrity of the raw data. 

 
4. Current Status and Future Plans 

 
A proof-of-concept system with end-to-end 

functionality of virtual product creation has been 
constructed on a small number of PCs, including 
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representatives from Windows, Linux and Macintosh OS 
X platforms.  Work is currently underway to incorporate 
the robustness features outlined above. 

In order to keep initial costs as low as possible, the 
current implementation reuses existing code at the GES 
DAAC, with a few minor modifications.  However, some 
aspects of the system mirror those in grid technology, 
suggesting possible enhancements based on grid 
standards.  For example, virtual product systems have 
been implemented in such grid projects as GriPhyN [9] 
using Chimera and Pegasus to handle workflow.  Also,  
distributing the data amongst the various PCs might be 
managed more easily using a data grid technology such as 
the Storage Resource Broker [10]. 

 
5. Advantages of Virtual Archives 

 
Ultimately, the most difficult test for virtual archives 

may be acceptance by the end user community, who are 
often more comfortable with pre-constructed products 
retrieved from archive.  In order to overcome this, we 
must first demonstrate that the products produced on-
demand are of equal quality as pre-constructed products.  
Beyond that, however, virtual archives offer some 
potential advantages to the users.  One advantage of this 
particular implementation is that the users get only the 
spatial area they are interested in, whereas the pre-
constructed products cover fixed areas (5 minutes of 
MODIS data in each scene), resulting in large files.  A 
second important advantage is that when a processing 
algorithm is updated, the users need not wait for all the 
data to be reprocessed to get the particular time and 
spatial period they are interested in.  Instead, they can 
request the data for that space-time region as soon as the 
algorithm update is installed, which may be as much as a 
year (or more) earlier than the data would be available in 
the course of routine reprocessing. 

In addition to the user advantages, the archive benefits 
as well.  The complexity of the hardware-firmware-
software interactions associated with tapes and robotics is 
largely replaced by science processing software, where 
problems are easier to diagnose (and fix).  Perhaps more 
importantly, however, the problem of migrating data to 
new technologies is drastically reduced in size.  Instead of 
physically moving large quantities of data from older tape 
drives to newer, more advanced tape drives, the data 
migration problem is replaced by the issue of migrating 
the science processing software to new versions of the 
operating system and libraries, a task which is much faster 
and easier. 
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Abstract

Large-scale scientific workflows are often characterized
by tasks that produce or consume large amounts of data
(frequently both) and generate large volumes of derived
data products. Minimizing the end-to-end running time of a
set of workflow tasks is important to deliver data products
in a timely manner and free up processors to accomodate
additional workflows. A single workflow task may perform
the same computations on multiple files, presenting many
opportunities for concurrent execution on multiple nodes of
a Grid. In addition, many different tasks may operate on
the same large input files. An important challenge to effi-
cient workflow execution on multiple nodes is determining
an assignment of tasks to nodes. Processor and network
speeds may vary at different times, workflow tasks may be
modified, and new workflows may be added. In this paper
we examine algorithms for scheduling tasks concurrently
on nodes of a dedicated Grid to address these challenges.
We use real workflow tasks from the CORIE Environmental
Observation and Forecasting System. We propose a hybrid
scheduling approach that exploits knowledge of task run-
ning times and locations of input files to assign some tasks
to nodes statically, while others are assigned dynamically to
adapt to variations in task execution times. We show the ef-
fectiveness of our approach using both simulations and our
prototype implementation.

1 Introduction

Large-scale scientific workflows are characterized by
tasks that may produce or consume large amounts of data
and generate large volumes of derived data products. Ap-
plications include experimental physics, earth sciences, life
sciences, and environmental forecasting. Many workflows
in these domains operate on large input files that may be
100s of megabytes or larger. The same workflow may run
at regular intervals, e.g., daily, and sizes of the input and

output files are often known a priori. Executing an entire
workflow on a single machine may take several hours or
longer. Several tasks may process the same input file. In
addition, a single task may perform the same computations
independently on several such files. Minimizing the end-to-
end running time (makespan) of a workflow may be impor-
tant to free up processors for other workflows or to generate
high-priority data products. There may be many opportuni-
ties to speed up the makespan of a set of tasks by executing
independent tasks concurrently on separate machines con-
nected by a local network. We refer to such a set of ma-
chines as adedicated Grid.

There are several challenges to effective execution of
scientific workflow tasks in a dedicated Grid environment.
First, different nodes of the Grid may have different speeds,
and the execution time of a given task on the same node may
vary depending on factors such as time of day and workload
on the node, and task execution times may depend on the
input data. Even with accurate statistics from previous ex-
ecutions, it is impossible to know exactly how long a task
will run on a given node. An assignment of tasks to nodes
that appears to be optimal may take noticeably longer than
expected to complete. Task reassignment techniques have
been proposed [9, 22], but these may have high overhead.

Another set of challenges relates to the dynamic nature
of both the workflows and nodes. In a dynamic Grid en-
vironment nodes may be added or removed at any time,
so statistics on the speed of a new node may not be avail-
able and the number of nodes may change. Tasks may be
modified to generate new data products or process different
files, which may affect their running times. Finally, differ-
ent tasks may have different priorities, so we may need to
minimize the makespan of the highest priority tasks.

A third challenge relates to precedence constraints. In a
typical workflow, some tasks will generate data that serves
as input to one or more subsequent tasks. Workflow tasks
whose outputs serve as inputs to many tasks should be ex-
ecuted as early as possible, and any assignment of tasks to
nodes must take these constraints into account.
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A final challenge relates to data transfer overhead. All
needed input files must be transferred to the node where
a task is executed. Even on a local network, this transfer
may take several minutes in the worst case. Since many
tasks might process a file, this overhead may be reduced by
assigning tasks that process the same file to the same node.

In this paper we consider algorithms for scheduling and
executing scientific workflow tasks on a dedicated Grid that
address these challenges. We consider both static (assign-
ing tasks a priori) and dynamic (assigning tasks as they be-
come available) scheduling approaches, and discuss the lim-
itations of each. We propose ahybrid scheduling approach
that combines the benefits of both the static and dynamic
approaches. Our hybrid approach is well-suited to handling
the challenges posed by scientific workflows, including re-
ducing data transfer overhead and adapting to variations in
network speeds and execution times at nodes. We present
heuristics to determine which tasks to assign to nodes stat-
ically and which to assign dynamically. We present a fast
algorithm to assign static tasks to nodes that approximates
the optimal makespan of a set of tasks. The approximation
algorithm allows us to scale up to increasingly large work-
flows, quickly adapt to changes in the number of available
processors, and accomodate custom workflows.

We motivate and evaluate our work using examples
from the CORIE Environmental Observation and Forecast-
ing System [4]. CORIE measures and simulates physical
properties of the Columbia River Estuary. CORIE includes
daily forecast workflows (described in Section 2) as well
as hindcast and custom workflows that are run as needed.
Many workflow tasks operate independently on multiple in-
put files, and the sizes of these input files are typically the
same from run to run. We note that many scientific work-
flows share similar properties, thus, we believe our results
will apply to other domains.

We evaluate our hybrid scheduling approach using our
simulator, which can model a scientific workflow execution,
and using our prototype implementation built on Thetus
[19]. Thetus is a commercial product that enables scien-
tific workflow execution. Our simulations model existing
CORIE workflow tasks, and our implementation executes
existing CORIE workflow tasks concurrently at separate
nodes to improve performance [5]. Our results indicate that
the hybrid approach can indeed reduce the makespan of a
set of workflow tasks, and identify areas of further research.

There are several key differences between scheduling
scientific workflow tasks on a dedicated Grid and other
work in Grid and multiprocessor scheduling. First, many
of the workflows we consider are run regularly, e.g., daily,
and we therefore have statistics on past executions. Unlike
a globally distributed Grid environment where many dif-
ferent users may submit workflows for execution, we con-
sider a set of dedicated nodes where scientists may regu-

larly run one or more standard workflows in addition to
occasional custom workflows. Further, a dedicated Grid
may include an ad-hoc collection of machines of varying
speeds connected by a local network and might not have
the computation or network speed of large-scale Grid com-
puting systems. Second, the number of workflows run and
data products generated is limited only by the available re-
sources, and scientists will run additional workflows and
generate additional data products if additional resources be-
come available.

This paper is organized as follows: Section 2 gives
an overview of the CORIE Environmental Observation
and Forecasting System and presents details of its work-
flows and challenges posed by these workflows. Section 3
presents algorithms for scheduling workflow task execution
on a Grid, including our Hybrid scheduling algorithm. We
present experimental results from our simulation and our
prototype implementation in Section 4. We survey related
work in Section 5 and conclude in Section 6.

2 CORIE Overview

CORIE [4] is an environmental observation and forecast-
ing system that measures and simulates the physical proper-
ties of the Columbia River Estuary and surrounding coastal
regions. Applications address issues including salmon habi-
tat and passage, hydropower management, navigation im-
provements and habitat restoration. The system includes
both forecastandhindcastsimulations.Forecastsare used
to predict near-term conditions in the river, whilehindcasts
are run retrospectively for specific time periods using ob-
served values. Hindcasts typically consist of an extended set
of simulations covering a year. They may also include cali-
bration runs to test the sensitivity of the model to empirical
parameters. CORIE scientists are continually adding new
workflows and data products. They plan to include fore-
casts of 30 different coastal regions in the near future, thus
flexible and scalable scheduling algorithms will become in-
creasingly important. In addition, existing workflows may
be modified, for example, by changes to models or parame-
ters, or may be used to process a new dataset.

We first discuss details of several tasks in the existing
forecast workflow that illustrate some challenges to efficient
execution of tasks and that will be used throughout this pa-
per. We then describe our execution environment and out-
line the specific challenges we address.

2.1 Workflow Tasks

We consider a set of tasks that process several large input
files generated by the ELCIRC simulation [27]. These files
contain values of different physical variables, such as salin-
ity and velocity, computed over a 3D finite-element grid at
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File Size
hvel.64 655MB

salt.63, vert.63, temp.63 334MB
wind.62 35MB

*.61 23MB

Table 1. Input Files for CORIE Workflow Tasks

regular time steps covering multiple days of simulated time.
These files are used to generate many images such as tran-
sects (vertical slices of the river) and isoline plots (horizon-
tal slices). A single forecast run generates two files of each
type, i.e.,1 salt.63, 2 salt.63 , for both the current
day and the next day, and a hindcast over a week gener-
ates seven of each file. Thus, the entire set of hindcast and
forecast runs consists of a large number of tasks and data
files. For simplicity, we focus on a 1-day subset of a fore-
cast workflow in the remainder of this paper.

Table 1 summarizes the sizes of each of these files for
the Columbia River forecast. Note that this table does not
include the times to transfer each file, which is typically
about 10MB/sec in our network. We next describe the de-
tails of three tasks,Isolines, Transects, andModel Stations,
that each operate on some of these files. Tables 2 and 3
summarize the details of these tasks.

Task Running Input Files
Time(sec)

isolines{airt,fllu, 25 {airt,fllu,flsu
fllu,flsu,pres, pres,radd

radd,radu,srad} radu,srad }.61
isolines salt 70 salt.63, wind.62
isolines vert 33 vert.63, wind.62
isolines temp 10 temp.63, wind.62
isolines hvel 73 hvel.64, wind.62

transects salt 202 salt.63
transects vert 15 vert.63
transects temp 197 temp.63
transects hvel 185 hvel.64

Table 2. Approximate running times of Iso-
lines and Transects tasks

Task Time (sec) Inputs
Time (sec)

do station 60 salt.63,vert.63,temp.63
extraction hvel.64, elev.61
plot model 30 xxxxx.dat (146 files)

stations (146 tasks)

Table 3. Approximate running times of Model
Stations workflow tasks

2.1.1 Isolines and Transects

The Isolines task generates animations of horizontal slices
of the Columbia River illustrating different conditions such
as temperature, salinity, and velocity at varying depths and
locations. The task uses data from thewind.62 file and
operates on the four largest files (hvel.64, salt.63,
temp.63, and vert.63 ) as well as seven smaller
23MB files. The animations generated from each file may
differ. For example, the workflow currently generates 13
different isolines animations from thesalt.63 files, but
only four from thevert.63 files, so Isolines salt has a
longer running time than Isolines vert. We note that CORIE
scientists may modify which animations are generated for
each file, which could affect the running times of each sub-
task. The Transects task generates animations of vertical
slices along different paths up the Columbia River, for the
four largest files only. As in Isolines, different animations
may be generated for different files, so some subtasks may
run longer than others.

To exploit opportunities for concurrency we divide Iso-
lines into 11 subtasks, one for each file, and similarly divide
Transects into four subtasks. Since both tasks process four
of the same large files, assigning subtasks that process the
same files to the same nodes can reduce data transfer over-
head and improve performance. We refer to these subtasks
astasksin the remainder of the paper. We discuss task gran-
ularity issues in another paper [5]. We note that scientists
may modify the granularity of some tasks, which is another
way a workflow and its running time can change.

2.1.2 Model Stations

The Model Stations segment of the CORIE fore-
cast workflow consists of two tasks. First, the
task do station extraction processeshvel.64 ,
salt.63 , temp.63 ,vert.63 , andelev.61 and gen-
erates 146 inputs to the taskplot modelstations ,
which generates plots for 146 different stations. Thus,
this workflow segment includes a precedence constraint,
and do station extraction should be executed as
soon as possible to enable the execution of the 146
plot modelstations tasks. While a single invocation
of plot modelstations is relatively short (under 30
seconds), running the task on all 146 stations requires intel-
ligent scheduling to minimize the end-to-end running time.
As we will see in Section 4, poor scheduling choices can
significantly increase the running time.

2.2 Existing Implementation

The existing CORIE workflows consist of a collection of
executable programs written in Fortran, C, and Perl. The
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current workflow implementation runs on a shared filesys-
tem, which provides convenient access to files across mul-
tiple nodes but misses many opportunities for concurrent
execution. There is no easy way to coordinate workflow
execution among multiple machines.

The existing machines are dedicated nodes shared over a
local network. While they are not shared by outside users or
jobs, there may be contention for the nodes among different
CORIE workflows and tasks. For example, during a daily
forecast run, there may also be hindcasts or calibrations run-
ning. As mentioned earlier, CORIE scientists would like to
generate as many data products as possible and will use all
available capacity on the nodes.

2.3 Experimental Prototype

To address some limitations of the existing CORIE
workflow implementation, we have implemented an ex-
perimental prototype that allows independent tasks to ex-
ecute concurrently on separate nodes. Our prototype is
built on Thetus [19], a commercial product for manage-
ment of non-text data common in many scientific domains.
We chose Thetus because it provides facilities for automat-
ically launching workflow tasks and enables experimenta-
tion with scheduling algorithms. In contrast, other scien-
tific workflow packages that we are aware of focus on other
challenges such as mapping abstract workflows to nodes
[10, 13] or workflow specification [3, 23, 24]. (We discuss
these efforts in greater detail in Section 5.) A previous paper
[5] gives a detailed description of our prototype. We briefly
describe the Thetus features that are useful for efficiently
executing scientific workflows.

Publisher data stores

Task Servers

input files

inputs and executables

data products

data products
and executables

Figure 1. System Architecture

Thetus consists of aPublisher and one or moreTask
Servers. The Publisher manages the storage of all data files
and executables along with configurable metadata, while
the Task Servers execute workflow tasks and upload the re-
sulting data products to the Publisher. We present the ar-
chitecture in Figure 1. When all the required input files for
a workflow task have been uploaded to the Publisher, the
task will be launched automatically on one of the available

Task Server nodes. This feature facilitates the specification
of workflows and ensures the timely execution of workflow
tasks. All required input files and executables are down-
loaded to the node where the task is executing. After a task
completes, all data products generated by the task are up-
loaded to the Publisher, which may launch one or more sub-
sequent tasks to process these products. The Thetus Pub-
lisher includes a scheduler that by default assigns tasks to
nodes in a round-robin manner as soon as the tasks become
available. We experimented with several other scheduling
algorithms, as described in Section 3.

We implemented several extensions to Thetus in our pro-
totype. First, we provided data stores on each node to re-
duce data transfer overhead. Second, we used Thetus file
storage facilities to store executables. Any executables that
are not stored at a node can be downloaded from the Pub-
lisher, enabling the seamless addition of new nodes. We
note that executables are typically much smaller than input
files and data products, so their data transfer overhead is
minimal.

2.4 Challenges

We now consider specific challenges posed by the
CORIE workflows.
Concurrent Execution One set of challenges relates to ex-
ecuting independent tasks concurrently on separate nodes.
We must efficiently determine an assignment of tasks to
nodes that will minimize the makespan of the workflow.
Data Transfer Overhead Transferring large input files to
nodes may add considerable overhead to the cost of exe-
cuting a task. Since many tasks operate on the same files,
temporarily storing files locally at nodes and assigning tasks
to nodes based on file location can reduce some of this over-
head. However, determining when it is beneficial to assign
tasks to nodes based on file location, and determining an
appropriate assignment, is non-trivial. While this problem
may be alleviated in some cases by upgrading the local net-
work or using protocols such as GridFTP [11] or FAST TCP
[16], these solutions may not be feasible in all cases.
Varying Processor Speeds and Task TimesAnother chal-
lenge relates to variations in the speeds of processor nodes.
While we have statistics on past execution times of work-
flow tasks, we may not know the exact running time of a
task on a given node, especially as nodes are added or re-
moved from the system. Even the speed of a single node
may vary depending on external factors. Also, some task
running times may be slightly dependent on the inputs. For
example, the Isolines task execution time may depend on
the range of values in the input data. Variations in the run-
ning times of individual tasks may noticeably increase the
end-to-end running time of an entire workflow.
Precedence ConstraintsAnother challenge relates to

68



precedence constraints. Many CORIE workflow tasks gen-
erate outputs that serve as inputs to subsequent tasks. Thus,
to minimize the end-to-end running time of a set of tasks,
it is important to consider these precedence constraints in
addition to task inputs and running times. While a detailed
study of these challenges awaits future work, we consider
the constraints of the Model Stations tasks in this paper as
an example. We note that many existing scheduling algo-
rithms [10, 22] consider precedence constraints, typically
by representing a workflow as a DAG and computing the
earliest starting time of each task. In our ongoing work we
plan to investigate similar techniques and consider the chal-
lenges of data transfer overhead and task prioritization in
the presence of precedence constraints.
Adding or Removing NodesOur prototype implementa-
tion consists of a central Publisher and several remote Task
Server nodes. Our eventual goal is to have scientists use this
system to run their actual workflows. In that setting, new
hardware is continually being added, and existing nodes
may temporarily become unavailable. The dynamic na-
ture of the system means that both the number and types
of nodes available at any time may change unexpectedly, so
a good assignment of tasks to nodes may need to be recom-
puted on the fly before executing a workflow.
Adding and Modifying Workflows Finally, new work-
flows are continually being added to the CORIE system.
In addition, existing workflows may be modified to change
parameters or add new data products, which may affect the
running times of tasks. For example, when the scientists are
at sea on observation runs, they may run additional tasks to
generate higher-resolution forecast data products near the
location of the ship. To ensure timely execution of all tasks,
we may need to change the assignments of workflow tasks
to nodes. We do not currently consider pre-emption of tasks
due to the memory-intensive nature of many of them.

3 Scheduling Algorithms

We present several scheduling algorithms to assign a set
of workflow tasks to available nodes. We first present two
baseline algorithms that can be used in the absence of any
prior knowledge of task running times. We then present
our Offline algorithm, which exploits statistics from pre-
vious executions, and ourHybrid algorithm, which com-
bines the benefits of both static (offline) and dynamic (on-
line) scheduling techniques. The motivation behind these
algorithms was to minimize the makespan of a set of tasks
by building on algorithms for the well known bin-packing
problem. In the following discussion we use the termtask-
server queueto refer to the set of tasks that are ready to
execute and are assigned to a given task server, and the term
common queueto refer to the queue of tasks that are ready
to execute but have not been assigned to a task server.

3.1 Round Robin

Round Robin (RR) scheduling is the default scheduling
algorithm used by the Thetus Publisher. It works by imme-
diately assigning each available task to a task-server queue
for one of the nodes in a round-robin manner, without con-
sidering the current load on any of the nodes. Once as-
signed, the task waits in a task-server queue on the assigned
node until all earlier tasks in the queue have completed. An
advantage of this approach is its ease of implementation.
In addition, since it immediately assigns tasks to nodes as
soon as they are available, it eliminates the need to wait for
tasks to complete at nodes. A disadvantage is that it does
not consider the inputs to the tasks or the expected running
times, so it may assign several long-running tasks to the
same node.

3.2 Dynamic

The Dynamicalgorithm adds tasks to a common queue
as they become ready to execute, and assigns the first task
in the common queue to a node whenever the node becomes
idle. Thus, tasks are assigned to the nodes in the order they
become ready to run. In the absence of statistics on the
expected running times of tasks, dynamic scheduling is the
best approach. While dynamic scheduling overcomes some
limitations of RR scheduling, it does not exploit knowledge
of task inputs and running times when assigning tasks to
nodes and might therefore copy large files unnecessarily or
assign long tasks to slow nodes.

3.3 Offline

TheOfflinealgorithm improves on RR and Dynamic by
exploiting knowledge of task inputs and running times. The
goal is to assign a set of tasks to a fixed number of nodes to
minimize their makespan. This problem reduces to the well-
known bin-packing problem, which is known to be NP-
complete [14]. For relatively small workflows that are run
repeatedly, we can solve for an optimal solution using brute
force. However, this approach will not scale to increasingly
large workflows, and does not easily adapt to changes in the
running times of workflow tasks or the number of available
nodes. Therefore, a fast approximation algorithm that can
assign tasks to nodes on the fly is needed.

We adapt the MULTIFIT algorithm [8], which provides
a good approximation to the optimal solution to the bin-
packing problem but does not consider the potential bene-
fits of assigning tasks with the same input files to the same
nodes. We therefore add a heuristic to this algorithm that
aims to assign tasks to nodes that already have some or all
of the needed input files, as described below.
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The Offline algorithm is shown in Figure 2. In MUL-
TIFIT, the algorithm works by sorting tasks in decreasing
size order and assigning each task in this order to the “bin”
where it fits with the smallest (positive) remaining space.
We modify this algorithm to compute for each task both the
bin where it fits with the smallest remaining space and the
bin that has the largest input overlap (fraction of the task
input data stored locally). Note that the “size” of a task is
the time to download all inputs not already present at the
node plus the task’s expected running time. Each task is
assigned to the bin with the largest input overlap that has
the smallest remaining space. Initially the bin capacity is
set to bemincapacity , which is either the total running
time (of all offline tasks) divided by the number of proces-
sors or the running time of the longest task, whichever is
larger. As in MULTIFIT, if Offline does not find a solution
that satisfiesmincapacity , we perform binary search in
the range [mincapacity , 2*mincapacity ], and repeat
the Offline algorithm until a good solution is found.

The subroutineCOMPUTE REMAINDER(t, p) in Fig-
ure 2 calculates the amount of remaining space if task
t is assigned to processorp. The subroutineCOM-
PUTE OVERLAP(t, p) computes the number of bytes of in-
put data to taskt that are are also inputs to other tasks al-
ready assigned to processorp.

The Offline algorithm is expected to give a good solution
assuming that estimates of running times are close to the ac-
tual running times. It also assigns tasks with the same input
files to the same processor in many cases, so, unlike the
Dynamic algorithm, it can reduce data transfer overhead.
However, in practice the estimated running times are only
averages that may vary considerably in practice, so the ac-
tual makespan of a set of tasks may be far from optimal.

3.4 Hybrid

The Hybrid algorithm combines the flexibility and ro-
bustness of the Dynamic algorithm with the Offline algo-
rithm’s ability to incorporate task inputs and running times
into node assignments. Intuitively, the idea is to assign
“large” tasks to nodes offline, since these tasks can bene-
fit the most from the Offline algorithm. “Small” tasks can
be assigned to nodes dynamically whenever nodes are idle,
allowing the workflow to automatically adjust to varying
processor speeds. Intuitively, small tasks can fill in gaps
around larger tasks that finish early, and executing them will
not unduly delay a larger task that becomes ready later.

We formally define small and large as follows. TheHy-
brid algorithm includes aThreshold parameter that may
have any value between 0 and 1. For each task, we compute
its total running time (including estimated time needed to
download and upload and inputs and outputs). We divide
the total running time of each task by the maximum total

OFFLINE ASSIGNMENT (VectorTASKS)
{TASKS is sorted in order of decreasing running time}

foreach t in Tasks{
foreachprocessorp {

remainder = COMPUTE REMAINDER(t, p)
overlap = COMPUTE OVERLAP(t, p)
if remainder < min remainder

min remainder = remainder
rem proc = p

end if
if overlap > max overlap andremainder ≥0

max overlap = overlap
overlap proc = p

end if
}
/* if overlap on some node is nonzero, add task to node
with maximum overlap */

if max overlap > 0
overlap proc.add(t)

/*otherwise add task to node with smallest remainder */
else

rem proc.add(t)
end if

}

Figure 2. Offline Algorithm

running time, and if the value exceeds theThreshold, then
the task is considered “large” and assigned offline. Note
that whenThreshold = 0, Hybrid is equivalent to Offline,
and whenThreshold = 1, it is equivalent to Dynamic.

We present the Hybrid algorithm in Figure 3. This al-
gorithm first determines which tasks should be assigned of-
fline and which should be assigned dynamically, then as-
signs the offline tasks to nodes using the Offline algorithm
described above. In our current implementation, offline
tasks are given priority and online tasks are assigned to
nodes whenever a node becomes idle and there is no offline
task ready to execute on the node. In our ongoing work, we
are considering prioritization of tasks.

4 Experiments

We now present experimental results that evaluate the
performance of the algorithms above. We first present re-
sults from simulations that model the performance of the
Isolines, Transects, andModel Stationsworkflows using the
statistics presented in Tables 2 and 3. We then present pre-
liminary experimental results that evaluate the performance
of the scheduling algorithms on our prototype implementa-
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HYBRID (VectorTASKS)

tasklongest task
int longest length = 0
VectorOffline Tasks
foreach t in Tasks {

if (t.length > longest length)
longest length= t.length
longest task= t

end if
}
foreach t in Tasks {

if (t.length/longest length > Threshold)
Offline Tasks.add(t)

end if
}

OFFLINE ASSIGNMENT(Offline Tasks)

Figure 3. Hybrid Algorithm

tion for the sameIsolinesandTransectsworkflows. Recall
that these tasks represent only a subset of all the CORIE
forecast workflow tasks. Thus, the improvements in the
makespan of an entire workflow is expected to be much
larger than what is shown in this section.

4.1 Simulation

We implemented our simulation using JavaSim [15], a
discrete-event process-based simulation tool. We report on
experiments with three nodes using our 1-day subset of a
forecast workflow, which models our current implementa-
tion. We plan experiments with multiple workflows and ad-
ditional nodes in future work. We consider both the case
where the cost estimates are accurate and all processors
have equal speeds, and the effects of variations in processor
speeds or task execution times as described in Section 4.1.2.
We varied the order that the 16 input files became available
to model a real-world scenario where we do not know ex-
actly when each file becomes available and therefore do not
know when each task will be ready for execution.

While we report on the use of our simulation tool to eval-
uate the performance of different scheduling algorithms, a
simulation tool has other uses as well. For example, the sim-
ulation tool allows us to easily test the effects of adding pro-
cessors and determine when additional processing power is
beneficial, without the cost of adding hardware to a sys-
tem. A simulation tool also allows us to evaluate the choice
of scheduling algorithm and parameter settings for a given
workflow. For example, simulations can help us quickly de-
termine a goodThresholdvalue for a given workflow, which

can aid configuring the actual workflow implementation.
We report on the end-to-end latency of a set of tasks, i.e.,

the longest running time on any of the three nodes. This
metric is appropriate when the goal is to complete a set of
related tasks as soon as possible, as is common in many
scientific workflows. It also frees up processors as early as
possible to allow other data products to be generated. We
note that other metrics, e.g., average latency or amount of
data transferred, may be useful in some cases, and we are
currently investigating these as part of our ongoing work.

4.1.1 Equal Processor Speeds

We first consider the case where estimated running times are
close to actual running times and all three processors have
equal speeds. Figure 4(a) shows the performance of Hy-
brid and Round Robin for four different random orderings
of the input files. Recall that when Threshold = 0, Hybrid
is equivalent to Offline, and when Threshold = 1, Hybrid is
equivalent to Dynamic. As we varied the Threshold from 0
to 1, there were six different assignments of tasks to nodes.
In all cases, a threshold between 0.25-0.5 reduces the end-
to-end running time compared to Offline (far left) and Dy-
namic (far right), suggesting that a threshold in this range
gives good performance in most cases. For all four random
orderings, Round Robin performs worse than either Offline,
Dynamic, or Hybrid, in some cases by nearly 200 seconds
(over 3 minutes).

Figure 4(b) shows the performance of Hybrid and Round
Robin for Model Stations, Isolines, and Transects. As we
varied theThresholdfrom 0 to 1, there were eight different
assignments of tasks to nodes. For these tasks Round Robin
does significantly worse than Hybrid for mostThreshold
values because Round Robin divides the 146 Model Sta-
tions tasks evenly among all three nodes, but their execution
is delayed at some nodes due to previously assigned larger
tasks. In contrast, Hybrid and Dynamic (Threshold=1) can
adapt to the varying load at each node and assign the model
stations tasks to nodes as they become idle. The Offline al-
gorithmThreshold= 0 does even worse than Round Robin
because it does not consider precedence constraints. Of-
fline assigns many of the 146 Model Stations tasks to the
same node. However, these tasks cannot execute until the
do station extraction task uploads the needed in-
put files, so there is over 300 seconds of idle time at the
node before the Model Stations tasks begin executing. This
example illustrates the importance of incorporating prece-
dence constraints into node assignments.

4.1.2 Effect of varying task execution speeds

We next consider the effects of varying node speeds. These
experiments model likely scenarios where we do not have
statistics on new nodes, or where the load on a node at a
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Figure 4. Effect of varying the Threshold value
for the Isolines, Transects and Model Stations
tasks with equal processor speeds

given time causes it to run slower than usual. In these exper-
iments, one of the three nodes executed tasks with a factor
of 1 (relative to the numbers in Tables 2 and 3), one used a
factor of 0.8, and the third used a factor of 1.2.

Figure 5(a) plots the latencies for theIsolinesandTran-
sectsworkloads. In this case, some Round Robin assign-
ments have low end-to-end latency because longer tasks are
assigned to faster nodes. However, in other cases longer
tasks may be assigned to slower nodes. Thus, the behavior
of RR is unpredictable and may do poorly in the worst case.

Figure 5(b) plots the latencies of ModelStations-
Isolines-Transects with varying processor speeds. In this
case Round Robin does even worse than when processor
speeds are equal. Round Robin does worse because the 146
tasks in Model Stations are divided evenly among the three
nodes, but take considerably longer to run on the 1.2 node.
Hybrid provides a slight improvement over Dynamic since
it exploits the shared input files ofIsolinesandTransects.

4.2 Implementation

We now present preliminary experimental results run-
ning the Isolinesand Transectstasks on our protype im-
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Figure 5. Effect of varying the Threshold value
for the Isolines, Transects and Model Stations
tasks with varying processor speeds

Node OS Memory Speed
1 Redhat Linux 9 1GB 2.60GHz
2 Redhat Linux 8 3GB 2.40GHz
3 Fedora Core 1 1GB 2.80GHz

Table 4. Node Properties

plementation. Our implementation consists of three task-
server nodes running on machines connected to the Thetus
Publisher by a local network (see Section 2). We summarize
the properties of each task server node in Table 4.

We ran experiments using Dynamic, Round Robin, and
Hybrid, and we uploaded files using three different random
orderings for each of these algorithms (Figure 6). Using
three different orderings allows us to evaluate how each al-
gorithm will perform under a variety of circumstances. In
our implementation of Hybrid we used aThresholdof 0.25,
which was empirically validated by our simulations.

The first observation is that Round Robin scheduling
may assign many long-running tasks to the same node. In
two of the three random orderings the longest end-to-end
running time on a node is over 1000 seconds. In contrast,
Dynamic and Hybrid assign a more even load to all three
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nodes, showing their flexibility. Further, the end-to-end run-
ning times are fairly consistent across all three random or-
derings, suggesting that these approaches do better in the
worst case. A second observation is that Hybrid benefits
from reduced data transfer overhead compared to Dynamic.
Thus, assigning some tasks offline can significantly reduce
running times.
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Figure 6. Round Robin, Dynamic, and Hybrid
Scheduling for Isolines-Transects for three
different file orderings

5 Related Work

There is significant interest in using Grid computing re-
sources to execute large-scale scientific workflows. Sys-
tems such as Globus [12] and Condor [17] provide facil-
ities to submit jobs for execution on a set of distributed
nodes, but do not consider workflow management. Further,
they are designed for a large number of globally distributed

users and nodes, and are not well suited to executing a sin-
gle workflow on a dedicated Grid.

JOSH [25] provides load-aware and data-aware multi-
site scheduling, and shares our goal of efficiently executing
a set of tasks on a Grid. Clients can submit tasks for exe-
cution on one or more nodes. The system chooses a node
based on both the cost of transferring the required files to
the node and the current load at the node. However, JOSH
does not consider storing files locally or global workflow
information, so it may make poor scheduling decisions.

There has also been considerable work in replica man-
agement for Grid environments [2, 7, 26]. This research
aims to improve global data availability, but does not con-
sider storing data products at nodes. Research on replica
selection for Grid applications [26] does not consider stor-
ing local data copies to reduce workflow execution time or
incorporate replica location into scheduling decisions.

Ranganathan and Foster [21] consider the challenges of
transferring data files and scheduling tasks for Grid execu-
tion. The authors consider executing a set of independent
jobs to optimize one or more metrics such as average re-
sponse time, and also consider placement and maintenance
of data copies locally at nodes. However, this work does
not consider optimal scheduling of a set of related indepen-
dent tasks to minimize end to end execution, or adapting to
variations in processor and network speeds.

Several tools [1, 3, 13, 18, 23, 24] provide facilities
for the specification and execution of scientific workflows.
Chimera [13] provides a virtual data system that stores pro-
cedures to derive data products. The system schedules these
procedures to be executed as needed. The scheduler con-
siders the costs of transferring data files from a remote site
compared to the costs of regenerating files locally, but does
not consider assigning a set of tasks to nodes to minimize
end to end execution time as we do.

Zoo [1] facilitates scientific workflow execution by
defining workflows as object-oriented database schemas.
The emphasis is on easily specifying workflows by exploit-
ing DBMS functionality, and this work does not consider
the challenges of executing tasks on a Grid. More recently,
GridDB [18] provides a data-centric overlay for Grid data
analysis, and supports task execution on a Grid. However,
GridDB does not determine where to execute tasks, instead
relying on existing middleware [12, 17], and does not ex-
plicitly address the challenges of managing large data files.

Several tools, including Kepler [3], Triana [23], and Tav-
erna [24], provide interfaces and tools to specify and exe-
cute scientific workflows. The emphasis of these tools is on
formalizing and constructing workflows and providing ac-
cess to heterogeneous data and distributed web services. In
contrast, we focus on the efficient concurrent execution of
predefined workflow tasks.

Research in assigning workflow tasks to heterogeneous
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nodes [6, 9, 10, 20, 22] shares many of our goals. Pegasus
[10] delays assignments of some tasks to cope with changes
in node availability, but does not explicitly aim to minimize
makespan. GrADS [9] and Sakellariou et al. [22] propose
efficient rescheduling algorithms to adapt to inaccurate cost
estimates. However, these algorithms have a higher over-
head than our hybrid algorithm and do not consider the
overhead of transferring data to nodes. Casanova et al. [6]
present static scheduling heuristics that consider data loca-
tion and data transfer overhead, but may perform poorly
when there is a wide variation in task execution times.

6 Conclusions and Future Work

The problem of efficiently executing a set of scientific
workflow tasks on a local dedicated Grid is important for
scientists who need to generate important data products
quickly and want to maximize resource utilization. In this
paper we have studied algorithms for scheduling and exe-
cuting scientific workflow tasks to minimize their end-to-
end running time using real environmental modeling work-
flows from the CORIE system. We have evaluated our al-
gorithms using simulations, and have presented preliminary
implementation results that validate the simulation results.

We are considering several areas of future work:
Precedence Constraints:We plan to extend our Offline
algorithm to handle precedence constraints among tasks.
Priorities: We will consider assigning priorities to sets of
data products to meet the needs of scientists who need some
products generated as quickly as possible.
Incremental Computation: We plan to develop support
for incremental computation of data products to present par-
tial results before an entire data product is computed.
Multiple Workflows: Finally, we plan to consider how
to accomodate mutliple workflows running simultaneously
on the same set of nodes. Challenges include determining
how many nodes to assign to each workflow to minimize
the makespan of each and supporting priorities of different
workflows.
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Abstract. The tools used to analyze scientific data are 
often distinct from those used to archive, retrieve, and 
query data. A scientific workflow environment, however, 
allows one to seamlessly combine these functions within 
the same application. This increase in capability is 
accompanied by an increase in complexity, especially in 
workflow tools like Kepler, which target multiple science 
domains including ecology, geology, oceanography, 
physics, and biology. To overcome this complexity, we 
have developed semantically-driven user-interface 
components that are customized at run-time using 
domain-specific ontologies. One such subsystem in Kepler 
uses domain-specific ontologies to customize the 
presentation of analytical components and data for use by 
scientists building workflows. Kepler also provides for 
semantically-enabled queries for components, which can 
significantly increase efficiency in workflow authoring 
tasks. In this demonstration, we show how ontologies can 
be used for user-interface customization and more. In 
particular, we show our recent ontology-driven 
extensions for workflow authoring in Kepler. These 
extensions include our advances in: (1) automating data-
integration and service-composition tasks, (2) the use of 
semantic annotations to verify that workflows are 
semantically meaningful, and (3) the ability to search for 
contextually relevant components and data sets in situ, 
i.e., as a user is designing a scientific workflow.   
 

1. Introduction 
 Scientific workflow systems have traditionally been 

stand-alone applications designed for a specific domain.  
For example, physicists, geologists, ecologists, and 
oceanographers typically use their own applications (e.g., 
a set of ”MATLAB” scripts) for creating and executing 
scientific workflows. The Science Environment for 
Ecological Knowledge (SEEK) [SEEK] project is 
developing a powerful, cross-domain scientific-workflow 
authoring environment that allows scientists to design and 
execute novel workflows.  The need for such a tool has 
been recognized in other scientific domains, and so SEEK 
has teamed up with several other projects, including 
GEON [GEON], SDM [SDM], EOL [EOL] and 
ROADNet [ROADNET] to produce Kepler [KEPLER].   

Scientific workflow systems such as Kepler provide 
scientists with a number of benefits. In particular, they 
provide an integrated environment in which scientists can 
design, communicate, and execute their analytical 
processes. They typically incorporate a variety of 
functions for end-to-end workflow execution and 
management, including data query, retrieval, and 

archiving tools. And, they provide a mechanism to help  
scientists recreate previous analyses (thus allowing 
workflows to serve as a form of metadata) and provide an 
opportunity for workflows (and data) to be reused to form 
novel and extended analyses.  

A major challenge for Kepler is to effectively support 
users from different scientific disciplines, while 
maintaining both generic support for scientific workflows 
and enabling cross-domain data and workflow reuse. 
Instead of creating complex interfaces and tools for each 
domain, we desire the capability to provide domain-
specific customization. We believe that ontologies can be 
used not only to formalize domain knowledge, but also to 
support creation of customized user interfaces, thus 
facilitating cross-domain interaction.  

As part of SEEK (and in collaboration with the other 
projects previously noted), we are actively engaging 
scientists to develop ontologies, with the goal of having a 
rich repository of domain-specific terminologies and 
cross-linkages among them. Along with this effort, we are 
also developing a suite of ontology-based tools [BLL04, 
BL04, BTWL04] to allow scientists to more easily 
browse, query, integrate, and compose relevant cross-
discipline datasets and services. This demonstration will 
highlight these ontology-enabled tools and their 
implementation within Kepler. 
 

2.  Scientific Workflows and Kepler 
A scientific workflow is an executable description of 

a scientific process.  In particular, a scientific workflow 
records each inline process required to take input data and 
produce a meaningful output product.  Scientific 
workflows are similar to business-process workflows but 
have several properties uncommon to the business 
environment.  For example, scientific workflows often 
operate on large, complex, and heterogeneous data.  They 
can be computationally intensive, and can produce 
complex derived data products that may be archived for 
use in re-parameterized runs or other workflows. 
Moreover, unlike business workflows that are often event-
flow driven, scientific workflows are generally data-flow 
driven (i.e., execution is based on the flow of data as 
opposed to triggered events).   

In Kepler, scientific workflows bring together data 
and services, possibly created by groups or individuals 
unknown to each other.  Moreover, the workflow 
applications written in Kepler encompass a wide variety 
of scientific domains, sub-domains, and specialties.  By 
making these data and services broadly accessible and 
comprehensible way, Kepler facilitates cross-domain 
investigations and  interdisciplinary research.   
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Figure 1. The Kepler scientific workflow environment. 
 

Within Kepler, scientific workflows are authored in a 
graphical, drag-and-drop manner.  Services contain typed 
ports that can be connected to other services or data 
sources.  Ports can have simple atomic types such as 
integer and string as well as more complex structures, 
including arbitrarily nested array and record types. As a 
workflow is executing, data passes between ports via 
tokens that can be readily manipulated to meet the 
differing syntactic needs of other services.  Data produced 
by a scientific workflow can be displayed graphically at 
run time, or written to disk for later use.   

An example scientific workflow within Kepler is 
shown in Figure 1.  The panel on the left is the “library” 
where components are categorized and can be searched by 
a user.  When a component is needed on the canvas (the 
panel on the right), it is dragged from the library onto the 
canvas where it can then be configured and have its ports 
connected to other components.  The green box controls 
the timing and flow of the model and can also be selected 
and drug from the library. 

 
3. Conceptual Challenges in Scientific Workflows 

Because Kepler is a powerful and flexible workflow 
system with a diverse set of users, a number of 
conceptual-modeling challenges arise. Our goal is to 
allow users with different backgrounds and varying levels 
of computing expertise to create new scientific workflows 
with a minimum amount of difficulty.  We highlight 
below the main difficulties we wish to address.  

 
Supporting high-level conceptual models. Most 
scientists have a high-level conceptual model of their 
workflows.  If asked, a scientist can typically write down 
the steps involved in taking raw data and producing their 
desired output fairly quickly. However, when this 
conceptual model becomes formalized into an executable 
scientific workflow, a large number of low-level technical 

details arise. Details such as file access, network 
protocols, dataset schemas, service input and output 
typing, execution models (e.g., tuple-at-a-time versus 
table-at-a-time dataflow), and configuration parameters 
tend to obscure the high-level conceptual model of the 
workflow, making it hard to compare it with existing 
workflows and reuse it in new settings.  We would like to 
effectively capture the high-level aspects of a workflow, 
while also preserving but often hiding the underlying 
technical details.  
 
Basic contextual metadata. A general lack of contextual 
metadata with respect to data and services is problematic 
for users (e.g., those who are trying to find new and 
relevant datasets and services).  As an example, a service 
titled “interpolator” might give one the impression that it 
provides a generic interpolatation operation over arbitrary 
datasets when in fact, the service was written to 
interpolate spatial grid data.  Additionally, the same 
component could simply have been named “int,” 
obscuring the functionality of the service even though 
those familiar with the particular workflow know that  
“int” means “spatial data grid interpolate”. We face the 
challenge of making these services generically 
comprehensible and accessible.   
 
Schema and service-type semantics.  Scientific data 
integration can be a complex and time-consuming 
process.  Scientific data is highly heterogeneous, laden 
with structural, schematic, and semantic differences.  
Today, scientific-data integration is typically performed 
by hand and requires significant “meta” information.  
Service composition similarly requires considerable 
contextual information describing structure (to manage 
heterogeneity in input and output types) and semantics 
(the kind of objects consumed or produced by a service).  

4. Using Semantics in Workflow Authoring 
Robust metadata is required to meet the challenges 

involved in enabling domain scientists to create, run, and 
share scientific workflows.  Several communities 
continue to have grass-roots organizations that deal with 
the collection and storage of syntactic metadata.  The 
Knowledge Network for Biocomplexity [KNB] serves the 
ecological community with the Ecological Metadata 
Language (EML) [EML] and associated metadata 
repositories [JBBS01]. Other relevant metadata standards 
for Kepler include FGDC [FGDC] and Dublin Core [DC], 
to name a few. 

While standards such as EML may provide some 
support for semantic metadata (e.g., using a “keyword” 
field), this information is typically not sufficiently 
formalized for general use in an automated environment.  
Most current metadata standards for services also fail to 
include such formal semantics, including the Web-Service 
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Description Language (WSDL) [WSDL] and the 
Modeling Markup Language (MoML) [MOML].1   
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Figure 2: A simplified SEEK ontology. 

 
Kepler has adopted the OWL web ontology language 

[OWL] (more specifically, OWL-DL) as the primary 
language for capturing domain-specific terminologies 
used in semantic metadata. Our approach is to leverage 
OWL-DL ontologies and semantic annotations (described 
below) of data and services within Kepler to capture rich 
and possibly complex semantic metadata.  A fragment of 
the SEEK “measurement” ontology is shown graphically 
in Figure 2.   

To address the conceptual challenges discussed in the 
previous section, we have developed the following 
features, which we propose to demonstrate. Each of these 
features leverages the domain ontologies being developed 
within SEEK and the other Kepler projects.  

 
Support for detailed semantic annotations. Kepler is 
designed to provide users with the ability to semantically 
register [BLL04] their dataset schemas and services (and 
their corresponding input and output types) using 
semantic annotations. Figure 3 gives a set of semantic 
annotations for the biom dataset containing species 
biomass observations.  A semantic annotation defines a 
relationship between a service or dataset and terms in an 
ontology.  Intuitively, semantic annotations define the 
“semantic type” of the resource (shown by the statements 
on the left of the arrows in Figure 3), and link portions of 
the semantic type to portions of the resource (shown on 
the right of the arrow in Figure 2). For example, the first 
annotation in Figure 3 states that tuples in the biom 
dataset denote Observation instances from the ontology 
                                                           
1 An exception is the proposed OWL-S [OWL], which 
provides a “heavy-weight” language for defining the 
semantics of services. 

(in Figure 2). Similarly, the second annotation states that 
a year value within a tuple denotes the corresponding 
observation’s temporal context and is an instance of the 
Year ontology concept. The semantic annotation language 
is designed for use at different “granularities,” e.g., from 
selecting a single concept and assigning it to a service, to 
prescribing a complex ontology instantiation and 
assigning individual structures within it to particular data 
values within a dataset (such as in figure 3).2  
 
 Dataset Schema:  
 biom(yr, seas, plt, qd, spp, bm) 
 
Semantic Annotations:  
 x:biom  ==>  x:Observation 
 x:biom[yr=y]  ==> x[temporalContext=y:Year] 
 x:biom[seas=s], s=‘W’  ==>  x[temporalContext=s:Winter]
 x:biom[seas=s], s=‘S’  ==>  x[temporalContext=s:Spring]
 x:biom[seas=s], s=‘F’ ==>  x[temporalContext=s:Fall] 
 x:biom[plt=p]  ==>  x[spatialContext=p:Plot] 
 x:biom[qd=q]  ==>  x[spatialContext=q:Quadrat]
 x:biom[spp=s] ==>  x[item=s:Species] 
 x:biom[bm=b]  ==>  x[property=b:Biomass] 

 
Figure 3: Example semantic annotations. 
 
Workflow-component classification and browsing. 
Kepler leverages semantic annotations to provide 
customizable access to datasets and services. As shown in 
Figure 1, the panel on the left displays hierarchically 
arranged concepts taken from a user-selected ontology, 
and automatically places services within the hierarchy. 
This feature provides Kepler users the ability to: 1) select 
and configure the classification ontology, 2) view the 
hierarchically arranged ontology (which is computed 
using a description-logic classifier), and 3) see services 
classified according to the concept hierarchy (by 
matching these up through their semantic annotations).  In 
this way, users can easily customize Kepler service 
presentation (similarly for datasets), and provide 
ontology-based browsing of data and services. 
 
Semantic scientific-workflow analysis.  Given a 
workflow of interconnected actors, Kepler statically 
checks (i.e., at design time) whether two connected 
services (or data sources) are “semantically compatible” 
based on their semantic annotations, and notifies the user 
when a connection is not considered semantically well 
typed.  This capability directly assists a user with the 
workflow creation process. 

  
Ontology-directed scientific-workflow design. As large 
repositories of workflow components become available, 
                                                           
2 Semantic annotations in Kepler differ from other 
approaches by providing rich semantic descriptions that 
can be “superimposed” over structural types and schemas, 
allowing explicit connections between substructures and 
semantic types. 
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finding relevant resources becomes more difficult.  Given 
a workflow service on the Kepler canvas (the right panel 
of Figure 1), a user can search for all “semantically 
compatible” resources (either datasets or services) that 
can be connected to the input (or output) of the service. 
This search can also be restricted to return resources that 
are both semantically and structurally compatible (using 
Kepler’s type system).  

 
(Semi-)Automated Integration and Composition.  
Scientists often reuse existing workflow components to 
construct new models.  Such components are more often 
than not structurally incompatible, even though they may 
be semantically compatible.  Our goal is to exploit 
semantic annotations to derive structural correspondences 
between input and output data types [BL04].  These 
correspondences often contain enough information to 
derive the desired data transformations, allowing 
scientists to state the desired component connection 
instead of the low-level details of how those connections 
should be made.  Similarly, multiple datasets must often 
be combined (i.e., merged or integrated) to be useful as 
input to a workflow. In this demonstration, we will also 
show our recent developments for assisting Kepler users 
in the process of data integration [BTWL04] and service 
composition, leveraging semantic annotations and 
domain-specific ontologies. 
 
5.  Conclusions and Future Work 

In our poster we will show our recent ontology-
driven extensions to Kepler for workflow authoring. 
These extensions include (1) our advances in automating 
data-integration and service-composition tasks, (2) the use 
of semantic annotations to verify that workflows are 
semantically meaningful, and (3) the ability to search for 
contextually relevant components and data sets in situ, 
i.e., as a user is designing a scientific workflow. The 
utility of these extensions will be shown within the 
context of developing species biodiversity analyses within 
Kepler.  
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Abstract 
Arizona State University is developing a local 
interoperability framework to enable the university and 
government collaborators to share data and modeling 
applications. The project focuses on establishing 
documented interfaces to data and models using XML 
metadata; defining workflows that transform the outputs 
of one process into compatible input to another; and 
implementing these workflows across a distributed 
network using web services based on Apache SOAP. 
Point-of-presence (POP)  servers  at three participating 
institutions (ASU, Maricopa Association of Governments, 
and Arizona Department of Water Resources) upon which 
services for querying data, accessing applications, and 
transferring data from another POP are configured and 
manipulated by a remote workflow processor.  

 

1. Introduction 
The pace of urban development has presented 

science, government, and culture with significant 
challenges to understand, predict and manage the 
ecological consequences of this global process. It is 
widely recognized that the questions posed by urban 
systems exceed the scope of any one agency or discipline, 
requiring new levels of collaboration. Extensive 
monitoring datasets and sophisticated models of urban 
systems have been developed by scientists working for 
federal, state, and local agencies, often in cooperation 
with university researchers.  Each is designed to collect 
data and explore a specific urban/environmental system 
for issues related to the mandate of the sponsoring 
agency. These models are of value to science both for 
their insight into social and economic process as well as 
potential media for ecological monitoring data to be 
represented in environmental planning and decision-
making.  

The goal of this project has been the development of 
an information infrastructure that will promote and 
facilitate the sharing of data and models among the 
diverse members of the urban ecological research 
community in a given region. In a prior project, ASU 

developed the Southwest Environmental Information 
Network (SEINet) to promote the use of environmental 
data archives in research, education, and decision-making 
[1]. In our current project, we seek to build upon this 
infrastructure by first establishing a multi-agency network 
of metadata, data, and application services that can be 
invoked through an open, platform-independent 
messaging format.  We propose to then use this system to 
enable the creation and execution of scenarios, or 
workflows, that loosely couple models by “piping” 
outputs of one model or data source to the input of 
another. There are, of course, existing efforts to develop 
model integration platforms such as the Earth Systems 
Integration Framework [2]. However, the approach taken 
in this project presumes that modification of the original 
model code to conform to a common development 
framework and to accommodate the necessary data 
transformations to match their outputs to a priori format 
requirements is not always an option. Many of the 
datasets and models maintained by agencies are designed 
for specific management applications and there are few 
resources or incentives to make extensive alterations in 
response to external constraints. Therefore, a goal for this 
project was to devise an approach to integration that could 
wrap the model applications and query data archives in 
their original form even when they are running in 
different locations, on different operation systems, or in 
different programming languages.   

As a test of this system, we defined a workflow that 
links output from a global climate model (CCSM2) 
running at National Center for Atmospheric Research to a 
hydrology model (MODFLOW2000) running at the 
Arizona Department of Water Resources and then to a 
land-use change model (SAM-IM) developed by the 
Maricopa Association of Governments as an ArcView 
GIS model (Figure 1). Coupling these models in an 
integrated workflow involves accessing source data in 
several formats, executing models in different locations, 
capturing outputs and transforming them to overcome 
scalar and semantic differences between the outputs of 
one model and inputs to another, and moving the result to 
the appropriate location to be used as input to the next 
analytic process.  
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Figure 1. Data flow and coupling of evaluation 
models. 

As depicted in Figure 2, the processing of model 
outputs can be potentially complex, involving multiple 
computational steps to reclassify, scale, clip, and merge 
additional datasets to produce the correct input stream for 
the coupled model. In the example here, we wish to use 
raster output from a land-use change model to determine 
changes in the pump-out rates that are fed into the 
groundwater model, requiring us to make several changes 
in the format and semantics of the data.  The goal of this 
project is to expose these functions to a common 
workflow processing environment that script these steps 
and generates the specific calls to retrieve data, transform 
data, execute models, and forward the results to an end-
user report or visualization.  

2. Metadata-mediated interface to data and 
models 

Datasets and models are documented using an XML 
based metadata schema defined by an open-source, multi-
institutional project called Ecological Metadata Language 
(EML) [3]. EML uses an extensible content model that 
draws heavily from the Content Standard for Geospatial 
Metadata [4], the ISO Geospatial Metadata Standard [5], 
and the National Biological Profile for FGDC Metadata 
[6]. EML adequately describes the logical structure and 
physical formatting of tabular, GIS and image data, 
providing details allowing an application to connect to, 
query and parse a dataset in most DBMS and GIS archive 
formats. In this project, we are extending EML’s 
application to models both as a means of documenting a 

model’s outputs as new data, as well as defining the data 
input requirements of a model. Several existing efforts to 
define model metadata have focused on indexing and 
descriptive attributes [7] [8]. In our project we draw from 
the approach taken by the Earley Suite project [9] to 
provide metadata that supports the usability of model 
outputs by defining the settings, inputs, and attributes. 
With extensions to EML that permit the description of 
modeling applications, we are able to describe a model’s 
interface both in terms of the data inputs and parameters it 
requires, and the data file(s) it produces.  

Metadata for published data and modeling 
applications are indexed in a searchable registry using an 
XML-based query service called Xanthoria [10], 
developed under a previous project at ASU. A client-
server based system similar to Z39.50, Xanthoria allows 
multiple metadata catalogs to be searched from a single 
embedded query client. One feature of the Xanthoria 
system is that the server component has several 
connectors that can query existing data sources such as 
relational databases, raw XML files, and native XML 
databases such as Exist [11]. A significant goal of the 
project is to recruit local agencies to participate in a 
metadata registry network by creating catalogs or 
connecting existing ones to the Xanthoria protocol. 

3. Web services 
The underlying architecture of the integration 

network is based on each agency participating as a point 
of presence (POP) within a local network environment by 
hosting a compatible set of web services to provide 
metadata search, data query and processing, and 
application access (Figure 3). This general architecture 
was patterned after the National Earthquake Engineering 
Simulation Grid [12], a grid environment for coupling 
various models of building stress. The Xylopia web 
services project was created to define some standards for 
all web services to be located within a pop. Common 
features include shared registry of network device 
mounts, a common temporary workspace, code for 
writing out metadata of the service’s processing, and a 
standardized message structure to create a uniform 
interface to all application components. A typical 
workflow begins with a query performed against some 
dataset in an archive at one of the POP locations. A 
generic data query service is designed to read the 
dataset’s EML description, resolve a query expressed in 
an XML message, and execute the query. It returns a 
package with the resulting data file and a new EML 
document, which is written to a user workspace at that 
POP. Subsequent processing, modeling or visualization 
services are designed to read and write data and generate 
EML to describe its output. In most cases, the data 
processing services are actually wrappers to existing 
software. Open-source packages such as the GRASS GIS 
[13] and the R Statistical software [14] package are 
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Figure 2. Data transformation workflows. 
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chosen for the actual computations for several reasons. 
They are open source and are widely known and trusted. . 
They work well under Linux, the operating system used 
for most Xylopia services, and they can be wrapped by 
Java classes  using command- line interfaces.   
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system will have many steps where processing stops and 
waits for an asynchronous task to complete and post a 
notification. We are now seeking to mitigate the effect of 
this asynchronous flow by introducing more indexing and 
storage services that can manage multiple outputs and 
formulate batch requests for the subsequent model using 
outputs from multiple runs of the prior segments of the 
workflows.   

Two important issues affecting an agency’s 
participation in an open data and application sharing 
system are 1) security and 2) increased load due to 
external access traffic. To mitigate these two issues 
during prototype network development, servers were 
acquired by the project and configured with metadata 
catalogs and web service components. These were then 
installed at the two participating government agencies as 
independent servers from their normal computing 
resources. Placement of these systems outside firewalls 
eases limitations on network access and allows agencies 
to control the communication between the node server 
and their internal resources. 

 

4. Workflow processing 
In developing the prototype for this project, we are 

making use of workflow processing software based on the 
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Figure 3. Software and data components of a 
network Point of Presence (POP). Solid lines 
represent restricted communication; dashed lines 
represent SOAP messaging. 
When the workflow requires that data be physically 
oved to another POP location, a transport service 

ackages the data and metadata into a zipped file. A call 
 the unpack method from the same service at the 

estination POP causes the file to be retrieved via scp 
secure copy) and unzipped into a user workspace on that 
achine. By distributing the computing services to the 

emote locations, it is possible to generate workflow 
cripts that take advantage of the co-location of data and 
rocessing code, minimizing the size and frequency of 
ata transfers between two different nodes. 

Wrapping the ecological models themselves has 
roven to be a challenge, for practical rather than 
chnical reasons. The two primary models for this test 
ed (one a public-domain FORTRAN model, the other a 
roprietary ArcView GIS overlay model) are both 
onfigured and run at their respective agencies by 
dividuals using custom GUI’s (one in ArcView, the 

ther in MS Access). Neither system was designed to 
nable  direct access via code, much less from outside the 
cal network firewall. Therefore, our goals for this pilot 

tudy have been simply to define and implement web 
ervice interfaces for the models following the Xylopia 
pecification, with each simply packaging the input 
arameters and data files and notifying an operator of an 
xecution request. An html interface provides the operator 
ith forms to generate a notification message and post the 

esulting output so that it may re-enter the workflow when 
 is completed. Thus, an integrated workflow under this 

Ptolemy II application [15]. An open-source software 
project called Kepler has been formed by several major 
NSF-funded projects (including the Science Environment 
for Ecological Knowledge (SEEK), Geosciences Network 
(GEON), Biomedical Information Research Network 
(BIRN), and SCIDAC to develop extensions to Ptolemy 
for integration with web and grid service components, as 
well as a broad range of ecological modeling and data 
functions [16].  

Ptolemy provides an XML scripting language 
(MOML) and a graphical interface (Vergil) in which 
components are wrapped with small Java classes called 
actors that define  input and output ports for each 
function. While the original Ptolemy II application (and 
much of the ensuing Kepler development) focused on 
actors that perform or wrap code that is executed locally, 
ASU has begun the Encelia project, creating Kepler 
actors that are specifically designed to manipulate the 
Xylopia web services deployed at the remote POP 
locations. Encelia actors contain SOAP clients for 
invoking remote services. The input and output ports of 
Encelia actors do not send and receive data directly to and 
from other actors. Instead, only the metadata describing 
the output of the prior operation is returned and passed to 
the next actor (Figure 4). Other parameters take constants 
at design-time to provide user-specified information as to 
how to read the data and set any options for the actor’s 
request method. Each remote web service we are 
developing provides support for distributed workflows 
though secure shell transfers of data between node drop-
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boxes on the network and structured metadata to pass 

relative addresses of data to the remote processing 
service.  

5. Future directions 
The significance of this approach to integration is that 

it leverages existing investments in models and data 
management systems. While we expect to add many other 
features such as stronger security, job priorities, and 
logging before the system can be put in production, our 
test-bed is demonstrating the value of an open, 
interoperability framework for inter-agency collaboration 
that we hope will lead to greater incentives for online data 
publication and sharing. We expect this prototype to lead 
to an infrastructure that will support more rapid and 
flexible collaborations between academic and government 
agencies by reducing the need to move copies of large 
datasets to new locations or recode existing models to 
comparable languages.  
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Abstract 
SciFlo is a system for Scientific Knowledge Creation on 
the Grid using a Semantically-Enabled Dataflow Execu-
tion Environment.  SciFlo leverages Simple Object Ac-
cess Protocol (SOAP) Web Services and the Grid Com-
puting standards (WS-*  & Globus Alliance toolkits), and 
enables scientists to do multi-instrument Earth Science 
by assembling reusable Web Services and native execu-
tables into a distributed computing flow (operator 
graph).  SciFlo’s XML dataflow documents can be a mix-
ture of concrete operators (fully bound operations) and 
abstract template operators (late binding via semantic 
lookup).  All data objects and operators can be both sim-
ply typed (simple and complex types in XML schema) and 
semantically typed (linked to OWL ontologies).  We will 
demonstrate an early prototype of the SciFlo client and 
server software and an example dataflow in which at-
mospheric temperature and water vapor profiles from 
three Earth Observing System (EOS) instruments are 
retrieved using SOAP (geo-location query & data ac-
cess) services, co-registered, and visually & statistically 
compared on demand. 
 
1.  Introduction 
The General Earth Science Investigation Suite (GENE-
SIS) project is a NASA-sponsored partnership between 
the Jet Propulsion Laboratory, academia, and NASA data 
centers to develop a new suite of Web Services tools to 
facilitate multi-sensor investigations in Earth System Sci-
ence.  The goal of GENESIS is to enable large-scale, 
multi-instrument atmospheric science using combined 
datasets from multiple Earth Observing System (EOS) 
sensors on the three EOS satellites:  the Atmospheric In-
frared Sounder on Aqua (AIRS) [Aumann], the Moderate 
Resolution Imaging Spectrometer on Terra and Aqua 
(MODIS) [King], the Multi-angle Imaging Spectrometer 
on Terra (MISR), and Global Positioning Satellite (GPS) 
limb sounding [Hajj; GENESIS].  Investigations include 
cross-comparison of spaceborne climate sensors, cloud 
spectral analysis, study of upper troposphere-stratosphere 
water transport, study of the aerosol indirect cloud effect, 
and global climate model validation.  The challenges are 
to bring together very large datasets, reformat and under-
stand the individual instrument retrievals, co-register or 
re-grid the retrieved physical parameters, perform compu-

tationally-intensive data fusion and data mining opera-
tions, and accumulate complex statistics over months to 
years of data.  To meet these challenges, we are develop-
ing a Grid computing and dataflow framework, named 
SciFlo, in which we are deploying a set of versatile and 
reusable operators for data access, subsetting, registration, 
mining, fusion, compression, and statistical analysis. 

SciFlo is a system for Scientific Knowledge Creation 
on the Grid using a Semantically-Enabled Dataflow Exe-
cution Environment.  SciFlo leverages Simple Object 
Access Protocol (SOAP) Web Services and the Grid 
Computing standards (WS-* & Globus Alliance toolkits), 
and enables scientists to do multi-instrument Earth Sci-
ence by assembling reusable Web Services and native 
executable into a distributed computing flow (operator 
graph).  The SciFlo client & server engines optimize the 
execution of such distributed data flows and allow the 
user to transparently find and use datasets and operators 
without worrying about the actual location of the Grid 
resources.  The scientist injects a distributed computation 
into the Grid by simply filling out an HTML form or di-
rectly authoring the underlying XML dataflow document, 
and results are returned directly to the scientist's desktop.  
Once an analysis has been specified for a granule or day 
of data, it can be easily repeated with different control 
parameters and over months or years of data.  

In the sections following, we will highlight some of the 
design issues and solutions adopted in the implementation 
of SciFlo, including XML dataflow description docu-
ments, use of XML datatyping & semantic web ontolo-
gies, a parallel dataflow execution engine, data access 
services using SOAP, and distributed catalog lookup of 
operator bundles. 

2.  Technology Obstacles 
With present data systems large-scale studies are burden-
some and in many cases impractical.  Each requires swift 
access to, selection from, fusion of, and operation upon 
volumes of incommensurate products from multiple sen-
sors and archives.  This invariably requires custom code 
and deep expertise to accomplish properly. 

The goal of GENESIS is to create new tools to facili-
tate multi-sensor science; exercise them in real scientific 
investigations; deliver them in an open source toolkit that 
automates many steps in the process; adopt uniform and 
flexible standards; and provide a model archive of multi-
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sensor data, co-registered and cross-validated. Here we 
describe several of today’s persistent IT bottlenecks and 
briefly outline our approach to address them. 

Data Volume and Access. A single-instrument dataset 
may contain thousands of files (granules) and terabytes of 
data.  A typical AIRS, MODIS, or MISR swath is broken 
into many granules, each containing tens or hundreds of 
parameters.  Assembling a regional subset for a specified 
interval involves subsetting the granules by time and loca-
tion, retrieving the desired parameters, and aggregating 
the results. 

Time/Geo-Location and Parameter Subsetting. To find 
overlaps between multiple instrument retrievals, one 
needs flexible query and subsetting services for time, geo-
location, and desired physical variables.  Since each EOS 
granule (data object) has a unique ID, one can separate 
the data query & retrieval process into several steps:  
query by time & location for a list of matching granule 
ID’s, subset the parameters in each granule to reduce the 
size of the files, retrieve the customized granules over the 
Internet from a remote data center.  A key goal of SciFlo 
is to enable a scientist to develop & push a custom subset-
ting or data mining operator from her Sciflo server into a 
server that has local access to a large data archive.  SciFlo 
provides default SOAP services for data query, subset-
ting, and access: 

• GeoLocationQuery – return granule ID’s that are 
near a latitude/longitude point with locations, 

• GeoRegionQuery – return granule ID’s that intersect 
a lat/lon region with location metadata, 

• FullMetadataQuery – query by all metadata fields 
(constraints for a SQL where clause), 

• FindDataById – return one or more replicas for each 
granule as a list of pointers (URL’s). 

The semantics of these SOAP interfaces are general 
enough to be reused for AIRS, MODIS, MISR, and GPS 
datasets.  The actual retrieval and movement of data files 
is performed as necessary by the engine, using GridFTP 
and other protocols. 

Coincidence searching. Co-registration operators have 
been developed to find time & space overlaps between 
two point-like data objects (e.g., GPS profiles and ra-
diosondes) and point & swath (curvilinear scan grid) ob-
jects (e.g., GPS profiles and AIRS swaths). The overlaps 
are found using the location metadata, without retrieving 
the actual data.  To our knowledge, there are no other 
services that solve this random access lookup-and-
intersect problem in a robust way for large EOS datasets. 

3.  Features of SciFlo 
Here we describe the SciFlo design and its key tech-

nologies. (The current prototype does not yet implement 
all of the planned features.)  The design anticipates a 
large and growing network of SciFlo nodes, at first feder-
ated and later connected in a peer-to-peer (P2P) topology.  
Each SciFlo node is both a client and a server; distributed 
data queries and searches for operator bundles will be 

scaled up using P2P protocols (i.e., probabilistic flooding 
[Banaei-Kashani] or Gnutella [Paolucci]).  SciFlo will 
both move data to the operators and move operators to the 
data. 

Dataflow Execution Engine. At the core of Sciflo is a 
parallel dataflow execution engine (for other work see 
Kepler [Altintas] and Chimera [Foster]). The SciFlo en-
gine parses the XML description of the process flow, cre-
ates an optimized execution plan, distributes and load 
balances the computation, parallelizes if possible, and 
coordinates the execution of each operator. Operators can 
be local executables or scripts, or remote entities that re-
quire the engine to invoke a remote SOAP service.  The 
engine creates the code to move data inputs and outputs 
between nodes, sequence operations, execute operators in 
parallel, update a status log, and deliver results.   

Data and Operator Types.  SciFlo names objects and 
operators hierarchically for simple catalog lookup (e.g., 
sciflo.data.airs.l2std.granule and sciflo.op.coreg.point2-
swath), uses XML schemas to describe simple and com-
plex types, and uses OWL ontologies to provide higher-
level semantic typing (kind information via one or more 
subClassOf properties).  We are using and adding to On-
tology Web Language [OWL] work in describing space 
& time and the Earth science domain by [Raskin].  Each 
data object and operator can be labeled with both a type 
and a (semantic) kind.  However, all type information 
beyond the simplest “string versus float”  typing is op-
tional.  If type and/or kind information are present, then 
the engine can do type and/or kind checking and missing 
operator resolution using the types and/or kinds.  If type 
information is missing, execution proceeds at the risk of 
run-time errors due to dynamic type conversions. 

Streaming Binary Data Between Operators.  For 
loosely-coupled computing, small objects can be trans-
ferred in binary or XML formats, while larger objects are 
kept in binary containers (netCDF or HDF files) and ref-
erenced by URL’s.  The Open Data Access Protocol 
[OpenDAP] is particularly useful in this context.  An 
OpenDAP URL allows one to retrieve over the web a 
slice of any named matrix in a netCDF or HDF file.  Us-
ing OpenDAP, SciFlo can efficiently move fine-grained 
data slices to in-memory operators, while retaining the 
convenience of self-documenting composite containers. 

The SciFlo Document.  All flows are specified in 
SciFlo description language, an XML schema that reuses 
WSDL to describe each operator. A typical SciFlo docu-
ment consists of a SOAP envelope, header, text descrip-
tion, authentication data, imports, inputs, outputs, ex-
pected resource needs, a list of processes; and a post-
amble describing how outputs are to be collected and 
delivered.  The document contains the minimum declara-
tive information needed to specify the flow, and it can be 
simply authored in an XML outline editor.  (A visual pro-
gramming tool will be available but not required.) 

Each process in a flow can be another flow (recursive), 
a normal operator, a source operator to provide input data 
to initiate the flow, or a conversion operator inserted to 
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fill a gap.  SciFlo has built in operator “binding”  support 
for remote SOAP calls, http GET or POST calls (back-
ward web compatibility); local executables; or python 
methods.  SciFlo is novel in that a single dataflow docu-
ment seamlessly integrates the disparate realms of remote 
service calls, executables operating on files, and in-
memory python objects and methods (entering or leaving 
the python realm at will).  A referenced WSDL document 
provides the operator description, with some additional 
information to handle the translation between XML in-
puts and the executable’s command-line arguments or 
python method’s arguments. 

Parallel Computing.  The SciFlo execution engine can 
apply parallelism at many levels: 
• Within a single specialized operator 
• Create multiple processes or threads on a single node  
• Create multiple processes by launching operators or 

sub-flows on local (slave) nodes 
• Invoke a remote operator via a SOAP or http GET call 

and wait for the results 
• Redirect a flow or sub-flow to a server that can access 

a data source locally or that can efficiently execute a 
CPU-intensive operator 

• Partially evaluate a flow and then redirect 
• Invoke a flow multiple times if the source operator(s) 

yield multiple objects/files that need to be processed 
(implicit loops over lists). 

Flow Execution.  Based on the expected execution time 
and computing resources described in the flow specifi-
cation, flows are executed in either immediate or queued 
mode.  The execution process consists of: 
• arrival – flow execution request arrives at server 
• syntax check – see if document is well-formed  
• queue – push the flow onto an execution queue 
• dequeue – move the flow to the execution phase 
• parse – validate document against XML schema 
• type check – verify that operator input/output data will 

be of the correct types/kinds 
• elaborate – insert implicit unit or format conversions 

to fill in missing steps 
• plan – determine the execution plan and annotate the 

flow document accordingly 
• execute – execute parallel flow according to plan 
• deliver – deliver results to the requester. 

At first, ‘elaborate’  will supply minor missing steps using 
unit and format conversion operators.  Later, it will be 
possible to leave out more substantial steps and have 
them automatically filled with the “best”  operator that can 
be discovered in a distributed catalog or P2P search 
[Paolucci; Thaden]. Each SciFlo user can also specify 
preferences for particular conversion operators. 

Server Operation. The execution engine comprises 
separate processes executing on one node or many, that 
talk via SOAP; an XML file specifies the node configura-
tion to employ. The server is a SOAP service and can 
register itself in a UDDI or P2P-distributed catalog; one 
can then use service discovery to find SciFlo nodes to 

combine.  Thus, SciFlo will function as an adaptive paral-
lel server that can be reconfigured by editing XML files. 

 

Fig. 1. Flowchart of SciFlo Distributed Computing. 

Figure 1 depicts a master server and its links to other 
servers. Front-end nodes field requests, check them, and 
push them to a queue. A master node will later retrieve 
the flow and process it through the planning phase.  If the 
plan calls for flow redirection, the annotated flow docu-
ment is sent to the proper server. If the flow starts locally, 
parallel execution begins on a master server and may tap 
multiple CPU’s.  The figure shows several remote opera-
tors executing, starting at JPL. A SOAP query on the 
EOS Clearinghouse locates datasets and three parallel 
processes are launched: a subsetting operation on gran-
ules from Goddard via a Web Coverage Server call; a 
custom geolocation and subsetting operation at Langley; 
and a coincidence search for GPS profiles from GENE-
SIS via a SOAP call.  When the operators complete, the 
datasets are brought together and various data fusion op-
erators complete the analysis. 

Server Implementation.  Since the server is imple-
mented as a set of interacting SOAP services, each mod-
ule can be written independently in the programming lan-
guage of choice.  A prototype server has been rapidly 
developed using python as a “glue”  language and for a 
first implementation of many of the modules.  High per-
formance operators are developed by binding C, C++, & 
Fortran libraries into python, rather than using an all-Java 
solution.  SOAP endpoints are established by using an 
embedded web server or cooperating with an Apache web 
server.  The primary interface for both the client & server 
is provided by controlling a web browser. 

Parallel Scheduler. The parallel scheduling module is 
the core of the execution engine.  In its full generality the 
planning problem is quite difficult and involves parallel-
ism within a local computing cluster, and between poten-
tially unavailable clusters or Grid resources.  We have 
begun with fairly hard-wired parallelism for a single-node 
or small-cluster server.  We query loading at each node, 
use simple rules to assign operators and sub-flows to idle 
nodes, and use expected operator execution times to pre-
dict when nodes will become idle.  The scheduler is a 
SOAP plug-in that could be replaced by existing Grid 
solutions such as Pegasus [Deelman; Foster]. 

Front-end
Receives Requests

Queue of
Pending Flows

SOAP

Master Server
Plans

Execution

Local SciFlow Server at JPL DAAC

Parallel Execution
Engine

SOAP

SOAP

SciFlow Server
At DAAC or ESIP

Redirect
Flow

GENESIS ESIP

Co-registration
SOAP Call

Goddard DAAC
Subsetting

SciFlow Server
At Langley DAAC

WCS
Call

Execute

EOS
Clearinghouse

Metadata

SOAP
Query

SubFlow

85



 

 

Implicit Conversions. SciFlo supports several auto-
matic (implicit) conversions:  units, formats, and auto-
matic extraction (aggregation) of array slices from (to) 
composite data containers (HDF files or XML representa-
tions).  Such conversions are the simplest “missing”  steps 
that can be inserted automatically by constraint resolution 
on types and tractable semantic inference. Format conver-
sion will support translation of geo-registered 4D data 
arrays between HDF, XML, and other representations.  

Automated Installation of Operators.  Existing SOAP 
methods allow a SciFlo server to locate, request, and in-
stall new types, kinds, and operators.  If a server passes 
execution forward, the downstream server can transfer 
and install needed operators on demand.  Thus, a new 
operator can be installed on the master server to be 
propagated as needed.  Automated transfer of foreign, 
native executables raises serious security issues, but will 
be feasible once the WS-Security & WS-Authentication 
standards are finalized and implementations are robust.   

Data Provenance. The traceability of custom SciFlo 
products is completely specified by the unique ID’s of the 
input data objects, the versions of all of the operators, the 
elaborated SciFlo document, and the execution log.  Thus, 
data provenance can be maintained by saving snapshots 
of the entire flow package.  Custom products can also be 
assigned unique ID’s by computing a digest from that text 
package.  By organizing data analysis into SciFlo docu-
ments, a scientist can use SciFlo as a workbench to track 
ongoing analyses. 

Scalability.  Several SciFlo features are designed to 
foster automatic scalability:  the server modules are 
SOAP services so they can be distributed across multiple 
CPU’s or nodes; redundant front-end servers can queue 
up external requests; and redundant master servers can 
utilize clusters of slave servers.  Large networks of SciFlo 
nodes will scale by using P2P mechanisms.  

Adoption.  Every new technology must vie for accep-
tance. SciFlo confronts this challenge with a lightweight, 
language-independent framework; loosely-coupled dis-
tributed computing; simple declarative programming; 
processing flows expressed in XML; reuse of WS and 
Grid Computing standards; an execution engine using 
parallelism at many levels; standard operator and data 
types specified by XML schemas and OWL ontologies; 
open source software; and one-step installation on Linux 
or Windows clusters.  Ease of use and authoring is also 
promoted by several novel aspects:  both concrete and 
abstract dataflow specification are integrated into a single 
document schema; almost all “ typing”  information is op-
tional; more type and (semantic) kind information can be 
added later as ontologies and rule bases are developed. 

4. Future Work 
Once the first implementation of the SciFlo core engine 

is complete and the architecture of the server (SOAP in-
terfaces between modules) is stable, further research 
questions can be addressed, such as how to: plug in a 

more sophisticated parallel scheduler; dynamically com-
bine information from multiple ontologies into the seman-
tic inference process; and scale the network of SciFlo 
nodes using P2P mechanisms. 
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Abstract

Geospatial analyses of distributed data from surveys
and sensors are often stored and managed in diverse re-
gional, national and global repositories. The nature of sci-
entific processes requires composition of these resources
in a meaningful order to solve a specific geoscience prob-
lem. These tasks can be viewed as scientific workflows. Web
based interfaces allow access to remote data and tools, and
enable running computational experiments using different
online resources. However, it requires manual processing
to combine multiple resources in pipelines and scientists
still need IT experts to automate their large-scale scientific
workflows. The challenging problem is how to enable the
scientists to harvest online data and models for designing
and executing experiments in a seamless manner. A solu-
tion becomes feasible by the introduction of Web Services
in a variety of scientific domains. These services can be
discovered and composed through generic visual interfaces
and scientific workflow tools. For this purpose, we present
a complete framework for registering, discovering, compos-
ing and executing Web Services to support online science.

1. Introduction

Geospatial analytical functionality is essential to envi-
ronmental modeling. As large scale distributed geospatial
data is available, software reuse and sharing becomes more
and more important in integrated environmental modeling,
experimenting and analysis. The Service Oriented Archi-
tecture (SOA) allows cooperation of data and process com-
ponents among different organizational units and supports
reusability and interoperability of components on the Web,
thus increasing the efficiency of assembly and decreasing
the cost of development.

In recent years, the need for adaptable interfaces and
tools for accessing scientific data and executing complex
analyses on the retrieved data has risen in a variety of disci-
plines (e.g., geology, biology, ecology). Such analyses can

be modeled as scientific workflows in which the flow of data
from one analytical step to another is described in a for-
mal workflow language. While traditional business work-
flows are oriented towards document processing, task man-
agement and control-flow, scientific workflows typically are
data- and/or compute-intensive, dataflow-oriented, and of-
ten involve data transformations, analysis, and simulations.
Kepler [3, 14] is a system for design, discovery, execution
and deployment of scientific workflows from different sci-
entific domains. In this paper, we propose to use the Kepler
scientific workflow system to compose geospatial services
for environmental modeling. To the best of our knowledge,
there exists no previous work on utilizing scientific work-
flows for geospatial analysis and environmental modeling
by composing and executing Web Services in a systematic
manner.

We present an approach to provide uniform access to the
vast amount of highly heterogeneous services. These ser-
vices and the related metadata are archived using extensive
storage capabilities through registries, and the services are
discovered using a metadata description of their operation.
We use the Kepler workflow system to demonstrate the reg-
istration and discovery process of services within reposito-
ries. We further describe how within our framework, ser-
vices can be composed into scientific workflows and ex-
ecuted to perform scientific tasks. Workflows can also be
stored in repositories and shared between scientists. The
workflow execution can be monitored to detect and recover
from failures, to capture intermediate and end results of the
process for data provenance, and to log process information
and save execution logs. A challenging issue is to provide a
web based access for viewing, executing and sharing scien-
tific workflows and deploying scientific workflows as a new
service that can be applicable to other applications.

The rest of the paper is organized as follows. In section 2,
we provide a brief overview of distributed geospatial data
processing and propose to use Web Services as the build-
ing blocks of distributed geospatial data processing within
a scientific workflow system. Section 3 introduces the Ke-
pler scientific workflow system’s Web Services framework
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and the overall architecture. Section 4 presents a running
example to illustrate using Kepler to support environmen-
tal modeling. Finally, in Section 5, we provide a summary
and future work directions. Although the motivating exam-
ple of this paper is on geospatial data processing, the solu-
tions are applicable to other domains as well.

2. Distributed Geospatial Data Processing

In the early days of computer-aided environmental mod-
eling, geospatial data and process sharing between differ-
ent machines was available only through manually copying
it using mediums, such as floppy disks or CDs. With the de-
velopment of computer networks, much of this work can be
automated using tools and scripts. However, this approach is
still inherently labor intensive and requires considerable hu-
man interactions which is both inefficient and error prone.

During the past few years, major Geographical Informa-
tion System (GIS) software vendors (e.g., ESRI [1] and Or-
acle [6]) expanded their software functionality to provide
distributed geospatial data management using mainstream
Database Management Systems (DBMS) to support compu-
tation remotely in a computer network environment. How-
ever, there are several limitations to using a pure vendor-
specific DBMS approach to distributed geospatial data pro-
cessing for environmental modeling, such as cost of owner-
ship, technology complexity and interoperability. More im-
portantly, though database systems are naturally suited for
querying/filtering using spatial indexing, they provide poor
support for spatial transformations. Spatial transformations
are required for transforming between data types or geospa-
tial data values.

Nowadays, some major commercial database systems
are beginning to offer some spatial transformations capabil-
ities. However, the underlying ORDBMS model still makes
it difficult to apply them to environmental data, since the
data is usually unstructured or semi-structured. Therefore, a
pure distributed spatial DBMS approach based on SQL-like
queries for environmental modeling is undesirable if not in-
feasible. On the other hand, although Web GIS [12] has put
major efforts towards distributed geospatial data process-
ing, adopting the client/server architecture, they are mostly
restricted to visualization capabilities, offering little support
for complex queryies and analysis.

Furthermore, rendering geospatial data at client side in
the form of images or Java/COM object makes the inte-
gration and reuse of geospatial data very inefficient. Al-
though using XML as the communication protocol has been
proposed for geospatial data integration purposes [15], dis-
tributed geospatial data processing that involves data trans-
formation has hardly been investigated.

SOA provides a publishing interface to data and tools us-
ing the platform independent Web Service Definition Lan-

guage (WSDL) [10]. SOA can be used for exposing geospa-
tial data processing methods to the Web.

Within the efforts for standardization of geospatial data
formats (i.e. [11, 13]), Geographical Markup Language
(GML) [13] is expected to bridge between various data for-
mats. Thus, we propose to use the GML data format and the
SOA in distributed geospatial data processing.

We envision that an open architecture is vital for newly
emerging integrated and distributed environmental model-
ing. The architecture should support (1) both flat data (such
as operation system files), semi-structured and structured
data (such as databases), (2) legacy models written in tra-
ditional languages or scripts, and (3) interactive and auto-
matic executions of environmental models in the form of
scientific workflows. We believe that using Web Services as
the building blocks for geospatial data processing within a
scientific workflow system fulfills the above requirements.

In this paper, we propose publishing geospatial data and
processes as Web Services and composing them using a sci-
entific workflow approach. In order to efficiently access dis-
tributed data and process services, we use web service reg-
istries that are accessible through the Kepler system. In the
next section we present the Kepler scientific workflow sys-
tem as our Web Service composition and execution frame-
work to achieve distributed environmental modeling.

3. Kepler Web Service Framework

Kepler [3] is a system for the design and execution of sci-
entific workflows. It is built on top of the PtolemyII system,
a modeling and design tool for assembling concurrent com-
ponents by means of various models of computation [7].
Kepler is an extensible open source scientific workflow sys-
tem that provides scientists with a graphical user interface
to register and discover resources, and to interactively de-
sign and execute scientific workflows using emerging Web
and Grid-based technologies to distributed computations.

Kepler is unique in that it seamlessly combines high-
level workflow design with execution and runtime interac-
tion, access to local and remote data, and local and remote
service invocation along with a built-in concurrency con-
trol and job scheduling mechanism. Other unique features
are inherited from the underlying PtolemyII system, e.g.,
the ability to combine different models of computations in
a single scientific workflow.

Computational units in Kepler are calledactors, which
are reusable components that communicate with each other
via input and output ports. Actors are linked to each other
to compose ascientific workflow. The workflow execution is
orchestrated by adirector that provides the model of com-
putation, that is, scheduling components interaction. In this
paper we explain how the Kepler environment can be uti-
lized to discover, compose and execute geospatial data pro-
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cessing workflows for environmental modeling, most essen-
tially using a generic Web Service invocation component.

Several generic Web services actors have been imple-
mented in Kepler that serve as clients for accessing dis-
tributed resources within Kepler workflows. Specifically,
the WebService actor provides a simple plug-in mechanism
to execute any WSDL-defined Web Service. An instantia-
tion of the actor acts as a proxy for the Web Service being
executed and links to the other actors through its ports. Us-
ing this component, any application that can be deployed as
a remote service, can be used as a Kepler component.

Other features of the Kepler framework to support Web
Service execution are shown in Figure 1 . The figure depicts
the Kepler overall architecture for facilitating web service
based scientific experiments. The sequence of events in-
volved in performing and analyzing a scientific experiment
are as follows. A service in our framework can be apro-
cess serviceto perform an analysis operation, or adata ser-
viceto query over a dataset. The geospatial analytical func-
tions that are wrapped as Web Services are process services,
whereas services that query different formats of geospatial
data are data services. The user or provider publishes scien-
tific datasets and processes. The purpose of registering ser-
vices is to facilitate their discovery and provide methods for
their execution. In the Kepler system, services are registered
using domain ontologies and can be discovered by querying
over concepts in the related domain ontologies. The user
can then access distributed scientific resources by search-
ing and harvesting them. A search can be either syntactic,
that is, a text based search by the services names, or seman-
tic by issuing a query against semantic information stored in
the registries. Harvesting is facilitated by aWeb Service har-
vesterto conveniently plug in a whole set of (possibly re-
lated) services. Discovered components can be composed to
a scientific workflow and may also be registered within the
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Figure 1. Life-cycle of Kepler Web Services.

system either as a local component or within domain repos-
itories. The system provides several features for monitor-
ing workflows execution, such as, failure recovery, data and
process provenance and post execution processing. Another
functionality that is currently under research and develop-
ment is the deployment of a scientific workflow as a new
remote service.

4. Geospatial Data Processing Example

The following example in species occurrences analysis is
used to illustrate geospatial data processing within the Ke-
pler system. The goal is to find all the occurrences of species
A that are within the intersection of the convex hulls of the
occurrences of species B and species C. We assume that the
occurrences datasets (point data) are stored in three different
formats: species A data is stored in a flat file, species B data
is stored and managed by SQL Server 2000 and species C
data is stored and managed by Oracle 10g with spatial capa-
bilities. We further assume that these three datasets are ac-
cessible through Web Services which return a GML repre-
sentation of the data. Three geospatial functions are used to
process the query: GRASS’ Convex Hull, Oracle Spatial’s
Polygons Intersection and a Java Point in Polygon algo-
rithm. These functions are wrapped as Web Services to pro-
vide a uniform, domain independent access. Finally, a vi-
sualization component is used to display GML documents.
This component wraps GeoTools’ [2] GML displayer as a
Kepler actor. All of these components are registered within
a geological repository and are discovered, composed and
executed within the Kepler scientific workflow system.

Figure 2 provides a snapshot of the geospatial data pro-
cessing workflow. During the workflow composition, the
user first searches for the desired data and process services.
Discovered services appear in top left panel of the Kepler
graphical user interface and can be dragged and dropped
onto the workflow canvas to perform within a scientific
workflow. The services are linked to one another from their
visual ports using the GUI. The semantic data transforma-
tions in this example are transparent to the user. The datasets
are automatically transformed into a GML format while be-
ing accessed, using the discovered data services, therefore,
no additional intermediate components are required. As for
the process services, those were initially designed to con-
sume and produce GML document strings, and thus require
no further format integration processing.

As shown in Figure 2, accessing the datasets and the two
Convex Hull operations can be done concurrently while the
Point in Polygon and Polygon Intersection execute sequen-
tially. Such an execution is feasible in Kepler through aPro-
cess Network director, (PN) [9], which schedules the work-
flow execution to a parallel mode (when possible) by creat-
ing a separate execution thread for each actor.
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Figure 2. Modeling species occurrences.

GML display actors are used to provide a visualized dis-
play of the resulting datasets of each processing step. This
actor may also be replaced with a string display actor to dis-
play the resulting GML content, or a file writer to store the
computation result. Kepler also provides support (as men-
tioned above) for execution monitoring, such as, a time-
out mechanism for connecting to a Web Service, exceptions
handling, and enabling to continue halted executions from a
certain checkpoint by caching components’ computations.
The interactive workflow system essentially provides users
with a visual programming environment that can effectively
harvest, compose, execute and monitor distributed geospa-
tial processes for environmental modeling.

5. Discussion and Future Work

In this paper, we describe a framework for service-based
workflows and illustrated the application of it to distributed
geospatial data processing for environmental modeling. The
Kepler scientific workflow system provides a convenient in-
terface for discovering and harvesting services, and interac-
tively composing and executing them with support for exe-
cution monitoring and data provenance.

We demonstrate the feasibility of the proposed approach
for geospatial data processing with a simple running ex-
ample within the Kepler system. The example emphasizes
Kepler’s strength to facilitate environmental modeling. By
publishing geospatial data and processes as Web Services,
a unified framework is achieved for accessing various for-
mats and systems. To the best of our knowledge, there ex-
ists no previous work on experimenting with geospatial data
through scientific workflows, using Web Services as build-
ing blocks. Although the focus of this example is towards
environmental modeling, the proposed solutions have al-
ready been utilized within other scientific domains that uses
the Kepler system’s web service framework.

As for future work, from a geospatial perspective, we
would like to develop a client application to facilitate pub-

lishing of datasets as GMLs, including solving efficiency is-
sues when processing very large datasets.

We are also interested in extending Kepler’s web service
framework in a direction that allows efficient third-party
data transfers, has specialized directors (computation en-
gines) for optimized distributed execution for service-based
scientific workflows, and provides a role-based Kepler ac-
cess framework that allows users to create ad-hoc usage
groups in order to enable them share their data and process-
ing services through a unified infrastructure.
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Abstract

With phylogeneticsbecomingincreasinglyimportant
in biomedicalresearch, the numberof phylogenetic
studiesis increasingrapidly andhuge mountof phy-
logenetic data has been generated and stored in
databases.Howto efficientlyextract informationfrom
thedatahasbecomean importantresearch problem.

In thispaper, wefocusona classof importantqueries
onphylogenetictrees:structurequerieswhich include
leastcommonancestor, minimalspanningclade, tree
pattern match and tree projection. After analyzing
thecharacteristicsof thephylogenetictreeaswell as
structure queries,weproposea storage systembased
on labelingusingRDBMSanddesignalgorithmsfor
queryevaluation.Weimplementthesealgorithmsand
compare themwith existing techniques.Performance
studiesprovetheefficiencyof our strategy.

1 Intr oduction

Phylogenetics– the scienceof identifying and un-
derstandingevolutionaryrelationshipbetweendiffer-
ent species– hasbecomeincreasinglyimportant in
biomedicalresearch.For example,within epidemiol-
ogyit hasbeenusedto tracecontacthistoriesof infec-
tiousdiseases[9], to identify thegeographicoriginsof
outbreaks(asin thecaseof WestNile Virus[13]), and
to predictthetiming of new introductions[17].

In responseto the demandfor phylogenetictrees,
the number of phylogenetic studies is increasing
rapidly anda variety of phylogenetictreegeneration
algorithms[12, 6, 10, 26, 29, 19, 18] have beenpro-
posed. The numberof treespublishedis doubling
every 5 years,andthe numberof sequencesin Gen-
Bankthatmightbeusedtobuild treesisdoublingeven
faster, roughly every year[1]. Thesizeandscopeof
individual treesarealsoincreasingrapidly, asrecent

�
This work wasfundedby NSF ITR EF 03-31654entitled

”BUILDING THE TREEOFLIFE: A NationalResourcefor Phy-
loinformaticsandComputationalPhylogenetics”.

publicationsof treeswith hundredsto thousandsof
speciesdemonstrate.

The growth of phylogeneticinformation and the
need for on-line archival storageand retrieval has
led to the establishmentof several databasesystems,
mostnotablyTreeBase[23, 22] andTreeof Life[14]
(ToL). ToL containsa single tree,andalthoughit is
still far from completeit is quite large; the current
treerepresentedin XML formatis almost30MB [14].
TreeBase[23] currentlycontainsmorethan3000trees.

To extract data of interest from thesedatabases,
variousspecializedsearchtoolshave beendeveloped.
TreeBaseprovidesakeyword-basedsearchtool which
allows a userto entera treeID, thenameof a taxon,
or otheridentifying featuresto searchthedatabaseof
trees. ToL employs visualizationtechniquesthat al-
low the userto view a sectionof the tree,expandor
contractportionsof thetree,andto link to supporting
literatures. However, neitherof thesesystemsallow
usersto searchthe structureof a phylogenetictree.
Sincethestructureof a phylogenetictreemodelsthe
importantinformationaboutthetaxacontainedwithin
thetree,structuresearchis very important.

Recentresearchefforts have thereforebegun to
considerstructurequerieson phylogenetictrees[27,
20]. [27] focuseson patternmatchqueries:given a
querytree(samplephylogeny), find all treesthatcon-
tain the query structure. Their techniqueis to de-
composethe patterninto a set of paths,and try to
scorethe treesin the databasewith the numberof
matchedpaths. However, the methodcannotbe ex-
tendedto structurequerieswhoseinput doesnot con-
tain structuralinformation,suchasleastcommonan-
cestorqueries:giventwo species,find their leastcom-
mon ancestor. [20] focuseson leastcommonances-
tor andminimal spanningcladequeries. By storing
eachtreeedgeasa tuplein a relationaldatabase,they
cantranslatethesequeriesinto SQLexpressionsusing
transitive closure(provided by many relationalsys-
tems,suchasOracle). A major shortcomingof this
approachis that transitive closurecanbevery expen-
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sive for largedatasets[28].
Thispaperpresentsastorageschemeandoptimiza-

tion techniquesfor efficiently supportingstructure
querieson phylogenetictrees. The structurequeries
supportedinclude least commonancestor, minimal
spanningclade, treepatternmatch, and treeprojec-
tion. Our methodis basedon a Dewey numbering
scheme[30] which encodesthe information of the
path from the root to a node. Experimentalresults
show that our approachperformswell and scalesto
largedatasets.

Theoutlineandcontributionsof thispaperare:

1. In Section 2, phylogenetictreesand structure
queriesaredefined.

2. A labeling schemebasedon structureinforma-
tion is presentedin Section3; adatabaseschema
basedonthis labelingschemeis thendesignedto
storephylogenetictreeinformation.

3. Efficient algorithms for evaluating structure
queriesarepresentedin Section3 usingthepro-
poseddatabaseschema.

4. Section4 details the experimentalresults that
demonstratetheefficiency of ourstrategy.

We closethe paperby discussingrelatedand future
work.

2 Data Model and Queries

A commondatamodelfor representingevolutionary
relationshipsbetweenspeciesis a tree. Phylogenetic
treeshave thefollowing specialcharacteristicsandre-
quirements:

1) In theory, phylogenetictreesareunorderedbinary
treessince it is almost impossiblefor a speciesto
evolve into more thantwo speciesat the sametime.
Occasionally, treeswith slightly larger fanoutwill be
built if insufficient informationis available;however,
this is rareandthefanoutis alwayssmall.Althoughit
is importantto determineif two nodes(species)have
thesameparentor ancestorin phylogeneticresearch,
thereis no obvious biological reasonto sort the sib-
lings. Treesarethereforeconsideredto beunordered.

2) Theleavesin a phylogenetictreesaretagged.The
tag attachedto a leaf is alwaysunique,andtypically
denotesa speciesname.

3) The information attachedto nodes is typically
large, representingeithersequenceinformation(sev-
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Each nodesaregivena uniqueidentificationto facilitate
thediscussion.

Figure1: Phylogenetictreefor hominidae[14]

eral million characters)or information about the
modelusedto build thisnodein thetree.

Formally, we candefinea phylogenetictreeasfol-
lows:

Definition 2.1: A phylogenetictree � canbedefined
asa tuple(��� , ����� , ��������� � , root),where

! �#"$�&%(')�&* is afinite setof nodeswhere �&% is the
setof internalnodesand �&* is thesetof leafnodes

! � is afinite alphabetof nodetags.

! ����� : � *,+ � is the tag function; �-�.�0/1�32 returnsthe
tagnameof � , whichcanbeeithera tagor 4 .
! �������5� � : � +76 458:9;�<% is theparent function; =0/1�32
returnstheparentnodeof � if it existsand 4 otherwise.

! �?>?>@�BAC� is rootof thetree.

Phylogenetictreesmay also have more informa-
tion associatedwith nodesor edges.For example,the
edgesmaybeweightedto representevolutionarytime.
Here,we give a very basicmodelto simplify thepre-
sentation.

For example,Figure1 shows thephylogenetictree
for Hominidae[14] wheretag( �D>?E���FGF ) = ”Homo” and
parent( �D>?EH��I ) = �D>?E���J .

Biologistsfrequentlyexchangeandstorephyloge-
netic trees using the NEXUS [15] format. In the
NEXUS format,a pair of parenthesesis usedto rep-
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resentan interior node, a string to identify a leaf
node,a commato separatetwo sibling, and an op-
tional realnumberprecededby a colon to denotethe
weight of the incoming edgeof the node. For ex-
ample, the subtreerootedat �D>?E��K in Figure 1 can
be representedas (Ardipithecus, (Australopithecus,
Homo))). Sometimes,biologistsalso want to iden-
tify the internalnodesandusean extendedNEXUS
format in which stringsarealsousedto identify in-
ternalnodes.For example,if we useid to identify an
internalnode,thesubtreerootedat �D>?E��LK in Figure1
can be representedas (Ardipithecus, (Australopithe-
cus, Homo) �D>?E���M ) �D>?EH�K .

Wealsodefinetheancestorrelationshipasfollows:

Definition 2.2: Given a phylogenetictree ( � , � ,
����� , �0�.���5� � ) and a node �NAO� , �.�DP5�Q��>L�</1�32R"
6�SUTWVYX FDZ5Z5Z X\[ A]�^/ X F#" �`_ X\[ " S _)acbedf d gihjbk���.����� �l/ X\m 2n" X\mpo F�2q8 The functionf QL�.�DP5�LQ���>@�r/ S,s �32 returnstrue if and only if S A
���DPl�LQ���>@�</1�32 .

Queries.

Structurequeriesareusedto determinerelationships
betweenspeciesor to checkif agivenpatternexistsin
agiventree.

Least Common Ancestor: Leastcommonancestor
is animportantstructurequeryon phylogenetictrees.
Although it is not frequently usedby biologist di-
rectly, it is the basiccomponentfor other structure
queries. Leastcommonancestorfinds the common
ancestorof a setof nodeswhich is farthestonefrom
theroot.

Definition 2.3: Given a phylogenetictree � ( � , � ,
����� , ���.����� � ), the leastcommonancestorof a setof
nodes� Fls Z5Z5Z s � [ AU� , denotedas X Pl�t/1� F5s Z5Z5Z s � [ 2 =
6�SuT f QL���DPl�LQ���>@�</ S,s �cFq2._vZ5Z5Z�_ f QL�.�DP5�Q��>L�</ S,s � [ 2�_w X / f QL�.�DP5�LQ���>@�r/ X-s � F 2x_yZ5Z5Zz_ f Q���DP5�Q�->@�</ X-s � [ 2{_f QL�.�DP5�LQ���>@�r/ S,s|X 2G2q8

For example,we mayaskthefollowing query:} FU~ Find the leastcommonancestorof Homo and
Gorilla.
Usingthetreein Figure1, theresultwouldbe �D>?E��J .

Minimal Spanning Clade: Minimal spanningclade
is oftenusedwhenbiologistswant to find all species
whicharecloselyrelatedto thespeciesthey arework-
ing on. Theminimal spanningcladeis definedasfol-
lows.

Definition 2.4: Given a phylogenetic tree
� ( � , � , �-�.� , ��������� � ) and a set of nodes
�cF s Z5Z5Z s � [ A � , the minimal spanning clade,
denotedas S QLP�/1�cF s Z5Z5Z s � [ 2 , is the subtreerootedat
X Pl�0/1�cF s Z5Z5Z s � [ 2 .

For example,
} JO~ Find the minimal spanning

cladeof speciesHomo, Gorilla andPanTroglodytes.
The result is (((Pan Paniscus, Pan
Troglodytes),(Ardipithecus, (Australopithecus,
Homo))), Gorilla).

Tree Pattern Match: Tree pattern match is used
whena biologistknows the relationships(a phyloge-
netictree)betweena setof species,andwantsto find
relatedresearchon this setof species.We definethe
treepatternmatchasfollows:

Definition 2.5: Given a query tree
}

( ��� , ��� , ������� ,
�������5� � � ) anda datatree � ( � , � , ���.� , �������5� � ), tree
pattern match, denotedas �\� S / } s ��2 , return true if
andonly if thereis a homomorphismfrom ��� to � .
Thatis, thereis a function ��~���� + � suchthat:

! a0�.�tAC��� V ��AC� s ��"i�(/1����2
! ���.�0/1�Y2�"��-�.�0/��3/1� � 2G2
! a0��� s �.� AC�������&"U�0�.���5� �5/1�.�p2
+ f Q���DP5�Q�->@�</��(/1���\2 s �(/1�.��2G2

For example,we mayaskthefollowing query:} I�~ Is thepattern((Gorilla, Ardipithecus), Homo) in
thetreeof Figure1?
Theresultwouldbefalse.

Treeprojection: Sometimes,biologistsareinterested
in asetof species,but maynotknow therelationships
betweenthem. In this case,they may go to a well
known phylogenetictree,suchasTOL, andextractthe
subtreewhich only containsthe relationshipamong
the speciesthey are interestedin. We call this tree
projectionanddefineit asfollows:

Definition 2.6: Givenadatatree � ( �y"$�&% ' �&* , � ,
����� , �������5� � ) and a set of nodes ���j�<* , tree pro-
jection, denotedas �&��>5�.��P�� f >@��/�� s �z2 , returnsa tree
( ��� "����% ')���* , ��� , �-�.�.� , �0�.���5� �-� ) suchthat ���* "��
andthereis ahomomorphism��~H��� + � ’ suchthat:

! a0� � AC� � V ��AC� s ��"i�(/1� � 2
! ���.�0/1�Y2�"��-�.�0/��3/1�.��2G2
! a0��� s �.� AC�������&"U�0�.���5� �5/1�.�p2
+ f Q���DP5�Q�->@�</��(/1� � 2 s �(/1� � 2G2
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Notethatthisdiffersfrom minimalspanningclade.
For example,

}�� ~ find the treeprojectionwith given
speciesHomo, Gorilla andPanTroglodytes.
Theresultwill be((Homo, PanTroglodytes), Gorilla)
which is differentfrom theresultof query

} J .
Sincebiologistsaretypically interestedin a small

setof species,theresultof astructurequeryis usually
relatively small.

3 Evaluating Structure Queries

Basedon thepropertiesof phylogenetictrees–in par-
ticular the fact that phylogenetictreesareunordered
with smallfanout– weusetheDewey numberingsys-
tem[30] which is widely usedin library bookclassifi-
cationto labelnodesandspeedupstructurequeries1.

Theabstractionto phylogenetictreesis asfollows:
For eachnode � , we randomly order the outgoing
edgesandusetheorderasthelabelof theedge.Since
thereis a uniquepath � from theroot to a givennode
� , we concatenatethe labelsof edgesappearingin �
andusingtheresultstringasthelabelfor node� .

In this paper, we focus on a binary phylogenetic
tree; however, the algorithmsalso hold for a fixed
fanouttree. To clarify the following discussion,we
introduce some terminology: Given a node id � ,
label( � ) denotesits label, leftchild( � ) denotesits left
child andrightchild( � ) denotesits right child . Given
a label X , node( X ) denotesthe nodeid. Given two la-
bels X F and X J , lcp( X F ,X J ) denotestheir longestcommon
prefix.

Ancestor/descendantrelationshipas well as com-
monancestorscanbedeterminedby comparingnode
labelsasfollows:

Ancestor/DescendantNode S is a descendantof
node � if and only if label( � ) is a prefix of
label( S ). Note that � is the parentof S if and
only if its labelis thestringobtainedby deleting
thelastcharacterof X �H�l� X / S 2 .

Commonancestor A commonancestorof S and �
hasalabelwhichis acommonprefixof label( S )
andlabel( � ).

Note thata nodelabelexplicitly givesinformation
of the path from the root to this nodeand therefore
uniquelyidentifiesthisnode.

Example 3.1: Figure2 shows label information for
thesamplephylogenetictreeof Figure1, whereeach

1A similar schemeis alsousedin [21].

label tag id
0 0
00 Pongo 1
01 2
010 3
0100 4
01000 PanPaniscus 5
01001 PanTroglodytes 6
0101 7
01010 Ardipithecus 8
01011 9
010110 Australopithecus 10
010111 Homo 11
011 Gorilla 12

Figure 2: Relational Representationof Hominidae
Phylogeny

Algorithm 1 Tree:labeling(Tree: � , Stringlocal)
1: if r is null then
2: return
3: end if
4: if parent( � ) existsthen
5: label( � ) = concat(label(parent( � )), local) //

concatis the function to concatenatetwo
string

6: else
7: label( � ) = local;
8: end if
9: labeling(leftchild( � ), “0”)

10: labeling(rightchild( � ), “1”)

tuple in the tablecorrespondsto a nodein thetreein
Figure1, the tag attribute representsthenodetag in-
formation, the id attribute is the uniquenodeidenti-
fication andthe label attribute in the tablestoresthe
labelgeneratedfor thisnode.ConsiderspeciesHomo,
for which label(Homo)= �rb5�rb�b�b . Sincelabel(NodeI )=
�rb5� which is aprefix of �rb5�rb�b�b , NodeI is anancestor
of Homo, but not the parent. Furthermore,sincela-
bel(Pan Paniscus)= �rb5����� , NodeI is the commonan-
cestorof speciesHomoandPanPaniscussince�rb5� is
acommonprefix of �rb5�rb�b�b and �rb5����� .

Thelabelscanbeconstructedin asingle-passusing
depth-firsttraversalof the input phylogenetictreeas
presentedin Algorithm 1.

Next we will discusshow to evaluate structure
queriesusingthis labelingscheme.

LeastCommonAncestor.

Theleastcommonancestorof two nodesS and � can
be answeredby finding the nodewhoselabel is the
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Algorithm 2 Node:lca(Node:� , Node:S )
1: Xp� = label( � ), Xp� = label( S )
2: Computethe longestcommonprefix X of Xp� and

X\�
3: Returnnode( X )

longestcommonprefix of label( S ) andlabel( � ). De-
tails canbefoundin Algorithm 2. Notethat lca(n,m)
canbe computedin time proportionalto the sizeof
the labelsof the input nodes,which areboundedby
theheightof thetree.

Example 3.2: To answerquery
} F , we will get the

labelsof Homo and Gorilla, which are �rb5�rb�b�b and
�rb�b . The longestcommonprefix of thesetwo labels
is �rb . We thendeterminethat �D>@EH� J haslabel �rb , so
HomoandGorilla sharedthe leastcommonancestor
�D>?E��J .

Treeprojection.

To find a treeprojectionfrom a setof nodes,we first
get labelsof thesenodesandsort the nodesby their
labels in alphabeticalorder. Algorithm 3 can then
be usedto projectionthe tree. The algorithmworks
asfollows: Startingwith an emptytree � , we insert
nodesinto the treein order. Sincetheorderof labels
representstheleft-right orderof theleavesin thedata
tree,ateachpointthenodebeinginsertedwill become
therightmostleaf nodein � after insertion.To deter-
mine the parentof the new node � in � , we find the
first node S on the path from the currentrightmost
leafnode� to therootsuchthatlabel( S ) is aprefixof
label( � ).

Proposition 3.3: Let g bethenumberof nodesin the
inputset � . Thenthetotalnumberof comparisonper-
formedby Algorithm 3 is boundedby ��g .
Proof: Observe that eachtime we inserta node,the
numberof comparisonsis justonemorethanthenum-
berof nodesremovedfrom therightmostpath.Sothe
total numberof comparison= b:��PLF�� b��¡PlJcZ5Z5Z��
b0��P [ , whereP m is thenumberof nodesremovedfrom
therightmostpathwhenwe insertthe

f
th node.Once

a nodeis removed from therightmostpath,it will be
neverconsideredagain.So PLFH�¢PlJcZ5Z5Z-�¢P [ is bounded
by thesizeof theresulttreewhichis atmost £�g . Thus,
the total numberof comparisonperformedby Algo-
rithm 3 is boundedby ��g .

Example 3.4: To answerquery
}��

, we first retrieve
thelabelsof theinput speciesHomo, Gorilla andPan
Troglodytes, which are �rb5�rb�b�b , �rb�b and �rb5���rb , re-

Algorithm 3 Tree: projection(Node list: � "
/1�cF s Z5Z5Z s �(¤�2 )

1: � = null
2: for

f "#b , f d`Q , f �`� do
3: if � is null then
4: � = thetreewith only onenode� m
5: � = � // use� to recordtherightmostleaf
6: else
7: X Pl� = lca(� ,� )
8: S = parent( � )
9: while S is not null and label( S ) is not a

prefixof label( X Pl� ) do
10: S = parent( S )
11: endwhile
12: if S is null then
13: leftchild( X Pl� ) = �
14: rightchild( X Pl� ) = �
15: � = X Pl�
16: else
17: leftchild( X Pl� ) = rightchild( S )
18: rightchild( X Pl� ) = �
19: rightchild( S ) = X Pl�
20: end if
21: � = �
22: end if
23: end for

Algorithm 4 Tree:msc(Node:� , Node:S )
1: X = lca(� , S )
2: Get leaves of the tree rootedby X , ¥������H�Q , and

orderthemby label
3: projection(¥���.�Y�Q )

spectively. Wesortthislabelsetandgetthelist �rb5���rb ,
�rb5�rb�b�b , �rb�b . Wefirst insert �rb5���rb into anemptytree.
To insert �rb5�rb�b�b , we computethe leastcommonan-
cestorof �rb5�rb�b�b and the rightmost leaf in the cur-
rent tree( �rb5���rb ) andget theresult �rb5� . Since �rb5���rb
hasno parent,we use �rb5� astheroot of thenew tree
andget the tree( �rb5���rb , �rb5�rb�b�b ) �rb5� . We theninsert
�rb�b , andcomputethe leastcommonancestorof �rb�b
andthecurrentrightmostleaf ( �rb5�rb�b�b ) obtaining �rb .
Sincetheparentof node �rb5�rb�b�b haslabel �rb5� which
is not a prefix of �rb , we mustcontinueup thepathto
theroot of thecurrenttree.However, node �rb5� is the
root, sowe mustcreatea new root �rb , finally, obtain-
ing thetree(( �rb5���rb , �rb5�rb�b�b ) �rb5� , �rb�b ) �rb . Usingtags
to representnodes,this is the tree((Pan Troglodytes,
Homo),Gorilla).
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Minimal SpanningClade.

Using the leastcommonancestoralgorithm,we can
find theminimalspanningcladeasfollows. Giventwo
nodesS and � , wefind their leastcommonancestorX .
We thenfind all nodes� in thetreefor which label(l)
is a prefix of label(a), obtainingas a result a set of
nodes.

If the userwishesa treeinsteadof a setof nodes,
we retrieve the leaves for which label(l) is a prefix
and sort them by their labels. We then projection
over them (Algorithm 3) to obtain the tree (seeAl-
gorithm4).

In our implementation(seeSection3), we cluster
nodesin a treeby their labelandindex labelsso that
matchingnodescanbefoundefficiently. Thenumber
of comparisonsperformedis thereforeproportionalto
the numberof matchingnodesplus an index scan.
Sincetheresultis alreadysorted,Algorithm 3 canbe
directlyappliedto theresultto obtainthetree.

TreePattern Match.

To answera treepatternmatchquery, we alsousethe
projectionalgorithm(Algorithm 3). Givena treepat-
tern � , we extract thesetof leavesin � . Usingtheset
of leavesasinput, we projectiona subtreeQ from the
given phylogenetictree � . We thencheckwhetheror
not � and Q areequal(in thecaseof anexact match)
or computethedifferencebetween� and Q asa mea-
sureof similarity in the caseof approximatematch.
Algorithm 6 shows theexactpatternmatchalgorithm.

To checkif two phylogenetictreesrootedat S and
� respectively arethesame,we usethepropertythat
theleaf tagsareunique.Theideais thatweperforma
depthfirst traversalof eachtreeandtageachinternal
nodewith the smallesttag of its descendantleaves;
this can be done in linear time. Then we compare
thetagsof thetwo treesstartingat theroots: we first
checkif the tagsof S and � arethesame;if not, re-
turn false. If they arethesame,we recursively check
that for eachchild of S thereis a child of � with the
sametag(andviceversa).Sincethetreeis unordered
andbinary, this entails3 checks.Thetotal numberof
comparisonsis thereforelinearin thenumberof nodes
in thetree. Thedetailedalgorithmis shown in Algo-
rithm 5.

To computethe differencebetweentwo trees,we
referreadersto [2].

Example 3.5: To answerquery
} I , we first retrieve

the leavesof the input treepatternwhich areGorilla,

Algorithm 5 boolean:equal(Tree: � F , Tree: � J )
FunctionTree:tagging(Tree: � )

1: if ¦ is a leaf then
2: return
3: end if
4: tagging(leftchild( � ))
5: tagging(rightchild( � ))
6: if tag(leftchild( � )) d tag(rightchild( � )) then
7: tag( � ) = tag(leftchild( � ))
8: else
9: tag( � ) = tag(rightchild( � ))

10: end if
Functionboolean:Compare(Tree: ��F , Tree: �J )

1: if � F is null then
2: if �J is null then
3: returntrue
4: else
5: returnfalse
6: end if
7: else
8: if �J is null then
9: returnfalse

10: end if
11: end if
12: if tag( � F ) != tag( � J ) then
13: returnfalse
14: end if
15: if Compare(leftchild( ��F ), leftchild( �J )) then
16: if Compare(rightchild( ��F ),rightchild( �J ))

then
17: returntrue
18: else
19: returnfalse
20: end if
21: else
22: if Compare(leftchild( � F ), rightchild( � J )) then
23: if Compare(rightchild( ��F ), leftchild( �J ))

then
24: returntrue
25: else
26: returnfalse
27: end if
28: else
29: returnfalse
30: end if
31: end if
Functionboolean:equal(Tree: � F , Tree: � J )

1: tagging(��F )
2: tagging(�J )
3: returnCompare(��F ,�J )
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Algorithm 6 boolean:pattern-match(Tree: § )
1: gettheleaf setof § : �
2: Getthelabelof elementin � andorder � by label
3: � =projection(� )
4: if equal(� ,§ ) then
5: returntrue
6: else
7: returnfalse
8: end if

ArdipithecusandHomo. Applying theprojectionop-
eration,we geta subtree((Ardipithecus, Homo), Go-
rilla ). Applying the tree equality function of Algo-
rithm 5, we find that ((Ardipithecus, Homo), Gorilla)
is not the sametree as the input pattern((Gorilla,
Ardipithecus), Homo), therefore,we returnfalse.

4 Experimental Results

To evaluatethe effectivenessof our methodwe built
aprototypesystemusingC++ anda leadingcommer-
cial relationaldatabasesystem.We generatedphylo-
genetictreesusingr8s [25]. Basedon Algorithm 1,
a dataloaderparsesthephylogenetictrees,generates
a tuple for eachnodein eachtree, and storesthem
in thedatabase.Theschemaof thedatabaseis ¨ tid,
label, tag© wheretid is usedto distinguishdifferent
trees,labelis thelabelof thenode,andtagrecordsthe
nameof the specieswhich is usedto uniquely iden-
tify a node. The relationis clusteredby 6 tid, label8 .
An index on 6 tid, tag8 is alsobuilt to improve perfor-
mance.We studytheperformanceof our methodand
compareit with two relatedsystems. Experimental
resultsshow theeffectivenessof ourapproach.

4.1 Experimental Setup

The experimentswereperformedon a 1.5GHzPen-
tium 4 machinerunningLinux, with 512MB memory
andone40GBharddisk (7200rpm).Thedatabaseis
installedon anothermachinewith the sameconfigu-
ration and runningWindows 2000. All experiments
were repeated10 times, and the averageprocessing
time was calculateddisregarding the maximumand
minimumvalues.

We comparethe performanceof our systemwith
two othersystemsprocessingstructurequeries:[20],
which is basedon thetransitive closureprimitive pro-
vided by the relationaldatabaseanddenotedasTC;
[27], which is basedon path matchand denotedas
PM. We denoteour methodasLS (labelingscheme).
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Figure3: Distancebetweeninput pair nodesin the data
tree
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Figure4: Executiontime of LCA queries

NotethatPM is a mainmemoryalgorithm,while TC
andLS needto visit databases.

4.2 LeastCommon Ancestor (LCA)

The first experimentteststhe leastcommonancestor
query. Dueto thelackof availability of largephyloge-
netictrees,in thisexperimentweuser8s[25] to simu-
lateaphylogenetictreewith 0.5million nodesaccord-
ing to a Yule stochasticprocess.Thesizeof dataand
indexesfor TC andLS are35MB and50MB respec-
tively. We randomlypick 10 pairsof nodesasinput;
the distancebetweenthe nodepairs is show in Fig-
ure3. Figure4 showstheexecutiontimeof leastcom-
monancestorqueries;thedatabaseconnectiontime is
not included. Note that the PM methodis absentin
this testsinceit cannotsupportLCA queries.Hereas
well asthroughoutthe restof this section,whenever
a methodcannotsupporta particularqueryit will be
omittedfrom theperformancegraphs.

We can seethat both TC and LS work well. LS
is basedon string comparisonson labelswhich run
very fastandcannotbeaccuratelymeasured;we use
0.001secondsasits runningtime. TC takeslessthan
0.14 secondto run eachquery except for query 10.
It is interestingto seethat thereis no clear relation-
shipbetweentherunningtimeof thetransitiveclosure
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Figure6: Executiontimeof MSCqueries

methodand the distancebetweentwo input nodes.
For query10, sincethe leastcommonancestorof the
two givennodesis theroot,andtheroot hasnot been
storedasa tuplein TC, theresultis notavailable.

4.3 Minimal SpanningClade (MSC)

The next experimentteststhe performanceof mini-
malspanningcladequeries.Weusethesamedataand
querysetasLCA. Thenumberof nodesin theresult-
ing minimalspanningcladeis shown in Figure5. The
queryexecutiontime is shown in Figure6.

As we can see, except for query 10 which TC
doesn’t support,our methodoutperformsTC by sev-
eralordersof magnitude:LS takeslessthan0.35sec-
ondto find theresultsetwhile TC takesaround1000
seconds.It is curiousasto why TC performssodiffer-
ently for LCA andMSCqueries.Thereasonis thatin
atree,eachnodehasonly oneparent,sotransitiveclo-
surefor LCA canbeimplementedasasetof recursive
selections.However, sincea nodecanhave a setof
children,the transitive closurefor MSC mustbe im-
plementedasa setof recursive joins, which arevery
expensive. Also the executiontime of transitive clo-
surehasno clearrelationshipto thesizeof thequery
result.
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Figure7: Timeto projectionasubtreewith agivennumber
of leavesfrom differentsizedphylogenetictrees

4.4 Treeprojection

We alsodid two experimentsto testtheperformance
of our methodon treeprojectionqueries. SinceTC
andPM don’t supporttreeprojection,we only have
onecurve in theexperimentalresults.

Effect of varying the sizeof the phylogenetictr ee

In thefirst experiment,our targetis to understandhow
our algorithmscales.That is, to determinetheeffect
on theexecutiontime of projectionwhenthenumber
of input leaves is constant,the size of the phyloge-
netic treevaries,andthe leavesarerandomlychosen
overthephylogenetictree.To doso,wesimulatephy-
logenetictreeswith 100, 200, Z5Z5Z , 600 leaves using
HyPhy-II [24].

As shown in Figure7, thetimeof projectingasub-
treewith agivensetof leavesis not reallyaffectedby
thesizeof thephylogenetictree.

Effect of varying the number of selectedleaves

In thesecondexperiment,wetry to understandtheef-
fecton theexecutiontimeof projectionasthenumber
of leavesvaries. To measurethis, from a fixed phy-
logenetictreewe randomlyselectsetsof leaf nodes
varying thenumberof nodes.We useHyPhy-II [24]
to simulateaphylogenetictreewith 2000leavesasin-
putandvarythenumberof leavesselected(10,20, Z5Z5Z
200leaves).

In contrastto Figure7, thetimeof generatingasub-
treewith a givensetof leavesis affectedby thenum-
berof selectedleaves.

4.5 TreePattern Match

In thelastexperiment,wetesttheperformanceof tree
patternmatchqueries. We simulatea phylogenetic
treewith 200 nodesusingHyPhy-II [24] asthe data
tree. We randomlyselect10, 20, Z5Z5Z , 60 leaves and
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Figure8: Timeto projectionasubtreewith differentnum-
berof leavesfrom a phylogenetictreewith 2000leaves
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Figure9: Executiontimeof patternmatchqueries

projectionasetof subtrees.Weusethissetof subtrees
asquerytrees.Theresultis shown in Figure9. As we
canseethat,our methodbasedon databaseengineis
comparableto themainmemoryalgorithmPM.

5 Relatedwork

Severaldatabasesystems[23, 14] have recentlybeen
createdto storeandretrieve phylogenetictrees. The
Treeof life [14] is a resourcewhich providesa uni-
form andlinkedframework to browseinformationon
phylogeneticrelationshipaswell asvariouscharacter-
isticsof organisms,andprovideslinks to relatedinfor-
mationavailableon theInternet.

TreeBASE [23, 22] usesa relational databaseto
storephylogenetictreesandthedatamatricesusedto
generatethem from publishedresearchpapers. The
phylogenetictreesthemselves arestoredasa BLOB
attribute in NEXUS format[15] while otherinforma-
tion (for example,the authorof the tree)is storedas
attributes. Keyword-basedquerieson attributesother
than treesaresupported.[27] proposesa methodto
extendTreeBASE to supportstructure-basedqueries
(e.g. finding a particular tree pattern)by navigat-
ing the NEXUS format phylogenetictreefiles using
ageneral-purposeprogramlanguage.

The next version of TreeBASE will enable

structure-basedqueriesby storing the tree structure
explictly usingthetechniqueof [20]. By storingeach
edge in the tree explicitly, least common ancestor
(LCA) queriescanbe computedusing the transitive
closureprimitivesupportedin many commercialrela-
tional databasesystems.

[20, 21] alsodiscussthe requirementsof a phylo-
genetictreedatabase.

LCA hasbeenwell studiedin thealgorithmsliter-
ature[8, 4, 3]. [8] describesthe first linear prepro-
cessingtime, linear space,and constantquery time
algorithmfor LCA. [7] observes that LCA is equiv-
alentRangeMinimum Query(RMQ) by giving a lin-
ear time algorithm to reduceLCA to RMQ using
depth-firstsearch,anda linear time algorithmto re-
duceRMQ to LCA using a cartesiantree construc-
tion. Basedon the reductionof LCA to RMQ, [4]
gives a linear preprocessingtime, linear space,and
constantquery time algorithm to answerLCA. This
algorithmis simplerthanthealgorithmin [8], andis
in turn simplifiedby [3]. All of thesealgorithmsneed
to randomlyaccessseveraldifferentdatastructuresin
an interleaved manner, anddo not extendwell to the
databasecontext.

Several techniques have also been developed
for manipulatingpartially orderedsetsand ontolo-
gies[11, 5, 16]. Thesetechniquesaregoodfor pro-
cessingsmall graphs(trees) in main memory, and
have specializedoperationsfor this applicationdo-
main.

6 Conclusionand Future work

In this paper, we summarizeseveral importantstruc-
turequerieson phylogenetictrees.Basedon ananal-
ysisof thecharacteristicsof phylogenetictreeandof
structurequeries,weproposedastoragesystembased
on a Dewey labelingscheme.We thendiscusshow
to efficiently evaluatestructurequeries. Our experi-
mentsshow thatthisimplementationusingarelational
enginehasvery goodperformanceandscalability.

In ongoingresearch,we areinvestigatingstructure
queryoperationsamongmultiple phylogenetictrees,
suchasunions,differenceandjoins, andhow to ex-
tendour techniquesto supportquerieson morecom-
plex biological data,suchasbiopathways. In the fu-
ture, we plan to investigatemoregeneralquery lan-
guageswhich contain thesebasic operations. We
arealso interestedin updateoperationson phyloge-
netic trees,permittinglocal rearrangementsof phylo-
genetictrees,andfacilitatingthecurationof phyloge-
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neticdata.
This work is being performed in the con-

text of the Cyberinfrastructurefor Phylogenetic
Research (CIPRes) project funded by NSF
(http://www.phylo.org/), and will be used for a
massive simulation databaserepresentinga “gold
standard”againstwhichphylogenetictreereconstruc-
tion algorithmscanbetested.
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Abstract

Scientific investigations have to deal with rapidly
growing amounts of data from simulations and exper-
iments. During data analysis, scientists typically want
to extract subsets of the data and perform computa-
tions on them. In order to speed up the analysis, com-
putations are performed on distributed systems such as
computer clusters, or Grid systems. A well-known dif-
ficult problem is to build systems that execute the com-
putations and data movement in a coordinated fash-
ion. In this paper, we describe an architecture for ex-
ecuting co-scheduled tasks of computation and data
movement on a computer cluster that takes advantage
of two technologies currently being used in distributed
Grid systems with relatively modest enhancements to
these systems. The first is Condor, that manages the
scheduling and execution of distributed computation,
and the second is Storage Resource Managers (SRMs)
that manage the space usage and content of storage
systems. The system is capable of dynamically load
balancing by replicating popular files on idle nodes.
To confirm the feasibility of our approach, a prototype
system was built on a computer cluster. Several experi-
ments based on real work logs were performed. We ob-
served that without replication compute nodes are un-
derutilized and job wait times in the scheduler’s queue
are longer. This architecture can be used in wide-area
Grid systems since the basic components are already
used for the Grid.

∗Visiting LBNL from the Computer Sciences Department,
University of Wisconsin

1 Introduction

It is typical of scientific investigations to have two
phases: the data generation phase, and the data anal-
ysis phase. The data generation phase is usually the
result of running large simulations or the collection of
data from experiments. Using modern computer sys-
tems the amount of data generated in the data gener-
ation phase is massive, on the order of terabytes to
petabytes. In the data analysis phase, the scientist typ-
ically wants to extract a subset of the data based on
some criteria. For example, a simulated climate mod-
eling dataset may have data over the entire globe, with
multiple height levels for tens of variables, such as
temperature, humidity, wind velocity, etc. This large
simulation dataset is usually stored on some mass stor-
age system, such as IBM’s High Performance Storage
System (HPSS). During the analysis phase, a scientist
may want to select only temperature over the equator
for sea-surface level for 100 years. This requires some
way of selecting the files that contain the relevant data,
and co-schedule the data movement and computations,
by downloading the relevant files to the analysis sys-
tem before processing can proceed.

Another example of the need for co-scheduling
of computation and data movement involves Particle
Physics data mining and analysis of detector data. The
Data Acquisition System in these detectors records
information about collision events between particle
beams. The information is stored in multiple files,
where each file contains information about thousands
of such events. Typical analysis of data involves
searching for rare and interesting processes and is per-
formed in multiple phases involving classification and
summarization. In addition, the same data files may
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be shared simultaneously by several different groups
of scientists with different interests.

In general, the problem discussed here is that of ef-
fective scheduling of a collection of jobs, each requir-
ing one or more input files to run on a group of servers.
Each server in the cluster may have one or more com-
pute slots and a disk cache that can hold some frac-
tion of the data files needed as input for the analysis.
A given job can be scheduled on a selected server if:
(i) the server has at least one available compute slot;
(ii) all the data files needed by the job are available
on the disk cache at that server. This introduces the
problem of scheduling data movement in coordination
with scheduling of computation on a cluster, and the
software systems to execute and monitor the sched-
ules. Data movement may be cheap (from one server
on the cluster to another) or expensive (from a remote
archive).

The above two phases of operations reflect the man-
ner in which most scientific applications run. To speed
the data analysis phase, the analysis is partitioned into
parallel jobs, and distributed to multiple compute sys-
tems. In a Grid environment the compute systems are
distributed over the wide area network, and the data
sources are usually on remote storage systems. In or-
der to perform the parallel analysis, the data have to be
moved to the compute nodes, and the jobs scheduled
on these nodes. There are Grid middleware compo-
nents designed to schedule compute jobs on distributed
nodes, and components designed to manage storage
and move files between nodes. However, there are cur-
rently no components that perform co-scheduling the
data and the computation, in part because of the com-
plexity of such middleware systems. Developing a real
practical system to perform co-scheduling is one of the
most difficult challenges in the Grid domain. We ad-
dress this challenge in this paper.

We describe a system that was developed to perform
co-scheduling of data and computation by taking ad-
vantage of two technologies used in distributed Grid
systems. The first is Condor [1], that manages the
scheduling and execution of distributed computation,
and the second is Storage Resource Managers (SRMs)
[2] that manage the space usage of storage systems and
the dynamic content of the storage. In order to have a
controlled experimental environment, the system was
developed on a small cluster of workstations that do

not share memory, and have their own independent at-
tached disks. In order to achieve co-scheduling, some
modifications to Condor and SRMs had to be made,
but as will be discussed next, we achieved coordina-
tion between these systems with relatively modest en-
hancements.

1.1 Organization of paper

The rest of the paper is organized as follows. In
Section 2 we explain the main contributions of this
work emphasizing the ability to build a complex co-
scheduling system by using existing mature compo-
nents. In Section 3 we describe the architecture of
the co-scheduling system and the software modules
developed for this project. In Section 4 we describe
the replication algorithms used for evaluating our sys-
tem. In Section 5 the data used in our experiments
and the test environment are described and the perfor-
mance results are analyzed. Finally, in Section 6 some
conclusions and future work are presented.

1.2 Related Work

The development of the co-schedueling system fa-
cilitated tests on a real co-scheduling system with real
logs (taken from a high-energy physics experiment).
Most of the previous work in this area is based on sim-
ulations.

In [3] several replication algorithms are examined
and evaluated using simulations. The results in that
paper show that data aware scheduling on the grid re-
sults in significant improvements in job response time.
In [4] the authors describe simulation of a Grid sys-
tem and evaluation of different file replication algo-
rithms. The authors also examined various cache re-
placement policies. The research in [5] describes a
system for treating data transfer events as real jobs.
The system allows checkpointing and monitoring of
data transfers. This work is complementary to our
work as we can use such a system (called Stork) for
scheduling data movement while using SRMs to keep
track of cache contents and enforce caching policies.
Another approach to perform replication management
on the grid uses economic models [6] where some in-
centive is offered to resource owners for contributing
and sharing resources, and motivates resource users
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to think about tradeoffs between the processing time
(e.g., deadline) and computational cost (e.g., budget),
depending on their QoS requirements. In [7] the au-
thors use an auction protocol for selecting the optimal
replica of a data file. The work in [8] and [9] deals with
prediction functions to make informed decisions about
pre-fetching of data. Finally, we note that are vari-
ous workflow systems that could be used to execute
the coordinated scheduling, but modules that manage
the content of the disk caches and identify the coor-
dianated scheduling are needed as tasks of the work-
flow. In this paper, we show how we use Condor and
SRMs to provide this functionality.

2 Main Contributions

Job scheduling systems are very complex and take
a large effort to implement and support. While there
are examples of such systems that are available com-
mercially or as open source products, these systems
manage scheduling of compute slots only, not the co-
scheduling of data with the compute slots. Examples
of such packages include SUN’s Grid Engine software,
Load Sharing Facility (LSF), Portable Batch System
(PBS), and Condor.

Developing a system that can co-schedule compute
and data resources is a very large undertaking. It
took years to perfect the systems that perform only
compute-slot scheduling. We address in this work the
possibility of using existing software components to
tackle this complex challenge. Our starting point was
to select a job scheduling system and a storage man-
agement system, and design a combined co-scheduling
system without making major changes to these sys-
tems. The main contribution of this paper is in the
methodology and architectural design that succeeded
to bring this co-scheduling system into fruition.

The key to this success was the flexibility of the ex-
isting systems we chose to work with. In particular,
the Condor system is designed to perform matches be-
tween jobs and worker nodes based on an open-ended
description of what to match on. Thus, we could eas-
ily extend the descriptions to include sets of files that
a worker node has at any one time. This was com-
plemented by the flexibility of Storage Resource Man-
agers to manage their content dynamically (i.e. using
automatic caching policies), and their ability to keep

files for jobs that are scheduled to be matched as well
as remove unneeded files after the jobs finish.

We now have a real system where various algo-
rithms that were previously tested only by simulations
can now be tested in a realistic environment. Fur-
thermore, while we implemented this architecture on
a cluster, it is straight-forward to adapt this design to
wide-area Grid systems, because the components are
already functional as Grid middleware.

3 Architecture

To achieve co-scheduling, the scheduler must have
information on the content of each machine’s disk
cache, as well as the availability of compute-slots on
each machine. The problem is one of matching each
job to the machine that has the files needed by the job.
This is achieved by providing the Condor scheduler in-
formation on the dynamic content in the disk caches in
the compute nodes. This information is provided by
the SRMs that reside on each computing node. We
accomplish this by extending the standard mechanism
used by Condor to describe a worker node to also in-
clude information on the files available on the node.

The advantages of using Condor and SRMs are
numerous. Both of these systems are open-source.
Condor provides job scheduling using an extensible
“match-making” technology, as well as initiation and
monitoring of jobs on the compute nodes. SRMs pro-
vides dynamic storage allocation, with the ability to
“pin” and “release” files to ensure that they stay on
the disk cache when they are needed. SRMs also have
their own local policies for removing files that were
released and are not needed. The combination of these
two technologies is a fast and efficient way to imple-
ment and test the co-scheduling setup.

The architecture and the components we used to
achieve co-scheduling are shown in Figure 1. As can
be seen, the master node has three parts of the Condor
system: i) condor schedd (the scheduler daemon) that
is responsible for scheduling jobs and keeping their
state information, ii) the condor collector that collects
and organizes all the information about nodes in the
form of classAds (classified advertisements); the clas-
sAds contain information about compute-slots in the
nodes, and their hardware and software capabilities,
and iii) the condor negotiator whose function is to find
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a match for each scheduled job; the match is done by
finding a compute-slot that has at least the capabilities
required by the job being matched.

The other part of the Condor system is a compo-
nent, called the condor startd (start daemon), whose
function is to start jobs running on a node, to collect
information on the node capabilities and generate the
classAd, and to monitor the progress of the job. If the
job completes successfully, the condor startd adver-
tises the availability of the slot by issuing a new clas-
sAd. If the job is interrupted and was not completed, it
communicates with condor schedd to schedule the job
again. As can be seen from Figure 1, the condor startd
was installed on every worker node.

Figure 1. The architecture of the co-
scheduling system using Condor and DRM
components.

A disk version of an SRM, called a DRM, devel-
oped at LBNL (http://sdm.lbl.gov/srm) is also installed
on every worker node. Its function is to manage the
disk cache associated with the node. That includes al-
locating space for every file that has to be moved into
the disk cache, keeping track of popular files (so called
“hot files” that are accessed multiple times), and re-
moving unwanted files (“cold” files). The DRM per-
forms this function by “pinning” a file as soon as the

file was advertised as required by a job to be sched-
uled to run on that node, and by releasing the file as
soon as the job is finished. Note that a file may be
pinned multiple times if multiple jobs are using it, and
the DRM keeps track of that as well. Finally, the DRM
also initiates file transfers from the mass storage sys-
tem we use, by communicating with a version of an
SRM, called a Hierarchical Storage Manager (HRM)
that can request file staging out of the mass storage
system (we use HPSS). The DRM can also request a
file from a neighbor node if it is asked to do so.

We encountered one issue that could be a barrier
to the scaling of the co-scheduling system. The issue
was of advertising the data files that a node currently
has in the Condor classAd for the resource available
on each node. Since disk caches of worker nodes can
be very large and contain thousands of files, provid-
ing this information to the component that performs
matches may overwhelm the scheduler. While one can
design more efficient schedulers with smart indexing
technology, there was no certainty that this will scale,
and it would require a serious enhancement of the ex-
isting system. Our solution to this problem is to put
in the classAds only files that are relevant to the pend-
ing jobs. This is achieved by having a component on
each node that gets from the Storage Resource Man-
ager the information about which of the needed files in
the job queues are currently on the node’s disk cache.
The ability to achieve this solution was critical to the
practical success of this co-scheduling problem.

We identified two components that are needed to
achieve this functionality and the co-scheduling oper-
ation: the Job Decomposition Module (JDM) and the
File Scheduling Module (FSM). Both of these compo-
nents are located on the master node. We explain their
functionality next.

The JDM is the component which accepts jobs sub-
mitted by clients. Each job consists of an executable,
a set of input files and, optionally, a set of output
files. The JDM parses this information and decom-
poses each job into one or more jobs each requesting
one or more files (referred to as a “bundle”) †. The
JDM performs the following tasks: i) decomposing all
incoming jobs dynamically; ii) generating a list of files
that is the union of all requested files; iii) communi-
cating with each condor startd and provide them with
this list; iv) providing the FSM with a list of jobs to be
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scheduled with Condor’s condor schedd; v) keeping
track of completed jobs; and vi) providing the client
with information on the progress of the job, as well as
when it completes.

The FSM was designed to interact with the Con-
dor system. It is responsible for the following ac-
tions: i) schedule with each DRM the files that it
should acquire; ii) schedule all jobs with Condor’s
condor schedd; iii) monitor the progress of jobs by in-
quiring from Condor which jobs are being delayed; iv)
analyze the reasons for the delays and issue replication
requests to DRMs; iv) decide when pre-staging of files
from HPSS is warranted, and v) notify the JDM when
a job completes. As can be seen, the algorithms for
optimizing the co-scheduling belong in the FSM.

There were relatively small changes required to ac-
complish the coordination between Condor and the
DRMs. The main change required from the con-
dor startd is the ability to accept a list of files from the
JDM and invoke the DRM to find which of these files
the DRM has. Condor startd then includes these files
in the classAd it advertises. The DRM had to be mod-
ified to provide a response to an inquiry that amounts
to “which of these files do you currently have?”.

Taking advantage of the fairly complex middleware
systems developed over many years by making rela-
tively modest modifications was the reason for our suc-
cess in developing the co-scheduling system. This pro-
vided us with a real environment to explore the behav-
ior of the system under different scheduling strategies.
We describe in Section 5 some of the results achieved
so far by running experiments on this system.

3.1 Information Flow

Figure 2 describes the information flow between the
components of the co-scheduling system. For ease of
explanation the steps are labeled in the logical order
of flow, however, in reality these steps may repeat and
run asynchronously. The steps are as follows:

†We note that in HEP applications it is typically possible to
run an analysis job on a single file at a time because processing of
collision events contained in files are independent of each other.
However, in other applications it may be necessary to specify the
subset of files that are needed concurently to execute the analysis
job.

Figure 2. The steps of the co-scheduling sys-
tem

1. Job requests arrive to the Job Decomposition
Module (JDM), are parsed and decomposed to
multiple smaller jobs, and are passed to the File
Scheduling Module (FSM).

2. The FSM schedules data requests to the DRMs
according to the scheduling algorithm it uses.
The simplest one is round robin.

3. The FSM composes a list of all requested files
that have not been processed yet. It extracts the
information on job completion from Condor logs.
This list of files is passed to condor startd. The
FSM also submits the jobs to Condor.

4. condor startd communicates with its local DRM
to find out which of the files in the requested-
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file list it actually has. These are refered to as
existing-files in the figure.

5. condor startd puts the existing-files into a clas-
sAd that it passes to the condor collector.

6. Condor finds a match for an available compute-
slot on a node that has the file needed by the job
and schedules that job.

7. The FSM checks with the condor negotiator for
jobs in queue. If there are free compute-slots, it
chooses a file to replicate based on the length of
time the jobs requesting it have been waiting in
the queue (for details see section 4).

This iterative process is performed continuously
when new jobs arrive, or when the monitoring thread
triggers a replication action. The files in the DRMs
stay in the cache until space is needed. The DRMs
currently use a least-recently-used caching algorithm.

3.2 Dealing with bundles of files

The JDM can accept requests that may have multi-
ple bundles of files. Recall that a bundle of files refers
to a set of files that are needed concurrently to exe-
cute the computation. Our initial implementation tar-
geted jobs where each bundle has a single file only.
As noted earlier this was sufficient for typical HEP ap-
plications, because collision events are independent of
each other. However, we have implemented the sup-
port for scheduling bundles of files.

Several modifications were required for this en-
hancement. First, the job descriptions had to be ex-
tended to represent bundle requests, and the JDM had
to keep track of bundles rather than only files. Second,
the job ClassAds to Condor had to be extended, where
the condition for scheduling a bundle was expressed as
AND conditions. Third, the SRMs were given multi-
file requests (i.e. all the files in the bundle), a feature
that was already supported by current SRMs. In this
paper we describe experimental results for the case of
a single file per bundle only, since it was more easily
tractable in terms of performance.

4 Scheduling Algorithms

In typical particle physics analysis applications a
job that requires n files can be decomposed into n

smaller jobs each requiring one of the files. This in-
creases the opportunity for parallelism since after per-
forming decomposition, some subset of the n jobs can
be scheduled to run in parallel on different servers.
According to this simple model, we assume that the
original jobs have been decomposed and each of the
resulting jobs requires exactly one file. The schedul-
ing problem we are considering here consists of the
following inputs:

• a set of files F = {f1, f2, f3, . . . , fn}

• a set of queued jobs J = {j1, j2, . . . , jm} each
requesting a single file from F

• a set of worker nodes N = {N1, N2, . . . , Nk}
where each node Ni is associated with one or
more compute-slots and a cache C(Ni) that con-
tains some subset of the files in F .

Let f(ji) be the file requested by job ji. The job ji

can be assigned to run on a node Nk (ji is matched
to Nk in Condor terminology) if (a) Nk has an avail-
able compute slot and (b) the cache C(Nk) contains
the file f(ji) . Among the many possible scheduling
algorithms we chose to evaluate two basic algorithms.
These are described below:

scheduling with no-replication. This algorithm re-
tains at most one copy of a file on the cluster. It
copies a file, fi, from remote storage to a node
Nk (selected in a round-robin fashion) only if fi

is requested by a job and cannot be found in any
of the caches of the worker nodes. As long as fi

is not purged from the cache C(Nk), any subse-
quent jobs that request the file fi will be automat-
ically matched with Nk by Condor once Nk has
a free compute slot. In order to avoid purging fi

from the cache C(Nk) prematurely, it is pinned
by the system as long as there are jobs waiting
for it in the queue.

scheduling with replication. Files may be replicated
in the cluster across multiple nodes. A replication
decision is made whenever there are jobs wait-
ing in the queue and there are available compute-
slots in the system. The selection of which file to
replicate next is determined by a weight function
w(fi) computed as follows: For each file fi re-
quested by one or more jobs in the queue, w(fi) is
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equal to the total time these jobs have been wait-
ing for it. The file with the maximal w(fi) is then
replicated on one the worker nodes with a free
compute slot chosen at random. The rationale
behind this replication algorithm is that “popu-
lar” files should be available on multiple nodes
for better load-balancing of the system and jobs
that have been waiting for a long time should get
some priority to avoid starvation.

The first algorithm (scheduling with no-replication)
attempts to minimize file transfers from the mass stor-
age system across the network and also saves on disk
storage requirements. It may be attractive in situations
where file transfers and disk storage costs are relatively
expensive resources. The second algorithm (schedul-
ing with replication), tends to move more files but re-
duces queue waiting times and improves system uti-
lization. We chose to experiment first with these two
basic algorithms since they are simple to implement
and do not introduce excessive overhead costs on the
system. We are planning to evaluate more elaborate
algorithms that take into account node capacities, dif-
ferent replication costs ( remote vs. local) using math-
ematical optimization techniques.

5 Experimental Results

5.1 Description of physics analysis environment
and data characteristics

We experimented with data from BaBar,
which is a High Energy Physics experi-
ment with over 600 world-wide collaborators
(http://www.slac.stanford.edu/BFROOT). The data
for this experiment is stored on tapes at the Stanford
Linear Accelerator Collider (SLAC) managed by
IBM’s Mass Storage System HPSS storing over 1.3
petabytes of data on about 13,000 tapes managed
by 6 StorageTek tape silos. To deliver data to jobs
in a reasonable time the system is currently backed
by 160TB of disk cache implemented on thousands
of physical disks bound into large arrays managed
by Sun’s Solaris 9 UFS. The analysis jobs run on a
cluster of hundreds of nodes accessing the persistent
data through a high performance data server [10].
The work logs used in our paper were extracted from
trace data produced by the data server. The raw
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trace data contained, for each job, only its job id, the
files accessed by the job, and the time of access of
each file. We had to match this information with the
file characteristic data stored in a Oracle database
at SLAC in order to get file size information. We
analyzed trace logs taken from October 1 to October
26, 2004. During this time interval 504,493 jobs
were submitted requesting a total of 2,028,541 files,
86,378 of which were unique. Figure 3 shows the size
distribution of the 86,378 unique files. Note that the
maximum size of a file is close to 2GB, due to file
system limitations. There is also a significant number
of files of size less than 200MB. The large files most
likely represent raw detector data, whereas the smaller
sized files are in most cases filtered data (“skims”) for
the purpose of user analysis.

In Figure 4 we plot the number of file requests as a
function of file size. We note that the large files appear
in more requests as compared to the small files. One
possible explanation for this access pattern is the auto-
mated running of “skimming” which use the raw data
files as input to produce the user-analysis files.

5.2 Description of the cluster environment

We ran our experiment on a cluster of 8 single and 1
dual CPU 1.5GHz AMD Athlon processors, each with
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a 20GB disk cache and 2GB of RAM for a total of
10 compute slots. The cluster nodes are on a Giga-
Bit network. We installed one DRM on each machine.
Condor software and the FSM were installed on the
dual processor. The data files needed for the analysis
jobs were stored on the HPSS mass storage system at
LBNL. We observed that the average transfer rate from
the HPSS system was 15MB/s.

5.3 Experimental setup and performance results

Each experiment consisted of a sample of 1500 jobs
from the pool of jobs presented above. Assuming
the duration of a typical analysis job is proportional
to the size of the input, we simulated a job by run-
ning 100 empty for-loops per each byte requested. We
experimented with different job arrival rates, and for
the purpose of this study we chose an interval of 60
seconds between job submissions based on the aver-
age job execution time to match the job arrival rate
to the job service rate. Shorter arrival intervals would
lead to a saturation of computing resources, while a
very long arrival interval would underutilize the clus-
ter. Based on these parameters, each experiment took
about 27 hours of continuous running time. Further-
more, we had to set the Condor configuration parame-
ters to much smaller values than the default values. For

example, the default resource matching negotiation cy-
cle, whose default value is 300 seconds was lowered to
60 seconds to make the matchmaking more responsive
to our job arrival and data transfer rates.
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Figure 5. Average number of queued jobs
In Figure 5 we compare the two algorithms in terms

of the number of jobs waiting to be matched in the
Condor queue during the running time of the experi-
ment. As expected, the number of jobs in the queue
under the with-replication algorithm is almost always
smaller than that of the no-replication algorithm. This
is due to the fact that the with-replication algorithm
removes jobs from the queue as soon as compute slots
become available.
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Figure 6. Average number of idle compute-
slots

In Figure 6 we compare the system utilization un-
der the two algorithms by counting the number of idle
compute-slots during the running time of the experi-
ment. Existence of idle compute-slots while there are
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jobs waiting in the Condor queue represent wasted sys-
tem resources. Again the with-replication algorithm
achieves better system utilization and shows almost al-
ways fewer idle compute-slots as compared with the
no-replication algorithm.
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Figure 7. Waiting time in queue
Next we looked at the average time that jobs waited

in the Condor queue under both algorithms. Waiting
time in the queue is calculated as the number of sec-
onds between the time a job arrives at the system until
the time it is matched by Condor with some compute-
slot and submitted for processing. The first impor-
tant observation here is that the with-replication al-
gorithm has a maximum waiting time of 4000 sec-
onds whereas the no-replication has a maximum wait-
ing time of 25000 seconds. This represents a dramatic
improvement (a factor of 6) in terms of worst case be-
haviour. The mean waiting time of the with-replication
algorithm is also better (by about 25%).

6 Conclusions and future plans

The main accomplishment described in this paper is
the ability to put together a co-scheduling system from
existing Grid middleware components that were de-
signed to manage compute and storage separately, by
making relatively small enhancement to these systems.
The problem of optimizing the behavior of these sys-
tems is the task of an external File Scheduling Module

that makes file replication choices based on monitor-
ing information of queues from the Condor scheduler.
File replication is facilitated by making requests to the
DRMs on each node. Garbage collection from the
nodes disk caches are performed by the DRM based on
usage policies. Thus, the tasks of scheduling, execut-
ing, monitoring, file movement, and garbage collec-
tion are performed by the existing Condor and DRM
systems.

Future work includes trying out various optimiza-
tion algorithms that are typically based on approxi-
mation results from scheduling theory [11] as comput-
ing optimal solutions for the co-scheduling problem is
known to be NP-complete [12]. While we performed
simulations to compare several algorithms, it is impor-
tant to verify the performance on real systems. Fur-
thermore, the next step will be to implement and test
this combined co-scheduling system on Grid testbeds.
Since the components we used on the cluster are gen-
eral Grid components we believe that applying them
in a real Grid system will be straightforward. The
real challenge will be to measure and understand per-
formance in an uncontrolled environment such as the
Grid.

Acknowledgement

We thank Ekow Otoo from LBNL for his early par-
ticipation in this project, and John Bent from the Uni-
versity of Wisconsin for pointing out relevant work.
This work was supported by the Director, Office of
Advanced Scientific Computing Research, of the U.S.
Department of Energy under contract No. DE-AC03-
76SF00098.

References

[1] T. Tannenbaum, D. Wright, K. Miller, and
M. Livny, “Condor – a distributed job sched-
uler,” in Beowulf Cluster Computing with Linux,
T. Sterling, Ed. MIT Press, October 2001.

[2] A. Shoshani, A. Sim, and J. Gu, “Storage re-
source managers: Essential components for the
grid,” in Grid Resource Management: State of
the Art and Future Trends. Kluwer Academic
Publishers, 2003.

9
111



[3] K. Ranganathan and I. Foster, “Decoupling com-
putation and data scheduling in distributed data-
intensive applications,” in Proc. 11th IEEE In-
ternational Symposium on High Performance
Distributed Computing (HPDC-11 2002), Edin-
burgh, Scotland, 23-26 July, 2002, pp. 352–358.

[4] W. Bell, D. Cameron, L. Capozza, A. Millar,
K. Stockinger, and F. Zini, “Simulation of dy-
namic grid replication strategies in optorsim,”
in Proc. Grid Computing - GRID 2002, Third
International Workshop, Baltimore, MD, USA,
November 18 2002, pp. 46–57.

[5] T. Kosar and M. Livny, “Scheduling data place-
ment activities in grid,” University of Wisconsin
- Madison Computer Sciences Department, Tech.
Rep. UW-CS-TR-1483, July 2003.

[6] R. Buyya, H. Stockinger, J. Giddy, and
D. Abramson, “Economic models for manage-
ment of resources in peer-to-peer and grid com-
puting,” in Proceedings of the SPIE Interna-
tional Conference on Commercial Applications
for High-Performance Computing, Denver, USA,
August 20-24 2001.

[7] W. H. Bell, D. G. Cameron, A. P. M. Ruben
Carvajal-Schiaffino, K. Stockinger, and F. Zini,
“Evaluation of an economy-based file replication
strategy for a data grid,” in International Work-
shop on Agent based Cluster and Grid Comput-
ing at CCGrid 2003, Tokyo, Japan. IEEE Com-
puter Society, 2003.

[8] L. Capozza, K. Stockinger, and F. Zini, “Pre-
liminary evaluation of revenue prediction func-
tions for economically-effective file replica-
tion,” CERN Geneva, Switzerland, Tech. Rep.
DataGrid-02-TED-020724, July 2002.

[9] J. B. Weissman, “Predicting the cost and benefit
of adapting data parallel applications in clusters,”
J. Parallel Distrib. Comput., vol. 62, no. 8, pp.
1248–1271, 2002.

[10] J. Becla and D. L. Wang, “Lessons learned from
managing a petabyte.” in CIDR, 2005, pp. 70–83.

[11] M.Pinedo., Scheduling: Theory, Algorithms, and
Systems. Prentice Hall, 2001.

[12] J. Bent, D. Rotem, A. Romosan, and
A. Shoshani, “Coordination of data move-
ment with computation scheduling on a cluster,”
in Proceedings of the Workshop on Challenges of
Large Applications in Distributed Environments
(CLADE). To be published, July 2005.

10
112



Scientific Models Management in Computational Grids

Halisson Matos de Brito1, Julia Strauch2, Jano Moreira de Souza1, 4, Carla Osthoff3

1 COPPE/UFRJ – Systems Engineering and Computer Science Program
Federal University of Rio de Janeiro – PO Box 68511, ZIP Code: 21945-970, Rio de Janeiro, RJ, Brazil.

{hmbrito, jano}@cos.ufrj.br
2 ENCE /IBGE – National School of Statistical Sciences, R. André Cavalcanti, 106 s. 401

ZIP Code: 20231-050, Rio de Janeiro, RJ, Brazil.
juliast@ibge.gov.br

3 LNCC – National Laboratory for Scientific Computing
Av. Getúlio Vargas, 333, Quitandinha, ZIP Code: 25651-075, Petrópolis, RJ, Brazil.

osthoff@lncc.br
4 IM/UFRJ – Institute of Mathematics/Federal University of Rio de Janeiro

PO Box 68511, ZIP Code: 21945-970, Rio de Janeiro, RJ, Brazil.

Abstract

This paper presents MODENA, an architecture for
scientific models management using Computational Grid
platform. This architecture is comprised of two systems:
ModManager and ModRunner. ModManager deals with
knowledge management about scientific models, acting as a
scientific models library allowing for cataloguing,
searching, reutilization and generation of new models. To
achieve this, a metamodel is proposed to classify models, in
order to support the organization, searching and retrieving
of models. ModRunner manages the execution of models in
a Grid environment allowing for model composition to
generate a scientific Grid Workflow to be executed by
distributed services offered by Grid Services. An initial
prototype of ModManager is presented.

1. Introduction

Models are simplified representations of reality, whose
goal is to abstract the reality portion which maters to the
solution of a problem. Besides, models contain relevant
information on phenomena or processes with the advantage
of hiding irrelevant details of real problems.

In scientific work, phenomena or processes are usually
more complex and sometimes unknown, highlighting the
importance of using models to map them. So, models are an
essential part of any scientific experiment. An experiment
usually tries to prove some hypothesis stated by the
scientist and it may have an underlying model, or even a
combination of models about the phenomenon it is intended
to prove. Thus, models play an important role both in the
research area and in the practical applications in many
knowledge areas.

To deal with this great variety of models, or even to keep
a history of them, a researcher, a team of researchers or

even a research organization can take advantage of a system
which manages existing models, using database
management techniques to perform cataloguing and
retrieving of models in a “scientific models library”.

Researchers could have their models stored in a library
and managed by an application, increasing their means to
share models and co-operate each other. An advance in this
state-of-the-art could be the reuse of existing models stored
in different researcher bases, to compose a new model and
execute it as a distributed models workflow.

This is possible due to the growing popularity of the
Internet, associated with the increasing availability of
powerful computers and high-speed networks, which brings
the concept of Computational Grids.

So this work presents MODENA, an architecture for
scientific model management using Computational Grid
platform. This architecture allows for cataloguing and
retrieving models from a models library, as well as the
generation of model composition under which workflows
can be created to be executed on Computational Grids. This
architecture is under development on the DesenSus Project
(a Platform for Generation and Execution of Integrated
Models in Sustainable Development Research), to support
researchers of Geoma Project (Thematic Network for
Research in Environmental Modeling of Amazon) [1],
which aims at the development of models to evaluate and
foresee sustainability scenarios under different kinds of
human activities and public politics for the Amazon.

2. Metamodel for model classification

According to Christofoletti [2] the most common
modeling goals are concept communication and short-term
forecast, allowing for answering, predicting or comparing
alternatives as planning instrument. However, it is worth
mentioning that, although models are a subjective problem-
solving approach, as they do not include all reality details,
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this feature is valuable for enabling the arising of
fundamental aspects of reality.

In literature, the concept of model is broad, varying from
the simplest definitions – as it is any simplified
representation of reality – to the most elaborate and
specific as in [2], [3], [4], [5], [6] and [7]. As models are
used in the most diverse knowledge areas, there is not a
pattern to classify and describe them. Model taxonomy
varies from one research area to another, or even in the
same area, as it can be observed in the classifications
proposed by [2], [4], [5], [6] and [7].

Nevertheless, the adoption of a model classification is
useful, especially when it aims at selecting or storing
models. Model classification allows for defining more
efficient search and selection mechanisms as well as
systematization of data identification, organization and
retrieval.

Hence, this work proposes a metamodel for model
classification which allows for organizing, searching and
retrieving models . This metamodel is a hierarchical
classification without any restriction on the number of
levels of the tree in order to make researcher or research
teams feel free to use an existing classification form or even
to define their own classification forms.

Figure 1 presents the Entity-Relationship (ER) Model of
the database which stores model metadata. The ER model is
quite simple, although expressive enough to support
scientific model management.

Figure 1. Entity-Relationship Model of the system

The hierarchical classification depicted above is
represented by the entities ‘Types’, ‘Categories’ and
‘Areas’. This means that models are of ‘Types’, grouped in
‘Categories’, which belong to knowledge ‘Areas’. As may
be seen in Figure 1, the relationship cardinality between
models and types is (NxN), indicating that models can be
classified as having more than one type.

Still regarding the classification one should notice in the
ER model that the entity ‘Categories’ bears a self-

relationship, indicating that it is possible to have any
number of levels of subcategories to any category.

Finally, a self-relationship in the entity ‘Models’
originates the entity ‘Model_Composition’. Thus any model
may be composed by several models. Also, one model can
be within several compositions.

3. MODENA: Architecture for Scientific
Models Management in Computational Grids

MODENA (MOdel DEvelopmeNt Architecture)
presents three levels (Figure 2). In the first level, lies the
interface with all functionalities for knowledge
management on the models and the execution management
of model instances. The second level contains the
processing layer in computational grids. In the third level
are the distributed databases, metadata base, models base,
ontology base and knowledge base.

Figure 2. MODENA Architecture

MODENA consists of two modules. The first one, called
ModManager, comprises a system for Knowledge
Management on Scientific Models , responsible for capture,
recovery, generation and knowledge exchange stages.

The second, called ModRunner, is a tool to aid the
performing of scientific experiments through the execution
of instances of the models stored in the base. These
instances are constituted of workflows which represent the
steps for model execution. So, ModRunner comprises a
Workflow Management System on Scientific Models, in
grid environment.

For workflow description, we have analyzed three
languages described in literature: GSFL (Grid Services
Flow Language) [8], GFDL (Grid Flow Description
Language) [9] and GWEL (Grid Workflow Execution
Language) [10].

Workflow editor Results mediator

Services processor Workflow
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Model editor Ontology editor
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Mod Manager

GRID Computational Environment

Edition CataloguingSearch Dissemination
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 ...

Scientific Model Management System
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The chosen language for use in MODENA was GSFL,
due to its features as well as for the fact that the group
responsible for it is developing more complex structures for
workflow definition.

3.2. Mod Manager: a system for Scientific Model
Knowledge Management

The requirements for the development of the knowledge
management system on models took the needs bellow into
consideration:
§ Capturing scientific knowledge existing in an

organization or research group, through the model
cataloguing system;

§ Retrieving knowledge through search in the model
base;

§ Generating new knowledge by model composition, in
other words, the generation of new models starting
from existing ones; and

§ Allowing knowledge interchange among researchers'
teams, whether by exchange among model bases
(importing and exporting of models), or by making
models available as Knowledge Objects (KO) [11].

One of the premises which give support to the model
management, according to Dolk [12], is that models, as
well as data, are an important organizational resource and
should be managed as strictly and with so attention as the
data. Therefore, for Dolk [12], a MMS (Model
Management System) should provide similar functionalities
to a Database Management System (DBMS): Model
Description; Model Manipulation; and Model Control.

In this way, knowledge management on models was
implemented with a database on which a management
system acts to accomplish the cataloguing and search for
models. This meets the needs mentioned above, in which
the description of the models lies in the database and model
manipulation and control is exercised by the management
system.

3.3. ModRunner: Workflow Management on
Scientific Models using Grid Services

Workflow management on Scientific Models aims at
managing the following stages of model instance execution,
presented in Figure 3:
1. Selection of the model to be submitted to execution;
2. Generation of a workflow representing the steps for the

execution of the model;
3. Discovery of grid resources available to the researchers;
4. Selection of resources to be used for workflow

execution;
5. Submission of the workflow to execution in grid

environment; and
6. Capture and storage of the results .

The selection of the model to be executed can be
accomplished directly by ModRunner through a search on

the models base or via ModManager once a model is
already selected. Alternatively, model composition can be
accomplished aiming at carrying out experiments with new
models in order to identify the most appropriate one for
problem solution. Besides, this model composition instance
can later be added to the base, as a new model.

Figure 3. Workflow execution in computational grid

After model selection, a workflow will be generated
containing the steps for the execution of the model. That
generation will be accomplished through the description of
the execution steps in the GSFL language so that a
workflow in grid is described.

Workflow generation is one of the most complex stages
of the system, as the mapping from model to workflow is
not a trivial task, on account of the enormous variety of
model types and representations. This stage also involves a
certain degree of automation and the user's participation,
among others, in the definition of the data which will serve
as a basis for workflow execution.

Soon afterwards, discovery of available resource in Grid
for workflow execution will be actually accomplished
through the discovery of the Grid Services accessible by the
research group. This search will be made following the
patterns defined by GGF (Global Grid Forum) .

Once the discovery of the resources have been made,
these can be selected to participate in the execution of the
workflow, based on certain criteria, such as: proximity,
readiness, storage capacity, computational power, network
connection capacity, among others. Selection can be made
manually, by the system user himself, or automatically, in
which the system decides based on user's previous
configurations.

After resource selection, the workflow would be
submitted to execution through the submission of the
corresponding GSFL document to the workflow execution
machine based on this language. Krishnan (2002) [8]
presents the prototype of a machine for this end and he
affirms that the same is in constant development, inside the
GGF proposals.
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4. MODENA Prototype

MODENA architecture is being developed to validate
our proposals besides acting as a model database for the
systems to be created in the DesenSus Project scope.

The portion of the architecture already developed
corresponds to the ModManager system, which admits
cataloguing and searching for models, acting as a scientific
models electronic library. This is being developed using
Sun Java technology, and also allows importing and
exporting of models in formats like CSV and XML, as well
as generation of KOs, enabling model exchange among
researchers in order to support scientific cooperation.
Moreover, the Model Composition feature aiming the
generation of new models is under development.

The system can be accessed via any web browser and
presents, on the left of its initial screen, a menu with the
available options. Figure 4 shows the model cataloguing
screen, after the options ‘Catalog’, and then ‘Model’ are
chosen. Besides models, it is possible to catalogue
knowledge areas, categories and types, in addition to
bibliographical references, related to the models.

Figure 4. Model cataloguing screen

Figure 5. Search by classification result

On the search section, the system returns models which
satisfy some search criteria. Three types of search are
possible: by ‘Name’ (caption of model), by ‘Author’
(creator of model) and by ‘Classification’ (type, category
and area of model).

The result of a search by classification is shown in
Figure 5, in which details of the model can be observed.

5. Final considerations

The MODENA value lies mainly in the fact of allowing
researcher groups to store and manage their models
efficiently, avoiding problems such as the loss of models
not classified and time waste in search for a model needed
for execution of a scientific experiment.

Besides, MODENA makes cooperation possible among
scientific teams through model sharing or even the
composition of distributed models. Another contribution of
this paper is the metamodel proposal to classify models
providing an efficient way of organizing the models, by
respecting particularities of specific areas.
Acknowledgement : This work was partially funded by
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Abstract

With the increase of genome and proteome data, phy-
logenetic information and phylogenetic analysis tools are
increasing greatly in current biological repositories. First,
many repositories allow users to browse information about
species through taxonomic tools. These tools present the
species with its lineage path and links to the various types
of information the repository provides about the species.
Second, some multiple sequence alignment tools offer users
basic phylogenetic data through applying basic reconstruc-
tion algorithms to the alignment. With the availability of
this information in multiple locations, integrated tools are
needed to allow the user to compare this data. This paper
presents data integration research on lineage paths using
the BIO-AJAX framework. It introduces BIO-AJAX for Lin-
eage Paths, a tool that integrates lineage path information
for NCBI Taxonomy Database [1] and the Integrated Taxo-
nomic Information System (ITIS)[6].

1. Introduction

Biological data, specifically phylogenetic data, is rich
with issues that can be addressed with data quality and in-
tegration methodologies. Data quality in biological data is
an important function necessary for the analysis of biolog-
ical data. It can standardize the data for further computa-
tion and improve the quality of the data for searching. Data
integration is also an important function necessary for ana-
lyzing biological data [3, 5, 7, 8, 9]. The very core purpose
for most biological databases is to create a repository, inte-
grating work from numerous scientists. Phylogenetic data
encapsulates these problems. It is a complex data set that
consists of processed wet lab results, data obtained through
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knowledge discovery, structural data and metadata. More-
over, phylogenetic studies also have multiple applications
from Tree of Life studies to biomedical investigations [14].

Lineage path studies represent a unique opportunity in
phylogenetic data integration. Currently, many repositories
model lineage paths in some manner. These lineage paths
can represent various types of knowledge including the tax-
onomy of a species, the development of the Tree of Life
with respect to a databases data model or the intermediary
nodes developed from a phylogenetic construction. With
these different purposes for lineage paths, finding similarity
between repositories concerning lineage paths can be con-
fusing and sometimes inconsistent from the user’s point of
view.

This short paper introduces research issues and concerns
regarding the lineage path integration and data quality prob-
lems in phylogenetic studies. Lineage paths themselves
tend to relate to taxonomy studies. However, since this
method can be employed on both taxonomic databases and
phylogenetic tree databases, we will discuss this tool in ref-
erence to its phylogenetic purposes. It first identifies the
lineage path problem, discussing why it is of interest to re-
searchers. Next, it discusses applying data quality and data
integration techniques to lineage paths to create an envi-
ronment that facilitates user comparisons of lineage paths.
Finally, it identifies future work for this project as well as
makes some concluding remarks.

2. Lineage Paths

A lineage path is the path from a given point on a phy-
logenetic tree(such as the Tree of Life) to a specific taxon.
Sometimes this taxon can be a species, which tends to be
a terminal node on the Tree of Life or it can be an inter-
mediary node within the tree. Most lineage paths concern
the path from the root node of the Tree of Life to a spe-
cific taxon. Lineage paths pose many different problems
for phylogenetic researchers. For example, in phylogenetic
nomenclature, the lineage or ranking of an evolutionary unit
or taxon is not standard. NCBI Taxonomy Database [1]
uses 28 distinct ranks for classification while the Interna-
tional Code of Botanical Nomenclature uses 25 rankings
[13]. These databases maintain, besides different categories
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for their taxonomies, depreciated lineage paths. Therefore,
semantic integration must be used so that the matching of
the rankings and the treatment of the depreciated paths are
correct. When adding the complexity of a research phylo-
genetic tree repository such as TreeBASE, where there are
multiple trees for one species and non-standard nomencla-
ture, integration becomes more complex.

Lineage paths and lineage path comparison offers phy-
logenetic researches many interesting functionalities for
their research. Through their comparison, researchers can
analyze differences in phylogenetic reconstruction meth-
ods, understand differences in rankings among phylogenetic
databases as well as perform some advanced queries upon
the phylogenetic studies. Some possible queries of inter-
est associated with lineage paths include: Compare the lin-
eage paths for taxon X from database D1 and database D2;
Given taxon X, find all lineage paths containing taxon X
and; Given taxon X, find all taxa which are descendents (or
ancestors) of X.

Foremost, lineage path querying offers the ability to
compare ranking systems among the supported databases.
For example, as mentioned previously, there are differ-
ences in ranking systems from database to database. By
offering lineage path querying, a user can compare side by
side the differences between the paths among the different
databases. These rankings are important since the scientific
name of the species is dependent upon where it falls within
a given ranking system. If a species is classified differently
from database to database, it affects the type of data that can
be retrieved about a particular taxon. A user may have an
understanding of one ranking system without understanding
another. By allowing for comparison, we permit the user to
evaluate each databases ranking system, seeing where the
data he is interested in may be located [11, 13].

Extending these path comparisons to phylogenetic stud-
ies, it can also help scrutinize the differences between two
trees which have similar taxa but use different reconstruc-
tion methods. By breaking the trees down to their paths, we
can monitor the differences in the classification of a spe-
cific taxon through various reconstruction methods. This
can be useful in analyzing the effectiveness of a reconstruc-
tion method as well as determining a species proper rank-
ing.

Finally, lineage path queries can also help with advanced
querying. One extremely powerful query that no phyloge-
netic database supports effectively is given a node N of the
phylogenetic tree, find all ancestors or descendents from
N. To perform this type of search, most databases require
that the user navigate through some hierarchical browsing
method of analyzing the tree. To find a specific path of the
tree, the user must be familiar with the tree. For example, if
a novice user tries to find “Homo sapiens” from the root of
the tree, most novices would not understand enough about

phylogenetics to know that the first classification “Homo
sapiens” falls under is “Eukaryota” . Therefore, a user can
enter a portion of the path, for example “Homo sapiens”,
and get the path beginning (or ending) at “Homo sapiens”.
Also, if the user is unclear about what type of organisms
would fall under “Eukaryota”, he can enter “Eukaryota” as
a partial path query, receiving back all paths that contain
“Eukaryota”.

3. The BIO-AJAX Toolkit for Lineage Paths

The BIO-AJAX [4] toolkit facilitates improving the state
of lineage path querying through integrating lineage path
resources. By applying the data cleaning architecture em-
ployed by BIO-AJAX [2, 4], various lineage path resources
can be integrated together to offer the user the ability to
query and compare these lineage paths.

The BIO-AJAX framework for Lineage Paths has been
implemented using the NCBI Taxonomy Database and the
Integrated Taxonomic Information System (ITIS) [6]. Both
tools allow querying upon their taxon set and return lineage
paths as a part of the answer to the query. In the current
implementation of BIO-AJAX for Lineage Paths, the fol-
lowing queries are addressed: Compare the lineage paths
for taxon X from database D1 and database D2 and; Given
taxon X, find all taxa which are descendents (or ancestors)
of X.

In future versions of this tool, the option of finding any
lineage path that contains taxon X will be provided. More-
over, other database repositories’ lineage paths, such as
TreeBASE’s will also be incorporated into the integrated
framework.

4. Implementation

The current implementation for BIO-AJAX for Lineage
Paths uses the data warehousing technique for integrating
the data and is accessible through a World Wide Web in-
terface [5]. Figure 2 displays the interface for this tool.
The lineage paths are extracted from both NCBI Taxonomy
Database and ITIS and stored locally. In previous versions
of the tool and previous instantiations of BIO-AJAX, the
mediator method was used to display the paths. However,
due to limitations in accessing each repository, this method
had to be replaced with the warehousing method. More-
over, since each lineage path needed to be manipulated to
get very specific data out of it, the mediator method became
impractical. Also, for finding all ancestors and descendents,
the lineage path strings needed to be parsed creating a long
lag time for the Web interface. Therefore, the platform was
shifted from using the mediator method to the data ware-
housing method. Figure 1 demonstrates the configuration
of the system.
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NCBI Flat File ITIS Flat File

Processing Tool

Extraction and

Search Application

Local Repository

Figure 1. The software architecture of BIO-
AJAX for Lineage Paths.

4.1. Lineage Path Extraction

For both data repositories, lineage paths can be extracted
from the flat files each repository provides for download.
While both databases vary in format, both store the lin-
eage path information in similar ways. Both databases have
signified one taxon as a “root” for the tree of life its data
model represents. Each taxon in both repositories has vari-
ous types of information stored about it, including the taxon
id and the number of its immediate ancestor. Therefore, to
obtain any taxons lineage path, a user would traverse the flat
file recursively, until he obtains the root taxon.

Initially, the flat files from the repositories are down-
loaded to local storage in a MySQL database. Next, the
scientific nomenclature is associated with its taxon identifi-
cation number. To facilitate traversal of the paths, all taxa
are also indexed through their taxon identification numbers.
For both the ancestor and descendent tables, the paths are
extracted from these flat files and stored locally. Moreover,
the ranking files from each database are also extracted to
provide the user with information about the terms in the
paths so that informed comparison is possible.

4.2. Lineage Path Retrieval

Querying for the purpose of comparison, for finding all
ancestors and for finding all descendents poses different
problems that must be addressed so that the query is exe-
cuted properly. Concerning querying for comparison and
querying to find all ancestors, the data returned is very sim-
ilar for both queries. However, for finding all descendents,

the path must be manipulated in a different way to obtain
these answers both efficiently and effectively.

To execute these three queries, a user can interact with
the indices through a web based search mechanism. On this
web page a user enters a taxon name within a text box. He
next selects from three choices (Ancestor, Descendent and
Home) listed beneath the text box what type of query he
wants executed. From this, the appropriate query is exe-
cuted. For each query, results from both NCBI and ITIS are
displayed along with the ranking for each member taxon of
the lineage path. Figure 2 displays the output for an ances-
tor query.

4.3. Lineage Paths and Data Cleaning

In the current method for finding the descendents, a num-
ber of taxa can possibly be returned numerous times, de-
pending upon how close the query taxon is to the root of the
tree when employing the descendent query. Therefore, data
cleaning methods can be applied to these paths to eliminate
redundancy [10, 15].

One possible method for eliminating redundancy is to
apply the sorted neighborhood method to the array to de-
tect similarities. Since the paths are highly structured and
common errors such as spelling errors are rare, this be-
comes an ideal application for using the sorted neighbor-
hood method. In a simple implementation of the sorted
neighborhood method on lineage paths, the very least com-
mon paths between taxa on the same level of the tree can be
found by comparing the lineage paths up to but not includ-
ing the final taxon in the path. Identical paths can be merged
so that redundancy is eliminated. For more advanced appli-
cations, there can be a number of iterations of this compar-
ison, where the first iteration starts by comparing for one
common taxon and builds to more complex paths.

5. Conclusion and Future Work

Lineage paths offer an interesting and rich method for
phylogenetic researchers to explore various interpretations
of the Tree of Life. By creating a comparative environment
for phylogenetic researchers, problems concerning the cor-
rectness of the Tree of Life can be addressed.

Future work concerning this research includes integrat-
ing more repositories into the tool as well as improving the
user interface [12, 16]. Moreover, this work can be further
applied to consensus tree and supertree generation prob-
lems. Also, work can be done to further the visualization
aspects of this tool concerning the comparisons.
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Figure 2. The BIO-AJAX interface for showing an example output for an ancestor query.
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Abstract

The growing number of data produced as streams re-
quires sophisticated data stream processing. One challenge
comprises join operations on data streams. Basic concepts
are derived from Database Management Systems and are
extended in terms of window techniques to handle infi-
nite data streams. Within our paper, we show that existing
window-based join algorithms are not sufficient for process-
ing data streams of various sensor data sources. As a solu-
tion, we propose novel join strategies, which are oriented
towards three basic data stream classes. Thereby, we fo-
cus on the temporal relation between the stream tuples and
introduce the bandwidth-based stream resampling. A real-
world example for data streams originating from a casting
process accompanies our paper.

1. Introduction

In today’s Data Stream Management Systems (DSMS),
data streams of various origins (e.g. sensors) flow together
for on-the-fly processing and, optionally, for being stored.
Sophisticated stream processing may not only consist of
operations like filtering or aggregating tuples of individ-
ual data streams: for combining data disseminated by differ-
ent data sources, join operations come into play. Compared
to joins over relations of a Database Management System
(DBMS), the stream join operator can read the DSMS data
only once (unless all historical tuples are buffered), and it
can only see the current tuples because data streams are po-
tentially infinite. The following example, first of all, shows
that window-based stream join techniques are not sufficient
for sophisticated sensor data stream processing, and second,
it motivates producing exact join results by adjusting differ-
ent data rates of the input streams before joining.

Example: Imagine the industrial process of casting metal
workpieces. To achieve optimal results in casting quality
and in the lifetime of the casting molds, modern foundries

currently experiment with equipping the casting mold with
sensors (figure 1).

casting mold

query result

DSMS

sensors

(e.g. thermocouples,
strain gages)

Figure 1. Casting mold monitoring

These sensors mainly measure temperature and pres-
sure (analog signals) at different points of the casting mold
and many switcher signals (digital signals) describing the
progress of the casting process. These signals form a data
stream, which is to be queried by a DSMS.

Figure 2. Casting mold’s data streams

When analog signals are monitored, the DSMS data
source access operator determines the amount of tuples
gathered during a time unit. Figure 2 shows the example
data streams for measuring the temperature and the pres-
sure inside the casting mold at the time the cast is pushed
in. The temperature rises slowly, whereas the casting mold’s
pressure increases rather suddenly and thus, has to be mea-

123



sured much more frequently to obtain a good signal repre-
sentation by the DSMS tuples.

An example query for this scenario may be to join and
output measured tuples with temperature and pressure data,
if the pressure exceeds a certain threshold. The appropriate
query graph is shown in figure 3. We introduce Θ as a sym-
bol for the data source access operation.

pressure,
temperature

pressure>100

temperature
sensor

sensor
pressure Θ

Θ
πσ

?

Figure 3. Query for joining sensor values

We assume that the pressure sensor data (timestamp TS,
attribute A) arrives with a data rate of 1000 tuples/s, while
the temperature sensor data (timestamp TS, attribute B) ar-
rives only with 2 tuples/s. Thus, window-based join tech-
niques (as introduced in [6,7,14]) would maintain two slid-
ing windows for the two input streams and would output a
number of tuples (TS, A, B) each time a new tuple arrives
at one of the windows. Assumed that the temperature win-
dow and the pressure window are of logical size of 0.5 sec-
onds, they contain 500 and 1 tuple(s) resp. The join result is
sketched in figure 4.

...
...
...

window 0.5s

A1 A500

1B
B1

A1

B1

A500

window 0.5s

Figure 4. Join result of window-based join

With window-based joins, two problems arise in our ap-
plication context: first, the attribute value of the stream with
the slower input rate (B) remains unchanged during every
output of 500 result tuples. It seems that, every 500 result tu-
ples, the attribute B changes in an ’erratic’ manner, which
is obviously not true for the (original) analog sensor sig-
nal. The second problem comprises the sizes of the sliding
windows: traditionally, larger join windows are assumed to
produce more accurate results. This does not hold for our
kind of sensor input data: if the window sizes are chosen ar-
bitrarily, the produced result would lack any semantics be-
cause a higher number of result tuples may either be caused
by higher sensor input rates or by larger join window sizes –
however, the user who observes the join (query) result will
be unable to distinguish.

Obviously, we will not come to a solution when apply-
ing stream join techniques which operate on single tuples or

sliding windows. Our approach of joining such data streams
is sketched as query graph for the casting mold example in
figure 5.

First, we use a specific data source access operator for
the analog sensor input signals, which annotates charac-
teristics of the data stream (e.g. classification information,
bandwidth). Second, within a join operator specific to ana-
log sensor data, we either interpolate the stream with the
lower bandwidth or we sample down the stream with the
higher bandwidth to find one-to-one join partners. This en-
ables us to reconstruct intermediate tuple attribute values at
any point of the DSMS because the temporal relation be-
tween consecutive stream tuples is preserved.

pressure,
temperature

pressure>100
πσ

C

Θ

Θ

temperature
sensor

sensor
pressure

Figure 5. Specialized query graph

Following that, we produce join results with well-
defined semantics, i.e. the attribute values of our result tu-
ples change smoothly within our example. In detail, the
contribution of our paper is the following:

• We propose a classification for data streams based on
the data source characteristics.

• We adopt the sampling and resampling techniques
from the field of digital signal processing for our
stream processing purpose.

• We solve the challenge of the application scenario
above by providing join implementations specific to
the classes which the data streams belong to.

Structure of this paper: After a summary of related work
in the next section, section 3 starts with describing differ-
ent kinds of data streams. Section 4 inspects the data acqui-
sition process of analog data sources and introduces sam-
pling techniques specific to these stream classes. The main
part of the paper is section 5, where we propose a join al-
gorithm for data streams of analog origin. Thereafter, sec-
tion 6 discusses join algorithms dedicated to other kinds of
data streams. Finally, section 7 concludes this paper.

2. Related Work

Much research activity has been directed at data stream
systems during the past years. Examples for DSMS-related
implementations are [1, 3, 5, 8, 10, 11, 17]. Based on that,
a lot of attention has been paid to the management of re-
source requirements, i.e. to the apriori reservation of re-
sources [2] or to the handling of overload situations by shed-
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ding some of the stream load [16]. The load shedding ap-
proaches can be based either on naive sampling techniques
or on slightly more sophisticated QoS-based user prefer-
ences, as in [16]. The problem with this technique of load
shedding is that it is impossible to reason quantitatively
about the information content reduction or about the re-
sulting quality for the remaining data stream portion. For
the class of (sensor-originated) continuous data streams, we
will present an approach of downsampling the data stream,
which comes along with a well-defined loss of stream infor-
mation and with a certain reduction of the stream data rate.
As opposed to sampling approaches known from Database
Management Systems [4], we will refer to the correlation
of consecutive DSMS tuple values to apply techniques from
the field of digital signal processing. This enables us to re-
duce information content based on signal processing theo-
rems [15].

Examples for approximated data stream joins are pro-
posed in [6, 7, 14]. The max-subset problem is specifically
addressed in [6]. Thereby, gathered statistics form the ba-
sis for the applied semantic load shedding techniques for the
data streams. The goal is to provide best quality, which is as-
sociated with the lowest deviation between the exact and the
real join result. Different processing techniques (’fast’ and
’slow’ CPU) are introduced to avoid that the stream arrival
rate will be too high (overload situation). In contrast, we as-
sume to perform only exact joins within our approach, due
to the exclusive use of the (ordered) timestamp as the join
attribute, and due to specific resampling techniques, which
we are going to implant into the join operator.

[7] states cost metrics for different join implementations
and proposes that it can slow down total join costs, if join
implementations are used asymmetrically depending on a
unit-time basis cost model and thus, depending on the char-
acteristics of each input data stream. Some of our join im-
plementations may be used asymmetrically, too, but it af-
fects the result semantics. Compared to [7], our goal is to
enable the DSMS user to use the appropriate join strategy
for his application scenario.

In [14], two approaches of approximation techniques
are compared regarding the capability to work with limited
memory: The max-subset technique uses statistics in form
of so-called ’age curves’ to replace stream tuples which do
not fit into the limited input windows of the join. As we only
join on the timestamp attribute, the amount of output tuples
is dependent on the timely discrepancy of the arriving tu-
ples (in case the timeout of the join operator is exceeded) as
well as on the intervals each of the input streams is defined
for. Within our approach, we do not need any stream statis-
tics (which are obtained during a warm-up phase in [14]).
We only rely on stream metadata to classify the data sources
and the arising data streams. These metadata are assumed to
be available at the time a stream is connected to the DSMS.

3. Data Stream Source Classification

Data processed by a Data Stream Management System
comes from various sources. Each data source is a producer,
e.g. a sensor, which measures a real or artificial process. In
our context, we assume that the DSMS processes tuples of
data. In general, a tuple Ti(TSi, Aij ) (i, j ∈ N) consists
of a timestamp TSi and one or more attributes Aij . With-
out loss of generality, we assume in our paper that the tu-
ples produced by a data source have the form (TSi, Ai). If
the data source does not initially associate a timestamp with
a measured value, then the timestamp may be associated at
the time of entrance into the DSMS to order the values re-
garding the time domain.

According to the arrangement of the tuples, we can cat-
egorize the data sources as well as the produced streams
by the characteristic of the timestamp and the characteris-
tic of the measured values (figure 6) following the catego-
rization in [12].

status data streams

discontinuouscontinuous

data streams

event data streams

Figure 6. Data stream classification

A continuous data stream (CS), originating from a sen-
sor measuring physical values such as temperature or pres-
sure of a natural or an industrial process, is uniformly con-
tinuous (figure 7a). The sensor is supposed to output ana-
log values which have to be discretized in time and quan-
tized in value. The time discretization of analog signals will
be discussed in detail within section 4.1. The obvious need
for quantizing the sensor values lies beyond the scope of
this paper, because it is dedicated to data integration in gen-
eral, not to stream processing in particular.
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c) irregular discontinuous d) event

Figure 7. Stream classes
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A discontinuous data stream (DS) contains data values
which are constant during certain time intervals. Aggre-
gated data, like sum or average values of business volumes
(per day, month, year), may be represented this way. Fur-
thermore, this class can be subdivided into regular data
streams (figure 7b) and irregular data streams (figure 7c).
Data, such as supermarket prices with daily updates or stock
exchange rates disseminated every hour, minute or second,
belongs to the former subclass (constant time intervals),
whereas auction prices growing step-by-step, depending on
the placed bids, are assigned to the latter subclass.

Finally, we consider the well-known event data streams
(ES). These kinds of data depend on sporadic real-world
events and are only defined at the time of the event (as op-
posed to the former classes). Such streams consist, for ex-
ample, of tuples coming from network traffic observations
or from the monitoring of click-streams (figure 7d).

4. Continuous Data Stream Adaptation

A continuous data stream is an infinite sequence of tuples
Ti. The timestamps of two neighboring tuples differ con-
stantly by ∆TS = TSi+1−TSi. Furthermore, a bandwidth
BW is assigned to each continuous stream; it describes the
maximum information content which may be represented
within the stream. It is defined as BW = 1

2·∆TS . As a spe-
cific feature of a continuous data stream, attribute values
not present in the stream may be reconstructed completely
by applying bandlimited interpolation (see section 4.2).

4.1. Transforming Analog Signals to Continuous
Data Streams

To process a continuous analog signal within a digital
computer system, the signal curve has to be converted from
an analog to a digital state. The discretization in the time do-
main is called sampling (figure 8c).

The samples form the basis for the data stream, which
can then be processed using a DSMS. The sampling fre-
quency fs = 1

∆TS (or: the sampling rate) depends on the
maximum signal bandwidth and determines its maximum
information content. Following the sampling theorem [15],
the sampling frequency fs must be larger than two times the
signal’s highest frequency fsig,max:

fs > 2 · fsig,max (1)

If condition (1) of the sampling theorem is not met, alias-
ing effects occur and prevent the correct reconstruction of
the original signal. In order to avoid aliasing effects, the sig-
nal has to be bandlimited by applying a low-pass filter (fig-
ure 8a + b).

In the data stream application, this means that the user
defines the maximum signal frequency of interest or the

maximum frequency at which a sensor signal is supposed
to change, and the sampling frequency can be obtained in
a straightforward manner. Then the bandwidth BW always
equals the cut-off frequency fc of the bandwidth delimiter
(low-pass filter) and it holds BW = fc.

The result of this initial sampling is a sequence of tuples
with equidistant timestamps TSi and the measured values
as attributes Ai.

Summarized, the sampling operation consists of two sub-
operations:

1. The bandwidth delimiter reduces the bandwidth of the
signal, if necessary depending on the user’s interest. At
this time, some information will get irrecoverably lost.

2. The consecutive sampling operation does not reduce
the information content anymore; it just picks out val-
ues of the analog signal which are absolutely neces-
sary to reconstruct a continuous signal of the delimited
bandwidth. This operation does not relate to load shed-
ding approaches.

4.2. Bandwidth-aware Sampling of a Tuple
Stream – Resampling

Following this initial sampling, the bandwidth of the
continuous data stream may be changed at any point dur-
ing the time the DSMS is applying a resampling operation.
Resampling, in our context, means changing the sample rate
of a data stream up or down. By applying bandwidth-aware
sampling techniques [13], it is possible to interpolate tu-
ple values between consecutive timestamps or to reduce the
amount of tuples of data streams with a defined loss of in-
formation content.

Signal interpolation and digital filter design is a well-
known domain and we refer to [15] for further information.
One resampling technique for digital signals is described
in [9, 13].

The resampling operation resamples a signal by a fac-
tor p

q (p, q ∈ N), where p is the interpolation factor and q

is the downsampling factor. If p
q < 1, a low-pass filter has

to be applied first to avoid aliasing effects. Depending on
the required resampling factor, either p or q may be equal to
1 and thus, one of the sub-operations (interpolation, down-
sampling) can be left out.

The resampling operation uses a finite impulse response
(FIR) low-pass filter [15] with a cut-off frequency fc for in-
terpolating or bandlimiting a tuple stream. In both cases,
a FIR filter kernel with L coefficients of its transfer func-
tion is calculated. The cut-off-frequency fc of the digital
low-pass filter depends on the parameters p and q. To inter-
polate or bandlimit a tuple stream, a stream-based convolu-
tion between the filter kernel and the continuous data stream
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Figure 8. Sampling an analog input signal

has to be applied. The resulting tuple stream has the band-
width BW = fc.

 1  1.5  2  2.5  3  3.5  4
 150

 200

 250

 300

 350

 400

 450

 500

 550

te
m

pe
ra

tu
re

 / 
de

gr
ee

 C
el

si
us

time / s

orig. temperature data stream
temperature upsampled to 1000 Hz

Figure 9. Interpolating the temperature data
stream

Bandlimited signal interpolation: Interpolation is needed
to reconstruct tuple values between consecutive timestamps.
This is done in two steps: firstly, zero-tuples are padded be-
tween consecutive timestamps TSi and TSi+1. That means,
that between the tuples at timestamp TSi and TSi+1, a
number of (p−1) zero-tuples are inserted. Secondly, a ban-
dlimited signal interpolation, which uses a low-pass filter
with a cut-off frequency fc = p · BW , must be applied.

This results in a tuple stream with a higher data rate and
exact interpolated values (figure 9). The application of ban-
dlimited signal interpolation is appropriate for handling sig-
nals of analog origin. This operation does not increase the
information content of the tuple stream.

Bandlimited downsampling: Bandlimited downsampling is
a combination of, first, bandlimiting a tuple stream by ap-
plying a low-pass filter with the desired cut-off frequency
fc, and second, passing by only every q-th tuple, because
it is sufficient to represent the bandlimited stream. Further-
more, the new tuples do not necessarily lie on the original
signal curve, because the information content of the stream
was reduced and only the trend of the signal remains af-
ter downsampling (figure 10).
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Figure 10. Downsampling the pressure data
stream

Summary: The result of the resampling operation in either
case is a bandwidth-delimited tuple-oriented data stream.
We make use of this when performing join operations on
continuous data streams, which is the topic of the follow-
ing section.

5. Data Stream Joins

Based on the proposed data stream classes, we discuss
the different possibilities for joining two streams at a time.
The input streams to be joined may be of the same or of dif-
ferent classes and thus, both cases shall be considered. For
each of the proposed joins, we sketch an algorithm describ-
ing how to perform the appropriate join in a streaming fash-
ion.

5.1. Join Classification

Table 1 provides an overview of the different join op-
tions between continuous streams (CS), regular and irregu-
lar discontinuous streams (DS), and event streams (ES); it
also states the number of the subsection which will handle
the appropriate join.

The join between two event-based data streams is left
out here (marked with ’x’). For these well-known join tech-
niques, we refer to related works, such as [6, 7, 14].
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CS DS ES
CS 5.2 6.2 6.3
DS 6.1 6.3
ES x

Table 1. Join possibilities

Generally, the join process consists of three steps:

1. The streams to be joined must be compatible. Based on
our classification, joins between all data stream types
are possible with the option of preprocessing (e.g. up-
sampling or downsampling) one input stream.

2. The suitable stream portions which are allowed to join
must be identified. In general, only stream data with the
same timestamp are join candidates. However, we al-
low the user to tolerate a certain ’time shift’ between
the two input streams.

3. Based on the input data streams, an appropriate join
implementation is selected and the specific join algo-
rithm is applied as described in the following sections.

5.2. CJOIN: Joining Continuous Data Streams

The CJOIN associates two continuous input streams. If
we would simply join streams of different bandwidths, it
would be impossible to determine the bandwidth (and thus
the maximum information content) of the resulting stream.
Thus, our CJOIN implementation works asymmetrically:
we adjust different bandwidths either by upsampling the
stream with the lower bandwidth or by downsampling the
stream with the higher bandwidth. The latter comes along
with reducing the information content of one input stream.
Figure 11 illustrates the two possibilities for joining contin-
uous streams. The desired strategy is up to the user and de-
pends on the required query result.

Due to the data source dissemination characteristics and
due to previous DSMS operations, the input streams may
not be defined all the time but only during certain time slices
(figure 11). When joining such continuous streams, the re-
sult stream is defined only during those slices where both of
the input streams contain tuples.

The CJOIN implementation is based on three compo-
nents (figure 12): an optional interpolation or downsam-
pling component and one component for identifying join
partners and thus, for performing the join.

We assume the stream, which may pass the two prepro-
cessing components, to be CS1 (which becomes CS1′ and
CS1′′ resp.). The stream CS2 is forwarded directly to the
join component. Whether or not stream CS1 has to pass one
or both of the preprocessing components depends on the re-
quired resampling factor p

q , which is the pruned fraction of

stream CS1y

y stream CS2 y

y

t

t

t

t

(low bandwidth)
join result stream

join result stream
(high bandwidth)

(information loss)

interpolating CS1
(no information loss)

downsampling CS2

Figure 11. Joining two signal curves of differ-
ent bandwidth

CCJOIN

CJOIN core

CS1’’downsampling

CS2

CS1 interpolation CS1’

Figure 12. CJOIN components

the two streams’ bandwidths BWCS2
BWCS1

: If p > 1 or q > 1;
an interpolation or a filtering and downsampling resp. has
to be applied before joining.

Algorithms 1 and 2 describe the bandlimited sig-
nal resampling process (announced in section 4) which
we adopted to work in the streaming context with-
out exposing any pipeline-breaking behavior, which we
call stream-based convolution. Both algorithms show a
warm-up phase during which a number of L − 1 result tu-
ples must be discarded because they would result in wrong
attribute values. In both cases, L is the number of stored fil-
ter coefficients which depend on the digital filter’s or-
der and thus, on its quality properties. Realistic values
range from 20 to 200 (see [9] for details). Furthermore, af-
ter interpolation and downsampling, the streams’ attribute
values become phase-shifted by L−1

2 tuples. This is a typ-
ical property of digital filters and very important for the
following core join component.

The CJOIN core is described in algorithm 3. Both input
streams are continuously scanned to find tuples of the pre-
processed stream CS1′′ which match with tuples of stream
CS2 regarding their timestamp. Two points must be consid-
ered: first, due to the preprocessing, the tuples from CS1′′

arrive later and phase-shifted compared to tuples from CS2
(figure 13). We take care of the ’later arrival’ by buffering
a number of (Lp − 1) + (Lq − 1) tuples of CS2. Due to
the phase shift, the number is reduced to (Lp−1)+(Lq−1)

2
tuples. Thereafter, the first tuple of CS1′′ joins with the
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Algorithm 1 interpolation (CS1 → CS1′)
Require: input stream CS1; output stream CS1′

filter kernel size Lp; buffer (FIFO) Bp of size Lp

interpolation factor p
Hp := create filter kernel (p, Lp)

while NOT EOS (CS1) do
insert (Bp, read tuple(CS1))
// zero padding
for i := 1; i < p; i ++ do

insert (Bp, 0)
end for
//convolution with filter kernel
write tuple (CS1′, stream conv (Bp, Hp))

end while

Algorithm 2 downsampling (CS1′ → CS1′′)
Require: input stream CS1′; output stream CS1′′

filter kernel size Lq; buffer (FIFO) Bq of size Lq

downsampling factor q
Hq := create filter kernel (q, Lq)
count := 0

while NOT EOS (CS1′) do
insert (Bq, read tuple(CS1′))
//convolution with filter kernel
temp := stream conv (Bq, Hq)
// discard every q-th output tuple
if count == q then

write tuple (CS1′′, temp)
count := 0

end if
count ++

end while

( (Lp−1)+(Lq−1)
2 + 1)-th tuple of CS2. As a consequence,

the first Lp+Lq

2 tuples of stream CS2 must be discarded,
too.

Second, the exact timestamps of CS1′′ tuples depend on
interpolation and downsampling and will rarely match ex-
actly the timestamps TS2 of CS2. To produce a join result,
we assume that within the resampled data stream CS1′′, a
tuple is valid during the time ∆T = 1

BWCS1′′
. This allows

T2

txt
PHASESHIFT

buffer discard

C

1

T2

T1’’

L 1

CS1’’

CS2

Figure 13. Stream phase shift

Algorithm 3 join (CS1′′ ��C CS2 → R)
Require: input streams CS1′′, CS2 of bandwidth BWCS2

output stream R; filter kernel sizes Lp, Lq

buffer B for holding Lp

2 + Lq

2 tuples of CS2

PHASESHIFT := (Lp

2 + Lq

2 ) · 1
BWCS2

// initial read
(TS1, V 1) := READ (CS1′′)
B := fillbuffer (CS2)
(TS2, V 2) := READ (B)

while (NOT EOS (CS1′′) AND NOT EOS (CS2)) do
while TS1 < (TS2 − PHASESHIFT − T

2 ) do
(TS1, V1) := read (CS1′′) // read from stream

end while
while TS1 > (TS2 − PHASESHIFT + T

2 ) do
(TS2, V 2) := read (B) // read from buffer
insert (B, read tuple(CS2)) // write to buffer

end while
if |TS1 − (TS2 − PHASESHIFT )| ≤ T

2 then
WRITE (TS2, V 1, V 2)

end if
end while

us to assign the timestamp TS2 of the CS2 tuple to the re-
sult.

Furthermore, a user-defined time shift may be added to
PHASESHIFT, in case one stream’s incoming tuples are
delayed somehow. Obviously, additional buffer space must
be allocated for such situations. The CJOIN result will be
a continuous stream, independently from the resampling
strategy.

Example: To point out the necessity for the proposed join
algorithms, we illustrate the join between the temperature
and the pressure data streams from the casting mold exam-
ple. If the user does not tolerate any information loss dur-
ing the join operation, the temperature stream must be in-
terpolated up to the bandwidth of the pressure stream (from
2Hz to 1000Hz). Thereafter, each pressure stream tuple can
be associated with a tuple from the temperature stream (fig-
ure 14) and further filtering can be applied.

The DSMS query for the casting mold example scenario
may be expressed as

SELECT time,
pressure,
temperature

FROM pressure JOIN temperature
USING CJOIN (SAMPLING=upsampling)
WHERE pressure > 100

The join result is a continuous stream with a bandwidth
of 1000 Hz. Otherwise, if the user is interested in a result

129



Figure 14. CJOIN example: temperature
stream upsampled

stream of the temperature stream’s bandwidth and thus, tol-
erates losing details of the pressure stream, the pressure
stream has to be low-pass-filtered and sampled down to a
bandwidth of 2 Hz. As a consequence, each resulting pres-
sure stream tuple can be associated with an original temper-
ature stream tuple (figure 15). The CJOIN parameter must
be SAMPLING=downsampling in that case.

Figure 15. CJOIN example: pressure stream
downsampled

6. Further Join Semantics

In the following sections, we extend our join concept to
other data stream classes.

D

t

y

y

t

stream DS1

stream DS2

discontinuous

discontinuous

Figure 16. DJOIN

6.1. DJOIN: Joining Discontinuous Data Streams

Discontinuous data streams do not have a bandwidth
property assigned. The exact values and timestamps (of the
’jumps’ in the signal curve) are important and have to be
considered for the join operation. Figure 16 illustrates the
most common case, the join of two discontinuous, irreg-
ular data streams. Discontinuous streams must not be sam-
pled up or down - this would bastardize the information con-
tained within the streams. Thus, for performing the appro-
priate join, we propose to consider all tuples of both input
streams for constructing the result tuples as follows:

• Create an output tuple at each timestamp TS at which
a tuple from one of the input streams arrives.

• If a tuple at timestamp TS arrives from both input
streams, pick up the tuple (TS1, V 1) from stream
DS1 and (TS2, V 2) from stream DS2 and construct
the output triple as (TS1, V 1, V 2).

• In case only one input stream (e.g DS1) has a tu-
ple defined at TS, construct the output triple as
(TS1, V 1, V 2last) where V 2last is the value of the
last arriving tuple of DS2 (which has to be kept
in buffer). If only DS2 contains a tuple of times-
tamp TS, apply the same strategy the other way
around.

The result of this most general join between two discon-
tinuous data streams is a stream with the maximum data rate
rresult = r1 + r2, if no two input tuples were of the same
timestamp.

The data rate may be reduced further if

a) both discontinuous input streams are regular and

b) the input streams are ’synchronized regarding time’.

This means, that the dissemination points of tuples fol-
low some general time, such as a clock or a calendar, and
contain at least one tuple of the same timestamp (hourly,
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daily, monthly etc.). Then, the output data rate is reduced to
rresult = r1 + r2 − 1

LCM(P ′
1,P ′

2)
, whereby LCM(P ′

1, P
′
2)

stands for the lowest common multiple of the whole num-
bered period lengths of P1 and P2. With that periodicity, a
tuple of exactly the same timestamp will be disseminated
from DS1 and DS2.

As an example, tuples of DS1 arrive every hour, whereas
tuples of DS2 arrive every day. If the streams are synchro-
nized, every 24 hours a tuple of both streams with identical
timestamp will arrive:

rresult = r1 + r2 − 1
LCM(P ′

1, P
′
2)

= 1
tuple

hour
+

1
24

tuple

hour
− 1

LCM(24, 1)hours
tuple

= 1
tuple

hour

Again, if the input streams are not synchronized, the re-
sult data becomes rresult = r1 + r2. Furthermore, if one of
the input streams is not defined for a certain period of time
(e.g. due to previous stream operators), no join results will
be produced during that time.

If two discontinuous regular streams DS1 and DS2 are
joined, and if it holds that P1 = n ·P2 with n being an inte-
ger value, then a discontinuous regular stream will be pro-
duced. Otherwise (and if one of the input streams is irregu-
lar), the result stream will be discontinuous and irregular.

6.2. CDJOIN: Joining Continuous with Discontin-
uous Data Streams

Figure 17 illustrates the join characteristics of a continu-
ous (CS) and a discontinuous (DS) data stream: the con-
tinuous data stream is described by its samples, whereas
the characteristics of the discontinuous (regular or irregu-
lar) stream are the timestamps and the erratic attribute value
changes. Therefore, we propose two join strategies:

y

t

y

t

continuous stream CS

CD

discontinuous stream DS

Figure 17. CDJOIN

Strategy 1: If the discontinuous data stream is irregular, the
join has to be performed asymmetrically as described in
the following: strategy (1a) performs the join based on the
discontinuous stream and consists of two steps: first, pick-
ing up the last arrived value V 1last of CS for each times-
tamp TS2 of a DS tuple (TS2, V 2), and second, outputting
triples like (TS2, V 1last, V 2).

If the distance in time between tuples of CS is too long
and thus, the deviation of using the last arrived tuple is too
large, CS may be upsampled before joining.

As a general drawback of this solution, many tuples (or
samples) of CS are thrown away because they do not find
a join partner. The result stream is heterogeneous: the se-
quence of the values of DS can be seen as discontinuous
and irregular, whereas the values of CS consists of incoher-
ent events and thus, would form an event sub-stream.

As a second possibility, strategy (1b) reads the (timely
equidistant) tuples of the continuous stream CS and pairs
the currently valid value of the discontinuous stream
DS with them. Thus, the result triple will look like
(TS1, V 1, V 2last), where V 2last is the value of the last ar-
riving tuple of DS which has to be kept in the buffer (see
section 6.1). The drawback of this strategy lies in los-
ing the exact timestamps of the value jumps in DS. The re-
sult stream is heterogeneous again: the values V 1 of
CS form a continuous sub-stream, whereas the val-
ues V 2last have to be seen as incoherent events.

Strategy 2: If the discontinuous stream DS is regular, it is
possible to resample the continuous stream CS to have ex-
actly the same period length as DS (the other way around
is impossible because discontinuous data streams must not
be resampled!). Then, we follow strategy 1(a) to pick up the
closest value of CS for every timestamp DS contains. The
result is a combination of a continuous and a discontinu-
ous regular attribute stream.

6.3. EJOIN: Joining with Event Data Streams

Joining different stream classes with an event data stream
ES works asymmetrically and comprises going through the
event data stream ES (TS1, V 1) and finding partner tuples
(TS2, V 2) in the other data stream. The explicit events of
ES must not be tampered in their timestamps or in their
values (as the continuous or discontinuous streams may be)
and thus the procedure is the following: every time a tu-
ple of ES with timestamp TS1 is read, a partner of the
continuous (CS) or the discontinuous (DS) stream is ac-
quired. Should a partner tuple for the exact timestamp TS1
be found, it may be used naturally. The result triples have
the form (TS1, V 1, V 2last).
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7. Summary and Conclusion

Within our paper, we provided motivation for joining
data streams with regard to specific stream classes. There-
fore, we proposed different join algorithms, and we rea-
soned about the semantics of the individual join results. We
showed that the DSMS can offer support in terms of pro-
viding basic join implementations, but it is up to the user to
supply join parameters depending on the application con-
text or the desired query result.
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Abstract

Recent advances in hardware technology facilitate appli-
cations requiring a large number of sensor devices, where
each sensor device has computational, storage, and com-
munication capabilities. However these sensors are sub-
ject to certain constraints such as limited power, high com-
munication cost, low computation capability, presence of
noise in readings and low bandwidth. Since sensor de-
vices are powered by ordinary batteries, power is a lim-
iting resource in sensor networks and power consumption
is dominated by communication. In order to reduce power
consumption, we propose to use a linear model of tempo-
ral, spatial and spatio-temporal correlations among sensor
readings. With this model, readings of all sensors can be
estimated using the readings of a few sensors by using lin-
ear observers. Since a small set of sensors are accessed for
query processing, communication is significantly reduced.
Furthermore, sensors are usually deployed over hostile en-
vironments where failure of sensors is common. In fact, it is
quite possible that readings from unreachable sensors are
needed. Therefore, fault tolerant monitoring techniques are
needed to estimate the readings of the unreachable sensors.
We propose a fault tolerant monitoring system using linear
models and linear observers.

1. Introduction

Due to advances in miniaturization, low power, and low
cost design of sensors, large-scale sensor networks are be-
ing deployed to monitor environmental, physical and chem-
ical processes. Examples include environment monitoring
on Great Duck Island and James Reserve [2, 9]. In sen-
sor networks, each sensor can be modeled as a full fledged
computer with computational, communication, and sensing

�
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09112, IIS 02-23022, CNF-04-23336, and EIA-00-80134

capabilities. Therefore, sensor networks can be thought of
as large scale distributed systems. However, these sensor
networks are subject to several constraints such as limited
power, high communication cost, low computation capabil-
ity, presence of noise in readings and low bandwidth. Be-
cause of these constraints, techniques for distributed sys-
tems, databases, and data stream management cannot be ap-
plied directly to sensor networks.

One way to interact with sensor networks is through
declarative queries [15]. Basically, these are used to collect
the desired data from a sensor network. Therefore, collect-
ing data from sensor networks can be thought of as query
processing. There have been many related research efforts
in the database and data stream management areas to pro-
cess queries efficiently. Traditional database management
aims to reduce query response time using indexes. On the
other hand, the main goal in the context of data streams
is to reduce the storage and computational cost and give
fast approximate answers to queries. However, monitor-
ing a system (a system can be any measurable phenomenon
in the physical world) with sensors is quite different from
query processing over data streams and database manage-
ment systems. The cost of query execution in sensor net-
works is not only bounded by computational and storage
costs but also bounded by data collection cost. In data
stream and database management systems, however, data
collection cost is not taken into account explicitly; instead
it is assumed that the data is already available. This assump-
tion is quite reasonable in database and data stream manage-
ment systems which are built on wired systems that do not
have energy and bandwidth constraints. This, however, is
not true in sensor networks where each sensor is powered
by ordinary batteries and has energy and bandwidth con-
straints which directly affect the quality of monitoring.

Many proposals have been made to reduce the cost of
data collection to prolong the lifetime of the sensors. In [7],
Madden and Franklin proposed the Fjords architecture for
managing multiple queries over many sensors. The sys-
tem collects the readings of all sensors and tries to compute
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common subexpressions among queries only once. Several
proposals have been made to process queries in-network
such as [16, 8, 17, 18]. In general, in-network aggregation
can reduce the power usage by pushing part of the com-
putation into the network. However, these proposals only
consider aggregation queries and do not consider multiple
queries. Lazaridis and Mehrotra [6] proposed to compress
the raw data at each sensor node, then the compressed data
is sent to the basestation only when the precision is out of
bound. Goel and Imielinski [5] proposed a prediction tech-
nique to monitor the environment by applying MPEG en-
coding techniques in prediction. Elnahrawy and Nath [4]
modeled the sensor generated data and use that to reduce
noise. Recently, Deshpande et al. [3] proposed to use prob-
abilistic models to drive the data acquisition in sensor net-
works thus reducing the rate of communication and extend-
ing the battery lifetime of sensors.

When monitoring the physical environment, there are
usually physical rules relating to data originating from dif-
ferent data sources, i.e, there is a physical rule between
readings of sensors. Most of the time, these physical rules
can be discovered and modeled using correlations among
sensor readings. Once this model is known, the query pro-
cessor can use this model to observe the environment by
collecting data from a few sensors instead of all of them.
Furthermore, this model can be used to reduce the noise
in the measurements. Our main observation underpinning
this work is that if two sensors are close to each other, their
readings have temporal, spatial, and spatio-temporal corre-
lations. For example, if two sensors are ����� meters apart
from each other then their temperature measurements are
correlated. Therefore, if these correlations are determined
and modeled using historical data, the query processor can
use that model to estimate the readings of all sensors us-
ing the readings of a few sensors. Formally, if a system is
identified and modeled using a linear model, then that lin-
ear model can be used to observe all readings using readings
from only a subset of the sensors.

The linear model of sensor readings is not only benefi-
cial in reducing the energy consumption but also in deal-
ing with missing values. Since sensors are often deployed
over a hostile environment, some sensors may fail or be
unable to communicate with the base station. However,
their readings might be needed to answer queries. Unlike
traditional database and data stream management systems,
any query processing technique for sensors should deal with
these unreachable readings. In other words, the query pro-
cessing technique should be fault tolerant, i.e., queries can
be answered using reachable sensors with an acceptable er-
ror rate. In order to build such a fault tolerant monitoring
systems, we propose to use linear models of correlations
among sensor readings to estimate the readings of unreach-
able sensors by collecting data from reachable sensors.

Heat Source
Sensor 1

Sensor 2

SHEET

Figure 1. Motivating Example

In order to monitor systems efficiently we propose a
monitoring technique called BINOCULAR. BINOCULAR
models the readings of sensors as a linear system to observe
the readings of all sensors using only a small subset of sen-
sor readings. Therefore, it is an energy efficient monitor-
ing system. Furthermore, BINOCULAR balances energy
consumption among sensors while providing a fault toler-
ant monitoring scheme.

The rest of the paper is organized as follows: Back-
ground and motivation will be discussed in Section 2. Sec-
tion 3 formalizes the problem of monitoring systems with
queries and gives our solution overview. System modeling
is discussed in Section 4. A formal model for observers is
introduced in Section 5. The usage of system model and lin-
ear observers is discussed in Section 6. Section 7 describes
the proposed query processing technique. Section 8 reports
the results of our experimental evaluations. Section 9 con-
cludes the paper, and presents future work.

2. Motivation

We now motivate modeling sensor generated data using
an illustrative example. Consider a large insulated sheet of
thickness � with thermal conductivity � , specific heat � and
density � and assume that a heat source delivers heat energy�

at a point 	 on the sheet (as shown in Figure 1). Let
��������� be the excess temperature � time units later at a point
on the sheet that is  away from the heat source. 
��������� can
be expressed as follows: 
�������������������������! "��#$&%��'�)(�*+�����
where �,� � �'��-�. �/� � and *0�1( � �2� ��� � . The derivation of
this formula can be found in [13]. Assume we monitor the
temperature of the sheet with five sensors located at differ-
ent points on the sheet without knowing 	 and

�
. Assume

one of the sensors, �&3 , is located  3 distance away and an-
other sensor, � % is located (& 3 distance away from 	 . The
following observations can be made:

465 %�7 �85 3 7 �9�! "�:#<;��%3 �2�=(�*>����� where 5 3 7 and 5 %�7 are the
temperature readings of sensors � 3 and � % respectively
at time � . (Spatial Correlation)

465 % 7 �?5 3 7A@=B ��- where 5 3 7C@DB and 5 % 7 are the tempera-
ture readings of sensors �&3 and � % at time ����- and �
respectively. (Spatio-temporal Correlation)

465 % 7CEGF �H5 % 7$IKJ9L!MON�P Q�RJ�Q where 5 % 7 and 5 % 7SEGF are the
temperature reading of sensor � % at time � and � I �
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respectively. (Temporal Correlation)

This physical system can be monitored without knowing
these correlations by collecting the readings of the five sen-
sors continuously. However, if these correlations can be
modeled with a linear model, then a single sensor reading
and the model can be used to estimate the readings of all
five sensors.

3. Problem Formulation and Solution
Overview

The proposed monitoring technique derives a model of
correlations among sensor readings called the system model
based on the historical data. Then, the derived model is used
to execute queries. Given a set of sensors, BINOCULAR
divides them into two types: working and sleeping sensors.
In order to estimate the readings of all sensors, BINOCU-
LAR only collects data from the working sensors and uses
the system model to estimate the readings of the sleeping
sensors.

A system model expresses an estimate for the sleeping
sensors in the next time interval ( ����� 3 ) based on the current
readings of the working sensors ( 
�� ) and the current esti-
mate of the sleeping sensors ( � � ). In a linear system model,
this is expressed by a linear relationship between � ��� 3 and
( � � , 
 � ) based on a linear correlation using system matrices�

and � . This can be expressed as follows:

����� 3 � � ��� I � 
��G� (1)

where �
	����� 3 is the state (the estimated readings of
the sleeping sensors), 
�	������ 3 is the input (the actual
readings of the working sensors),

� 	������ is the system
matrix, � 	������� is the input matrix, � is the number
of working sensors and � is the number of sleeping sensors.
Matrices

�
and � can be derived using the system modeling

technique discussed in Section 4.
If the correlations among sensor readings can be cap-

tured by a perfectly linear model, then we can estimate
the exact readings of all sensors using the working sensors.
However, in a real physical environment these correlations
cannot be perfectly captured by a linear model but need to
be approximated by a linear model. Because of the approx-
imation, the error in the estimate accumulates over time.
Therefore, the system model should be reset periodically
(every � time units) with the actual readings of the sleep-
ing sensors to avoid error accumulation. The appropriate
value of � can be derived using the formula discussed in
the Appendix.

However, if the readings of sleeping sensors can be es-
timated by a small subset of the sleeping sensors called
linear observers, then collecting readings from that subset
is enough to estimate the readings of all sleeping sensors.

Hence, between resettings, i.e, every � time units, instead
of activating all sleeping sensors the linear observers are
activated for a short period to recalibrate the errors in the
system model. Since the system model is reset periodically
with an accurate estimate of the sensor readings, the error
does not accumulate over time.

Formally, a linear observer is another linear system built
from the original system model. Given a system model in
form (1) and a vector of a subset of the sleeping sensors,� � , of size  , our goal is to determine whether all sleeping
sensors can be observable via � � , referred to as the observer.
If it is possible to observe, then we use the linear observer
specified by � � ��� � � where ��	��! "�� and ���$# �&%G� is �
if sensor % is in the observer set and it is the only � in that
row.

Example 1. Consider an environment monitored by three
sleeping sensors and one working sensor with a system
model:

�'��� 3 � � �'� I � 
'�G� (2)

where �'� is a ;)( � matrix such that �'�'�$#:� is the estimated
reading of sleeping sensor # and 
�� is a � ( � matrix and
'�G� � � � � is the actual reading of the working sensor at time
� . If this model is accurate then the actual readings of sleep-
ing sensors need not be collected, because all the readings
of the sleeping sensors can be estimated from the reading
of the working sensor. However, if the model is a linear ap-
proximation, then the error given by the system model will
accumulate over time. In order to avoid this, we may collect
the readings of the three sleeping sensors every � time units
and reset the system model with the actual values. However,
if the readings of these three sensors are observable by any
one of them, then the readings of the other two sleeping
sensors can be estimated accurately by collecting data from
that observer. And the system model can be reset with these
accurate estimations periodically. For example, if the sys-
tem model is observable via �"�,�*� �'� where � �,+ � �
��- (the reading of the third sensor), then only the reading of
the third sensor is collected periodically instead of all three.

The problem of monitoring systems with sensors can be
formulated as follows: Given a set of historical readings of
sensors, and a set of continuous queries to monitor, build-
ing a scheduler to schedule sensors as working or sleeping,
discovering a linear model between the readings of work-
ing and sleeping sensors, and constructing linear observers
and an observer scheduler to execute queries while reducing
and balancing the energy consumption. Section 4 discusses
how to schedule sensors as working or sleeping and how
to discover a linear model of correlation between working
and sleeping sensors. Then, Section 5 defines the notion of
observability and how to construct a linear observer.
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4. System Modeling

Given a set of sleeping sensors, a set of working sen-
sors and their historical readings, the correlations between
the readings of working sensors and sleeping sensors can
be modeled as a linear system. There are several com-
mercial system identification toolboxes for identifying such
correlations as a linear model expressed by Equation (1),
e.g, Matlab [10]. Basically these system identification tool-
boxes generate the matrices

�
and � in the system model

by using some well-known state space identification tech-
niques [12].

Using the same system model (i.e, the same sensors as
working sensors) drains the energy of the working sensors
and results in unbalanced energy consumption. In order to
balance energy consumption, we need a set of system mod-
els and need to switch among them over time.

It is possible to find (�� different system models each of
which has a different set of working sensors and a different
set of sleeping sensors with

�
sensors. For small

�
, all

possible models can be derived and energy efficient (i.e, less
number of working sensors) and accurate enough models
can be used. Energy efficiency and accuracy is a tradeoff for
a system model since it will be more accurate if the number
of working sensors is increased and vice versa.

On the other hand, it is not practical to derive all possible(�� models for large
�

. Therefore, we need a polynomial
time heuristic to find these models. The intuition behind our
heuristic is that the readings of all sensors are more likely
to be modeled by a set of working sensors uniformly dis-
tributed over a monitored region. Thus, we use a group
of working sensors uniformly distributed over the moni-
tored region. However, the actual data distribution may
not be uniform, hence, if the number of working sensors
in a group is not enough to yield an accurate model, we in-
crease the number of working sensors. Basically, we divide
the sensors into

� ��� groups (sensors in a group should
be evenly distributed over the physical region) with � sen-
sors in each. For each group � , we model the correlation
between the readings of the sensors in � (i.e, working sen-
sors) and the rest of the sensors (i.e, sleeping sensors) us-
ing historical data. Then, if the accuracy of the model is
good enough, that model is used in future estimation. How-
ever, if the model is not accurate enough, we increase the
number of working sensors in that model. Therefore, each
group giving an inaccurate model is merged with another
group giving an inaccurate model to yield a more accurate
model. This process continues until no group remains to
merge. The process is summarized in Algorithm 1.

Algorithm 1 outputs a set of system models. Figure 2
demonstrates an example in which sensors � � ('���	�
�S��� are
distributed over a physical region depicted as a square re-
gion. Sensors are initially divided into three groups ��3 �

Algorithm 1 System Modeling Algorithm
1: Input:
2:  : Physical region covered by sensors;
3: � : Total number of sensors over R;
4: � : Total number of sub-regions over R;
5: Procedure:
6: Divide  into � sub-regions such that the number of sensors in each sub-region

is the same;
7: Construct � groups � F P������ P ��� by taking a sensor from each sub-region such

that the intersection of any two is empty;
8: �� �����  ������� F P������ P � � �9: while TRUE do

10: for Every �"! in �� �����  � do
11: Find a model, # (model of correlations between ��! and the rest of the

sensors)
12: if # is accurate enough then
13: Delete �"! from �� �$�%�  � ;
14: Output #
15: end if
16: end for
17: if & �
' �)(�*"�� �����  ��� 3 then
18: Return;
19: end if
20: Construct new groups by merging each pair �"! and �,+ in �� �����  � .
21: Make �� �����  � empty and put new groups in �� �����  � .
22: end while
23: End Procedure

- � ��- ��.0/ , � % � - (2�212�435/ and �76 � - ;'��8 ���9/ . The system
model, : 3 , found by � 3 is accurate enough but � % and
�76 are not able to give an accurate model. Therefore we
merge these two groups and find a new system model, : % ,
with this new group. System models : 3 and : % can be
switched over time instead of using one of them continu-
ously.
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Figure 2. System modeling example

The needed accuracy of a model is application depen-
dent. We assume that users specify the accuracy for their
application appropriately.

5. Formal Model For Observers

Linear observers are used to estimate unknown states
from a set of measured states. As mentioned earlier, states
are readings of the sleeping sensors in our setting. There-
fore, the usage of the linear system in our setting is to es-
timate the readings of all sleeping sensors (i.e, all states)
using the readings of a few sleeping sensors (i.e, a set of
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measured states). The actual readings of all sleeping sen-
sors are needed to reset the system model periodically be-
cause of error accumulation. Instead of collecting all actual
readings, they can be estimated accurately with a linear ob-
server that collects readings from a subset.

Given a system model and a matrix, � , where � � � � �'� ,
we can construct a linear observer if the pair � � ��� � is an
observable pair which is defined as follows [1]:

Definition 1 The pair � � ��� � is said to be an observable
pair if the matrix + � � � ��� � � �  � 3 - � is full column rank
(Observability Condition).

Theorem 1 states how and why a linear observer can be
constructed with an observable pair � � ��� � [1].

Theorem 1 Given a system model and � � as follows:

�'��� 3 � � �'� I � 
'� (3)
� � � � ��� � (4)

If the pair � � � � � is observable, then the states of all sleep-
ing sensors can be observed via � � using the following lin-
ear observer:�� ��� 3 � � �� � I � �$� � #�� �� � � I � 
 � (5)

where
�

is an observer matrix.

Suppose we are given the system matrix
�

and we can
measure two of the sleeping sensors, say �"� � � and ����;!� ,
where � �,+ ��� � � �"�)(!� �����1��� � � - � . Then we can con-
struct a linear observer with a decaying observer error if the� � ��� � pair is observable where

�1� � � � � � ��� � �
� � � � ��� � ���

The observer error decreases exponentially over time since
all eigen values of

� # � � are strictly smaller than one.
Therefore, we can estimate the readings of all sleeping sen-
sors by collecting the readings of sleeping sensors � and ;
as well as the working sensors via the linear observer.

The main challenge now is to derive a set of � matri-
ces such that the system is observable via � � ��� � � . The
number of possible different observers is ( � , where

�
is

the number of sleeping sensors. However, for large
�

it is
impossible to test all of the possible ( � cases. Therefore,
we propose a technique similar to Algorithm 1 to find a set
of observers by trying only � � � � different � � � � � pairs.
Basically we divide the sensors into

� ��� groups where
�

is the total number of sensors and � is the number of sen-
sors in each group. Then, we decide whether the system
is observable from each group or not. For each of the ob-
servable groups, we construct an observer. For the remain-
ing groups we merge each group with another and create

new groups. Then, we repeat the observability test for these
new groups. We repeat these steps until no group remains
to merge. When choosing the initial groups we divide the
physical region into � sub-regions such that the number of
sensors in each sub-region is equal. Then we create ini-
tial groups by taking one sensor from each of the � sub-
regions. The details of this algorithm are similar to Algo-
rithm 1 and not mentioned here due to space limitations.

6. Using System Model and Observers

There are four ways to estimate the readings of sensors
using the system model and linear observers:

Using system model without resetting: The readings
of the sleeping sensors are estimated with the readings of
working sensors using the system model continuously. Be-
cause of the approximations, error accumulates over time.
As shown in Figure 3(a), the error can be arbitrarily large
after some time.
Using system model with resetting: The system model is
reset periodically to avoid error accumulation. Since the
system is reset with the actual readings of the sleeping sen-
sors, the error goes to zero periodically. Figure 3(b) shows
the behavior of the error over time.
Periodic Observers: One of the linear observers is ac-
cessed periodically to estimate the readings of the sleep-
ing sensors. The system model is reset with the estimated
values. Since the system model is reset with the estimated
values derived from an observer, the error approaches zero
periodically as shown in Figure 3(c).
Continuous Observers: So far, we use the system model
continuously and execute linear observers periodically to
estimate the readings of sleeping sensors. However, the lin-
ear observer given by (5) can also be used continuously to
estimate the readings of the sleeping sensors instead of the
system model. To balance the energy consumption, an ob-
server scheduler switches among observers over time. Fig-
ure 3(d) shows the behavior of the error. The reason for the
sinusoidal behavior in Figure 3(d) is that approximations in
the model introduce error while observers decrease error.
Although this method seems inefficient in terms of energy
consumption, it may be beneficial to get more accurate re-
sults.
Example 2. Consider a sensor network with � work-
ing and � sleeping sensors. Furthermore, the correlations
among working and sleeping sensors are modeled by a sys-
tem model : in the form of (3). Assume : is observable
with two linear observers called � 3 and � % that are in the
form of (5). Moreover, : needs to be reset every ( ��� time
units because of the approximations in the model. We want
to estimate the readings of sleeping sensors using : , � 3
and � % for ���!��� time units. Between resettings the sleeping
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Figure 3. The visual interpretation of ob-
servers

sensors readings are estimated by : . If we estimate with
only resetting, we need to reset : every ( ��� time units. In
other words, we need to collect readings of all � sleeping
sensors at times ( ��� ��- �!� � �
�	�O�43 �!� . In the periodic observers
case, instead of collecting the readings of all � sleeping
sensors, one of � 3 and � % can be used periodically for a
short amount of time at times ( �!� ��- ��� ���	�
�S��3 ��� in a Round
Robin fashion. Therefore, the readings of all � sensors can
be estimated with one of the observers periodically and :
can be reset with these estimations using (5). On the other
hand, in the continous observers case, only one of � 3 and� % is used continuously for estimation using (5). For exam-
ple, only � 3 is used continuously for first 1 ��� time units and
then only � % is used continuously for last 1 ��� time units.

7. The BINOCULAR System

QUERY PROCESSOR

System Model System Model System Model1 2 N

O1 O2 Oo

Readings of working sensors

Continous Queries

A
nsw

ers to queries

SELECT

Figure 4. The structure of BINOCULAR moni-
toring system

The structure of BINOCULAR, which is run in the base

station is shown in Figure 4. Users can pose continuous
queries and answers to queries are returned to the users. It
is the query processor’s responsibility to execute queries by
using system models and readings of a few sensors. Each
system model has several observers.

7.1. Query Processing

The readings of the sensors are needed to answer queries.
Since using the same system model results in unbalanced
energy consumption, system models are scheduled in a
Round-Robin fashion (i.e, each of them is operational the
same amount of time). Recall given one of the system mod-
els, there are four methods to estimate the readings of the
sensors. However, in order to save energy and bandwidth
we will use only periodic observers and continuous ob-
servers.

The task of the query processor is to schedule observers
to balance energy consumption among sensors. The ob-
server scheduler chooses the observer with the highest score
where the score is defined as follows:

����� � ������� # � � � �0� � ����	� � � � � ��
 �+� 
 �  � #�
 �
�

where Avg.En.Consumption is the average energy con-
sumption to collect the readings of the observer and
Avg.Avaliable.En is the average available energy of sensors
in the observer. At any time the observer scheduler chooses
the observer with the lowest cost and the highest energy.

The proposed technique does not give any guarantee on
the accuracy of the query answer, if the model does not cap-
ture the real time correlations. However, if the model cap-
tures the correlations in the incoming data, then the histori-
cal data can be used to derive the error associated with the
query answer. Alternatively, our technique can be used to
give exact error guarantees using the methods in [5] where
users specify the error bound in the query answer. Basically,
in order to give such error guarantees both the base sta-
tion and the sleeping sensors need to run the system model.
Furthermore, the sleeping sensors need to send their actual
readings to the base station if the estimated value in the base
station is out of the user specified error bound.

7.2. Fault-tolerant Monitoring

Since monitored physical environments are usually hos-
tile environments, it is quite possible to have unreachable
sensors (either due to a failure or disconnection from the
network). However, their readings are still needed to an-
swer queries. Therefore, any monitoring technique should
be fault tolerant, i.e, the readings of unreachable sensors
can be estimated within an acceptable error rate.
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BINOCULAR provides a fault tolerant monitoring tech-
nique, since it estimates the readings of unreachable sensors
using the readings of reachable sensors, the system models
and linear observers. If the working sensors in the system
model are reachable and the readings of the sleeping sen-
sors in that model are observable with the reachable sleep-
ing sensors, then that system model can be used to estimate
the readings of all sensors (i.e, reachable and unreachable
sensors) either with periodic observers or with continuous
observers. Therefore, BINOCULAR provides fault toler-
ant monitoring if the following conditions are satisfied: (1)
if there exists a system model : whose working sensors
are reachable. (2) If : is observable by reachable sleeping
sensors.

Systems usually have more than one system model each
of which is observable with a small subset of the reachable
sleeping sensors. In this case, the observer determination
and scheduling techniques introduced in previous sections
can be applied to find reachable working sensors and linear
observers when some sensors have failed or are unreach-
able.

7.3. Probabilistic Extensions to the Linear Model

Recently, Deshpande et al. [3] modeled the spatial corre-
lations among sensor readings with a multivariate Gaussian
model. Basically, they denote a model as a probability den-
sity function,  "��� 3 ��� % ���	�S���  � , where � � is the reading of
sensor # . A simple probabilistic transition model is used to
capture temporal correlations. Furthermore, [3] proposed to
use the Gaussian model to answer queries with probabilistic
confidence instead of exact error guarantees.

In our system, the system model and the linear observers
should be run by every sensor as well as the base station
in order to provide the exact error guarantee specified by
the user. Furthermore, readings of both the working sensors
and the observers should be broadcast to every sensor. Once
the system model and the linear observers are known to a
sleeping sensor, then it can derive the base station estimate
by simulating the system model. The sleeping sensor can
send the actual reading if the estimated value is out of the
user specified error bound.

However, if probabilistic guarantees are sufficient for
query posers, our linear modeling approach and the proba-
bilistic approach in [3] can be used together to build a more
efficient system. The model in [3] captures spatial corre-
lations using a Gaussian distribution and captures tempo-
ral correlations with a simple probabilistic transition model.
On the other hand, our linear model exactly captures all of
the temporal, spatial and spatio-temporal at the extra cost
of performing the calculations at all sensors by simulating
the system model. In order to build an efficient system pro-
viding probabilistic confidence, a linear model and a Gaus-

sian model could be used together to form a linear Gaussian
model. The linear Gaussian model, a well known multi-
dimensional time series modeling technique in statistics, is
a good technique to model sensor generated data due to its
following nice properties [14]: (1) The sum of two indepen-
dent Gaussian quantities is also Gaussian distributed. (2)
The output of a linear system whose input is Gaussian dis-
tributed is again Gaussian distributed. (3) It captures tem-
poral, spatial and spatio-temporal correlations.

The following linear Gaussian system can be used to es-
timate the readings of the sensors [14]:

�
Q
� 3 � � � Q I �



Q

where � Q is a Gaussian distribution of readings of sensors
at time � : � ���

Q
���
Q
� . Since the above linear system esti-

mates the Gaussian distribution of the readings of the sleep-
ing sensors in the next time interval, the confidence can be
calculated with the techniques discussed in [3]. Now, the
sleeping sensors do not have to perform calculations (i.e,
simulate the system model). Since a linear Gaussian sys-
tem is again a linear system, the fault tolerant monitoring
techniques discussed in this paper can be used. Therefore, a
fault tolerant monitoring system giving probabilistic confi-
dence can be built with a linear Gaussian model. The prop-
erties of linear models, Gaussian models and linear Gaus-
sian models are listed in Table 1. The three approaches
give complementary advantages in terms of computation re-
quirement, fault tolerance and error guarantees.

Table 1. Properties of Models

Linear Gaussian Linear Gaussian
Probabilistic confidence � �

Exact error guarantee �
Fault tolerance � �

8. Experimental Evaluations

In this section, we present experimental results for
BINOCULAR. In our experiments, we measure the aver-
age error for each sensor’s reading and the average number
of messages sent by each sensor. In addition, we measure
the fault tolerance of our technique. We use n4sid, a system
identification toolbox, provided by [10] in our experiments.

We conduct experiments over the following datasets:
4 Intel Lab Data: Temperature data collected from ; �

sensors deployed in the Intel Berkeley Research lab
between February 28th and April 5th, 2004.

4 Ocean Surface Temperature Data: Real tempera-
ture dataset from the Tropical Atmosphere Ocean
Project [11] consisting of readings of ( � sensors.
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8.1. Intel Lab Data

The data set contains (�- � � �!��� readings of ; � sensors.
We modeled the correlation between the working sensors
and sleeping sensors using � �&; of the data. The number of
working sensors is varied from � to 1 . Since the model is
a linear approximation, we collected the actual readings of
each sleeping sensor every � time units and vary � from1 � to �9���!� . Observers are not used to estimate the readings
of sleeping sensors, because the cost of using an observer
is equal to the cost of collecting readings from all sleep-
ing sensors (the derived system model is observable with at
least ��� sleeping sensors).

Figure 5 shows the average error in percentage,
�

, for
different � values and different number of working sensors.� � +O� � �&; � 5 � ���

Q�� � � � � 6����
�� �O7 # � �S7 � � � �S7 - � �9��� where�� �S7 is the estimated reading and � �O7 is the actual reading of

sensor # at time � and 5 is the total monitoring time. As
we expected, the error increased as � increased since error
accumulates over a time. However, the increase in the error
decreases when the number of working sensors is increased,
since the system model is more accurate with two or more
working sensors.

The cost of using different � values and varying the
number of working sensors are shown in Figure 6 in terms
of the average number of messages sent by each sensor.
The top line in Figure 6 shows the number of messages
that need to be sent in order to collect the exact readings
of the sensors. The results show that our method can esti-
mate the readings of the sensors within ( percent error (i.e,�
	 � ��. ( � ) with ( working sensors and (�3 sleeping sen-
sors by collecting the readings of the sleeping sensors every
� � ���!� time units. Therefore, the cost is reduced dramat-
ically by an order of magnitude compared to collecting the
exact readings of the sensors (i.e, top line in Figure 6). The
average number of messages sent by each sensor decreases
from 3 �!��� to approximately 3 ��� . Figure 7 shows the maxi-
mum error at any time during monitoring with two working
sensors. At time t, Figure 7 shows the maximum error in
the prediction of sensor readings.

We also tested BINOCULAR in a hostile environment
in which  percent of the sensors are unreachable. We vary from � 1 to . � . BINOCULAR predicts the readings of
all ; � sensors with the reachable sensors using continuous
observers and periodic observers with only � working sen-
sor. The results are shown in Figure 8. The error increases
in both continuous observers and periodic observers as the
percentage of failures increases, since the number of ob-
server sensors decreases. As we expected, the error is low in
the continuous observers case since the error is recalibrated
continuously. The cost of using continuous and periodic
observers is shown in Figure 9 in terms of the total number
of messages sent by all sensors during the entire monitor-
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ing period. The total number of messages (total overhead
on the network) decreases as the percentage of failure in-
creases, since failing sensors are not involved in observers
(note that the average number of message sent by each sen-
sor decreases). The results demonstrate that using continu-
ous observers or periodic observers is an energy versus ac-
curacy tradeoff.
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8.2. Ocean Surface Temperature Data

BINOCULAR was tested over a real temperature dataset
from the Tropical Atmosphere Ocean Project [11]. The
average daily temperature readings of 20 sensors for �9���!�
days were taken. The correlations between the readings of
each sensor and the rest of the sensors were modeled based
on the first ; ��� days. Therefore, there are ( � system models,
one for each sensor. These models were tried with the re-
maining . ��� days (using each system model for . �!� �&( � �

; 1 time units). Then, the average error for time � is calcu-
lated as follows: ��� � �&( � � � � � � % ���

�� � # � � � � � � � � ���!� where�� � is the estimated reading and � � is the actual reading of a
sensor # at time � . With the system models and one working
sensor at a time, BINOCULAR can estimate the reading of
all sensors within -)� 1 percent error on the average (this is

� 	 � � 1 ( � ) over . �!� time units. Figure 10 shows the maxi-
mum error at any time during monitoring with two working
sensors. At time t, Figure 10 shows the maximum error in
the prediction of sensor readings.
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9. Conclusion and Future Work

In this paper we presented a fault tolerant system moni-
toring framework, BINOCULAR. BINOCULAR uses a lin-
ear model between the working sensors and the sleeping
sensors to answer queries while using a small set of sensors.
We introduced the notion of linear observers to account for
the fact that the linear model will always be an approxi-
mation of the physical environment. By using the linear
observers, the modeling error can be reduced exponentially
over time. This results in less communication cost and pro-
longs the lifetime of sensors. Furthermore, the notions of
linear model and linear observers are used to provide fault
tolerant monitoring. Since sensors are usually deployed
over a hostile environment, it is quite possible to have un-
reachable sensors whose readings are needed. BINOCU-
LAR provides a novel fault tolerant monitoring system to
monitor hostile environments by using linear models and
linear observers. Our results show that using linear models
and observers reduces the energy consumption significantly
and increases the lifetime of sensors with an acceptable er-
ror in the estimation of readings of the sensors. As future
work, we plan to build a system on top of BINOCULAR
to mine the collected data to detect significant events in a
physical environment.
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A. Appendix

The linear model we derive from the historical data may
not match precisely to the data due mainly to that the ac-
tual system probably has nonlinear dynamics and that the

data collected has measurement error. Therefore the linear
model we are given by the software being used to obtain that
model will only be an approximation to the actual behavior
of the real system. One way to account for the discrepancy
between the approximate model and the real system can be
by adding a disturbance term

� 	��  to the linear model as
such

� ��� 3 � � � � I � 
 � I � � � (6)

That
�

term in the above equation will divert the simu-
lated system from the actual one in time. Note that if

�
is zero then the approximate system will become exact and
the smaller

�
is the longer it takes the two systems to move

apart from each other. Let us now formulate this intuition.
Let the simulated system be������ 3 � � ���� I � 
�� (7)

and � � � �� � . If we define � ��� � � � # �� � then we can write

� ��� 3 � � � � I � � (8)

hence it follows, since � � � � � � ,

� � �
� � 3�
� � �
� � � � � (9)

for � 	�� . Now if we suppose � � � � �	� for all � 	�� then
we can write

� � � � � � � � 3�
� � �

� � (10)

� � � � # �� # � (11)

where � � � � � � (suppose it is greater than one). Hence
given some 
�� � we can write � � � � � 
 for all � 	
- � � � � ��� �/� � / where

� � �������� 
 ��� # � � I �� ��� ����������� � (12)

142



Optimizing In-Order Execution of Continuous Queries over Streamed Sensor
Data

Moustafa A. Hammad
University of Calgary

Calgary, Alberta, Canada T2N 1N4
hammad@cpsc.ucalgary.ca

Walid G. Aref ∗ Ahmed K. Elmagarmid ∗

Purdue University
West Lafayette, IN 47907, USA

{aref,ake}@cs.purdue.edu

Abstract

In this paper we study the problem of providing ordered
execution of time-based sliding window queries over input
streams of sensor data with inherent delays. We present
three approaches to achieve the ordered execution. The
first approach enforces ordered processing at the input side
of the query execution plan. In the second approach we
utilize the advantage of out-of-order execution to optimize
query operators and enforce an ordered release of the out-
put results. The third approach is adaptive and switches be-
tween the first and second approaches to achieve the best
overall performance with current input arrival rates and
level of multiprogramming. We study the performance of
the proposed approaches both analytically and experimen-
tally while using various system configurations. Our per-
formance study is based on an extensive set of experiments
using a realization of the proposed approaches in Nile, a
prototype stream query processing system.

1. Introduction

Continuous queries on streaming applications depend on
windows to limit the scope of interest over the infinite in-
put streams. Several forms of windowed execution are cur-
rently proposed in the literature, of which, time-based slid-
ing windows are commonly used by several stream data sys-
tems [1, 2, 6, 7]. Figure 1(A) gives the pipelined evaluation
of an example continuous query Q that computes the on-
line total count of the items sold in common by two differ-
ent department stores. Q uses a window w time units. In the
figure, the output from joining S and T is streamed as input
to the DISTINCT and then to the COUNT operators at the
top of the pipeline.

∗This research was supported in part by the National Science Founda-
tion under Grants: IIS-0093116, IIS-0209120, and 0010044-CCR.
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Figure 1. Motivating example.

The operation of the join over a sliding window (W-
join) is described as follows [3, 4, 6]: Tuple tk in Stream
S joins with tuple tj in Stream T iff (1) tk and tj sat-
isfy the join predicate (i.e., the WHERE clause in the SQL
query), (2) the timestamp of tuple tk is within window size
from the timestamp of tj . Old tuples, say to, from one in-
put stream is expired (dropped from the window) iff to is
far by more than window size from any new tuples in the
other stream. Figure 1(B) gives an example of W-join be-
tween streams S and T. The ticks on the time line of S or
T are equally spaced at one time unit between two con-
secutive ticks. We assume that each tuple is indexed by
its maximum timestamp (i.e., T imeStamp(ak) = k and
T imeStamp(< ai, aj >) = max(i, j)). As a8 arrives,
W-join drops a1 and produces the output tuple < a8, a5 >.
Similarly, as b9 and c10 arrive, W-join drops d2 and pro-
duces the output tuples < b6, b9 > and < c4, c10 >, respec-
tively.

W-join as described in the previous paragraph can poten-
tially produce an unordered output stream. For example, in
Figure 1(C), tuple a8 in Stream S is delayed 3 time units
while tuples b9 and c10 in stream T arrive without delays.
In this case, W-join will process tuples b9 and c10 before
processing the earlier tuple a8. This will result in an out-
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Figure 2. The Sync-Filter approach of W-join.

of-order release of the output tuples (i.e., tuples < b6, b9 >

and < c4, c10 > will be released before tuple < a8, a5 >).

The notion of ordered output is crucial in the pipelined
evaluation, mainly for two reasons: (1) The decision of ex-
piring an old tuple from a stored state (e.g., a stored win-
dow of tuples in an online sliding-window COUNT oper-
ation) depends on receiving an ordered arrival of the input
tuples. Otherwise, we may expire an old tuple early (e.g.,
potentially report an erroneous sequence of count values).
(2) Some important applications over data streams, e.g., as
in feedback control, periodicity detection, and trend predic-
tion, require processing the input of their queries in-order
(and therefore, produce ordered output). One approach to
provide in-order execution of input tuples is to synchronize
the processing of W-join over the input streams [7]. We
call this approach the Sync-Filter approach (for synchronize
then filter). In this approach, and using the example in Fig-
ure 1(C), W-join will delay the processing of b9 and c10

from stream T until verifying that a new tuple from Stream
S arrives and has a larger timestamp. The obvious drawback
of the Sync-Filter approach is that W-join will block waiting
for new tuples at both streams before every join step. This
will result in increased response times of output tuples.

In this paper, we study the Sync-Filter approach in
terms of the average response time. Then, we propose a
new approach, termed the Filter-Order approach, and pro-
vide a closed form representation of the average response
time. Based on the analytical study, we propose a third ap-
proach, termed the Adaptive approach, that has the advan-
tages of the two previous approaches while avoiding their
drawbacks. We study the three approaches experimentally
using our prototype system, Nile, which is a centralized
stream data system that executes time-based sliding win-
dow queries [6]. The experimental study validates our an-
alytical results and shows that the Adaptive approach can
always achieve the targeted improvement in response time
by switching between the Sync-Filter and the Filter-Order
approaches.

The rest of the paper is organized as follows. Section 2
presents the Sync-Filter approach of W-join. Sections 3
and 4 introduce our proposed approaches, namely the Filter-
Order approach and the Adaptive approach of W-join. We
present the performance study in Section 5. Section 6 con-
tains concluding remarks.

2 The Sync-Filter Approach

One straightforward approach to get ordered output
from the W-join operator is by enforcing ordered pro-
cessing of input tuples. In other words, for any two tu-
ples ti and ti+1 that are processed in sequence by W-join,
T imeStamp(ti) ≤ T imeStamp(ti+1). Note that ti and
ti+1 may not necessarily belong to the same stream.

Figure 2 gives the execution of the Sync-Filter approach
for the example of Figure 1(C). As b9 in Stream T arrives,
W-join blocks waiting for another tuple from Stream S. At
time 11, a8 arrives in Stream S. W-join processes a8 and
removes a1 from Stream T since a8 and a1 are far by more
than window (6 time units). Finally, W-join produces the
output tuple < a8, a5 >. Notice that W-join processes b9

and c10 only when tuple a12 arrives in Stream S. At time
12, W-join processes b9 and produces the output tuple <

b6, b9 > at time 12 + tp, where tp is the time to process
an input tuple by the W-join. Then, W-join processes c10

and produces the output tuple < c4, c10 > at time 12 + 2tp.
The delay in processing every tuple is given in the rightmost
column of the table in Figure 2.

The advantage of the Sync-Filter approach, besides its
simplicity and guaranteed provision of ordered output, is
that W-join needs to store only those tuples that are within
window from each other. Notice that tuples b9 and c10 are
not stored in the buffer of Stream T . Instead, b9 and c10

are kept in the input queue 1. In addition, W-join drops old
tuples as new tuples are processed (e.g., dropping a1 when
W-join processes a8). Therefore, the Sync-Filter approach
eliminates the need to check the window condition (i.e., that
tuples are within window from each other) while scanning
the buffer of the joined stream.

One drawback of the previous approach is that W-join
blocks while waiting for a delayed tuple from one stream
(e.g., a8) even though some tuples (e.g., b9 and c10) could
be waiting to join in the other stream. A better approach
is to overlap the time of processing the waiting tuples with
the waiting time to receive the delayed tuple. Apparently,
this new approach has to prevent the out-of-order release of
output tuples (see the example in Figure 1(C)).

3 The Filter-Order W-join Algorithm

In the Filter-Order W-join Algorithm (Filter-Order, for
short), W-join processes input tuples independent of their
global order. Furthermore, W-join buffers the output tuples
before releasing them in-order.

Figure 3 gives the execution of W-join using the Filter-
Order approach. W-join processes b9 once b9 arrives (with-
out blocking to wait for a8). The output tuple < b6, b9 >

1Notice that the input queue of T will not increase indefinitely since
we always assume that tuples from Stream S will eventually arrive.

144



S
c2d 6b 8a 12a

1a 3f 5a 7c 9b 10c
5a > 8<a  ,
9 6 b ><b  ,

 4 10c  ><c  ,

11+tp

12

12

tp

3

2

Delay

T
Time

Time

Time

11

9

10

Arrival Output Tulpe Release 
Time Delay

tp : time to process a new tuple

4

Figure 3. The Filter-Order approach of W-join.

is stored in the hold buffer and is not released immediately.
Similarly, W-join processes c10 and stores the output tuple
< c4, c10 > in the hold buffer. W-join cannot release the
two output tuples since the minimum timestamp of the last
tuple seen from Streams S or T , TStrigger , equals 6 (< 9).
As tuple a8 arrives at time 11, W-join updates TStrigger

to 8, produces < a8, a5 > and releases this tuple immedi-
ately since (T imeStamp(< a8, a5 >) = 8) ≤ TStrigger .
At time 12, tuple a12 arrives and TStrigger is set to 10.
W-join can now release the output tuples < b6, b9 > and
< c4, c10 >. Notice that the time to produce < b6, b9 > and
< c4, c10 > is overlapped with the waiting time to receive
a12 and the total delay to receive the three output tuples is
lower than that of the Sync-Filter approach by 3 tp.

By comparing the average response time of the Filter-
Order approach with that of the Sync-Filter approach, it
is clear that the processing time overlaps the waiting time.
Therefore, the average output response time is expected to
improve when using the Filter-Order approach. Let the time
to perform a join operation between two tuples be c. Let λ1

tuples/second be the average arrival rate of Stream S and
let λ2 tuples/second be the average arrival rate of Stream T.
Let |w| is the window size in seconds. The relative improve-
ment in average response time when using the Filter-Order
approach over the Sync-Filter approach2, IRel, is:

IRel =
c|w|λ1λ2

1 + c|w|λ1λ2

(1)

4 The Adaptive Algorithm

Equation 1 shows that the relative performance improve-
ment when using the Filter-Order approach is significant at
specific ranges of arrival rates and processing speeds. Oth-
erwise, the Sync-Filter approach is a valuable option espe-
cially as we consider the low memory overhead in the Sync-
Filter approach. In this section we introduce the Adap-
tive approach that switches between the Sync-Filter and
the Filter-Order approaches to achieve the best average re-
sponse time. Initially the Adaptive W-join algorithm adopts
the Sync-Filter approach, while performing two extra steps.
Step 1: Monitor λ1 and λ2 (the arrival rates at the input data
streams S and T, respectively.) Step 2: Verify the following
condition: c|w|λ1λ2 ≥ α, where 0 ≤ α < 1. α is a user-
input parameter and indicates the required relative perfor-

2The details of the equations’s derivation is presented in [5].

mance. When the condition in Step 2 is fulfilled, the Adap-
tive approach switches to the Filter-Order approach while
continuing to perform the above two steps. The Adaptive
approach switches back to Sync-Filter when the test condi-
tion in Step 2 is FALSE. For example, when α equals 0.9
and the condition in Step 2 is TRUE, a relative improve-
ment of at least α

1+α
3 or 0.47 is achieved when using the

Filter-Order approach.

5 Performance Study

The experiments are performed on a prototype stream
query processor, Nile, and uses a hash-based implementa-
tion of the W-join [6]. The join buffers are structured as
hash tables that have the join attribute as the hash key. We
have implemented the proposed algorithms in Sections 2,
3, and 4. Our measure of performance is the average re-
sponse time per input tuple, which is the average time to
completely process an input tuple by W-join. This time in-
cludes the waiting time, the processing time, and the time
to produce an output tuple (if any). We perform our experi-
ments on synthetic data streams, where each stream consists
of a sequence of integers. In the experiments, the inter-
arrival time between two consecutive tuples of an input data
stream follows the Exponential distribution with mean 1

λ
.

All the experiments are run on an Intel Pentium 4 CPU 2.4
GHz with 512 MB RAM running Windows XP.
Varying the Number of Concurrent Queries. In this ex-
periment, we study the performance of the proposed ap-
proaches as we vary the number of concurrent queries. Our
workload is a set of concurrent W-join queries over two data
streams, S1 and S2. We measure the time to process a sin-
gle W-join operation per query (parameter c in Section 3)
as we increase the number of concurrent queries. Since c is
directly proportional to the number of concurrent queries in
our workload, we vary the value of c by varying the number
of concurrent queries. We use a window of size one minute.
The average stream arrival rate in S1 (the slow stream) and
S2 (the fast stream) are 1 tuple/second and 10 tuples/second,
respectively. We set α of the Adaptive approach to 0.3 (i.e.,
we would like to switch to Filter-Order if the relative im-
provement is greater or equal to 0.3

1+0.3
or ≈ 25%). We col-

lected the average response time of the input tuples during
the lifetime of the experiment (20 minutes for each run).
Figure 4 (a) gives the average response time when increas-
ing c from 1 microsecond to 1 millisecond. Y-axis is the
average response time per input tuple. With all process-
ing times, Sync-Filter has the worst average response time.
At large processing times, the difference between Sync-
Filter and Filter-Order is significant and the difference gets
smaller at small processing times. This can be interpreted

3The term is obtained by substituting c|w|λ1λ2 in Equation 1 by α.
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Figure 4. The average response time while (a)
varying the number of concurrent queries, (b)
varying the input rate of S1 (the slow stream)

.as follows: Using Sync-Filter while increasing the process-
ing time per join tuple, leads to excessive delays of tuples in
the fast stream (i.e., S2). This is the case as new tuples from
S2 must wait for a new tuple from the slow stream (i.e.,
S1) to proceed in W-join. On the other hand, Filter-Order
shows small or no variations in the average response time as
we increase the processing time. This is mainly a result of
overlapping the processing of tuples from S2 while waiting
for new tuples from S1. The Adaptive approach behaves
similar to Sync-Filter in our first three measurements since
c|w|λ1λ2 < α. At c = 0.5 milliseconds, c|w|λ1λ2 = 0.3
(i.e., ≥ α). Therefore, the Adaptive approach switches to
the Filter-Order approach.
Changing Input Rate. In this experiment, we study the
effect of the proposed approaches on the average response
time while varying the arrival rate of the slow stream. We
use a binary W-join with a window size of one minute as
in the previous experiment. We fix the input rate of the
fast stream (S2) at 10 tuples/second and increase the input
rate of the slow stream (S1) from 0.01 to one tuple/second.
As in the previous experiment, the Adaptive approach uses
α = 0.3. We fix the multiprogramming level such that
c ≈ 0.5 milliseconds. Figure 4 (b) gives the average re-

sponse time. In all the proposed approaches, the average re-
sponse time increases significantly (more than one minute)
at small arrival rates of the slow stream. However, the
increase in Sync-Filter is larger than that of Filter-Order
for the same reasons, as explained in the previous experi-
ment. Similar to the behavior in the previous experiment,
the Adaptive approach switches between Sync-Filter and
Filter-Order when the rate of the slow stream is one tu-
ple/second. Having smaller α will shift the switching point
to a small arrival rate of the slow stream.

6. Conclusion

In this paper, we studied the problem of providing or-
dered execution of window joins over data streams. We
showed that the Sync-Filter approach that enforces ordered
processing of input tuples to guarantee ordered output can
result in increased response time. We then proposed the
Filter-Order approach that applied the filter step of the win-
dow join followed by the buffering and ordering steps. In
this way, the processing time of input tuples from one
stream overlaps the waiting time to receive delayed tuples
from the other stream. We studied both Sync-Filter and
Filter-Order analytically and based on this analysis, we pro-
posed the Adaptive approach that switches between Sync-
Filter and Filter-Order to achieve a given performance goal.
We showed through real implementation of the approaches
on Nile the superiority of our proposed approaches over the
Sync-Filter approach.
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Abstract

Data products generated from remotely-sensed, geospa-
tial imagery (RSI) used in emerging areas, such as global
climatology, environmental monitoring, land use, and dis-
aster management, require costly and time consuming ef-
forts in processing the data. For the researcher, data is
typically fully replicated using file-based approaches, then
undergoes multiple processing steps, these steps often be-
ing duplicated at many sites. For the provider, data distri-
bution is often tied directly to the data archiving task, fo-
cusing on simple, coarse grained offerings. Many RSI in-
struments transmit data in a continuous or semi-continuous
stream, but current techniques in processing do not utilize
the stream nature of the imagery. Recent research on contin-
uous querying of data streams offer alternative processing
approaches, but typically assume tuple style data objects,
relying on traditional relational models as basis for query
processing techniques and architectures. Complex types
of stream objects, such as multidimensional data sets or
raster image data, have not been considered. Our project,
GeoStreams, is a framework to process multiple continu-
ous queries against streaming remotely-sensed geospatial
image data. This paper introduces the basic features under-
lying the GeoStreams model. We describe some interesting
aspects in processing streaming image data, including opti-
mization and evaluation using specialized index structures.

Remotely sensed data, in particular satellite imagery,
play an important role in many environmental applications
and models [10]. Simple, convenient access to remote sens-
ing data has traditionally been a barrier to research and
applications. The huge amounts of data generated by the
Earth Observing System (EOS) platforms have precipitated
a change in this scenario, and access to data products has
become substantially easier. New EOS data archives of-
fer fine examples of more transparent data access. How-
ever, access to this imagery still largely centers on choosing
coarse grained, standard data products for specific regions

and times. Applications that study changes in the environ-
mental landscape require frequent, often continuous access
to these data, and the temporal discontinuity in these access
methods can force complicated preprocessing and synchro-
nization steps between the data provider and the data user.

The sensors themselves, however, follow much more of
a streaming paradigm. Data is acquired continuously and
transmitted to receiving stations in a continuous manner.
Outside the realm of image databases, there have been re-
cent advancements in the more general field of data stream
management systems (DSMSs), with new proposed query
processing techniques [8] and research applications [1,3,4].
In such systems, data arrives in multiple, continuous, and
time-varying data streams and does not take the form of
persistent relations. There is clearly a potential benefit in
taking techniques developed for DSMSs and adopting them
to geospatial Remotely-Sensed Imagery (RSI) data.

The GeoStreams project investigates joining these two
disciplines. In the GeoStreams architecture, researchers will
explicitly consider the continuous temporal nature of RSI
and formulate queries on these streams. Outputs of these
queries continuously feed new RSI data to the researcher.
These streams can be fed into applications to allow a con-
tinuous source of new input data from a single stream, or
saved in more traditional RSI formats. As the functionality
of the RSI DSMS increases, more aspects of the applications
can be formulated into the queries themselves.

Requirements for the GeoStreams architecture include
(1) identifying a query syntax that is natural for environ-
mental application developers, as well as concise and un-
ambiguous; (2) development of a core set of operations for
RSI access; (3) query optimizations that allow a DSMS sys-
tems to tailor their execution plans to the currently active
queries; and (4) execution plans that take advantage of the
highly organized structure that is a trademark of RSI data.
A wider range of interesting activities also include method-
ologies for continuous client-server data exchange, wire for-
mats for streams of RSI, and investigating costly blocking
operations on RSI data like image reprojections that can be
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incorporated into a streaming system.
An Overview of the GeoStreams architecture is shown

in Figure 1. Multiple users connect to the GeoStreams
server and formulate queries to the system. The system
is optimized for continuous queries on the input satellite
stream of data. The queries are parsed and validated,
then optimized. Optimization includes single and multi-
query methods in this model, combining queries to mini-
mize number and size of images that are created and main-
tained in the GeoStreams system. Minimizing the size of
images reduces both memory usage and computational bur-
den. Because of the way images can be shared between
queries, however, computing query costs can be non-trivial.
New queries affect the execution plan for the system, but
these changes are made incrementally, because the execu-
tion is continuously working on the incoming RSI stream.
This stream comes from a stream generation module that re-
interprets the raw satellite data into a format more suitable
for query processing.

connect

connect

connect

Stream

Generator

Optimization

Weather Satellites

Parser

DSMS Server

D
elivery Execution

Figure 1. GeoStreams overview

Query execution is highly dependent on the structure of
the incoming data. In our model, the RSI data is manipu-
lated one row at a time. This matches the form of the satel-
lite stream and is also convenient for satisfying multiple
queries. Query execution ends with operators to return the
data to the clients, which require persistent or synchronous
connections on both the server and the client.

Our first RSI stream is continuous weather imagery
from the National Oceanic and Atmospheric Administration
(NOAA) Geostationary Operational Environmental Satel-
lite (GOES) [6]. All data from the GOES satellite is trans-
ferred via a format specific these instruments. This contin-
uous data stream transmits at approximately 2.1 Mb/sec. It
has two instruments, the Imager and Sounder, which have 5
and 19 spectral channels respectively. GOES scans various
sections of the Earth’s surface about once every 15-30 min-
utes in spatial frames. A single frame varies in size from
about 100MB to 400MB, depending on the region scanned.
The ground resolution of the pixels varies between spectral
channels. Data are basically delivered in a line by line man-

ner, as GOES scans the hemisphere from North to South.
Images and image manipulation are based on image al-

gebra [11], which is a rigorous and compact method for de-
scribing images, image transformations, and analysis. Ini-
tially, the notation for image algebra can be confusing and is
kept to a minimum in this paper, although some high points
in the context of streaming queries are discussed below. Im-
age algebra is a many-valued algebra that includes Point
Sets, Value Sets and Images.

Points Sets are defined in some topological space and
correspond to the spatio-temporal location of the individ-
ual values in an image. Unlike many image definitions, the
GeoStreams point sets typically include a temporal dimen-
sion. This allows for functional manipulations to be easily
described in the algebra. Point sets are denoted with bold
capital upright letter and points within a point set are de-
noted with lower case bold letters, i.e., y ∈ X.

Value sets encompass values associated with the points
in the point set and are taken from a homogeneous set of
operands, typically sets like integers, Z, or real numbers, R,
although more complex, multi-valued sets can be defined.
Value sets have the usual operations associated with their
universal set.

Images are defined in general terms. The notation F
X

describes the set of all functions, {f ∈ F
X : f is a function

from X to F}. An image is such a function that maps from
a point set X to the value set F. For an F-valued image,
(a : X → F), F is the possible range of the image a and X

is the domain of a.
Another convenient notation for an image a ∈ F

X is
the data structure representation, a = {(x, a(x)) : x ∈
X}. Here the pair (x, a(x)) is a pixel of the image. The
first coordinate x ∈ X is the pixel location and the second
coordinate a(x) ∈ F is the pixel value at location x.

Image Operations are the basic building blocks for
queries to the GeoStreams system. These operations include
functional operations, image restrictions to specific point
sets, spatial transforms on images from one point set to an-
other, and neighborhood operations where multiple pixels
from an image are combined to a single value. Figure 2
shows examples of these basic operations.

Defined operations on or among images include any op-
eration that operates on the value set F, which induces a
natural operation on F-valued images. For example, the ad-
dition of two images can be defined as a+b = {(x, a(x)+
b(x)) : x ∈ X}.

Image restrictions return images restricted to a given
point set. In image algebra, if a ∈ F

X, then the restriction,
a|Z is defined as a|Z ≡ a ∩ Z × F = {(x, a(x)) : x ∈ Z}.
Some image models have formulated restrictions as selec-
tion operations, σx∈Z(a). Others formulate this as a spatial
join, a na.x=Z.x Z. Still others formulate restrictions func-
tionally on an image data type.
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Spatial restrictions are possibly the most important of all
operations, and flexible methods for defining new point sets
need to be included in query formulations. This is espe-
cially true in our model where point set restrictions define
not only spatial, but also spatio-temporal limits on incom-
ing data streams. Some point set manipulations are easy
to represent, but many useful manipulations are more com-
plex. Details of all potential point set manipulations have
not been fully investigated, but since point sets are sets, re-
lational algebra could be used as a framework for subset
definitions.

Spatial transformations map an image from one point
set to another. In general, for any function, f , between two
point sets, f : Y → X, and an image a ∈ F

X; the spatial
transform is defined as: a ◦ f = {(y, a(f(y))) : y ∈ Y}.

Spatial transformations are used for magnification, rota-
tion, and other general spatial manipulations. For geolo-
cated imagery, reprojection of data into a new coordinate
system is also a geometric transformation.

X

(a) a|X (b) a ◦ f (c) a

L

N

Figure 2. Image Operations

Neighborhood operations allow for multiple pixels from
a single image to be combined to create a single pixel value
in a new image. Neighborhoods allow for aggregation func-
tions like averaging, edge detection, speckle removal, and
other operations. For example, a

⊕
N , indicates a local

summation function where N represents an image template
for the operation around local points.

Queries in the GeoStreams framework do not build on
a variant of SQL syntax, but on something closer to the
image algebra representation and on specialized interfaces.
For example, consider a query for a normalized difference
ratio on two satellite bands, a common type of index for en-
vironmental applications. We want to continuously receive
this index for a particular region, reprojected to some con-
venient coordinate system, e.g. UTM. In image algebra, this
could be represented as ((a−b)/(a+b))◦UTM |X , where
((a−b)/(a+b)) represents the index, ◦UTM represents a
function mapping from the satellite image to a new coordi-
nate system, and |X represents a restriction to some spatial
extent.

This simple query demonstrates some of the problems
in query formulation for a user. There must be methods

to create complex spatial transform and restriction criteria,
as mentioned before. These problems have been addressed
in other research, and a number of workspace and work-
flow [2] models have been proposed, which are being inves-
tigated as a potential platform for describing general queries
in GeoStreams.

However, in the near term, a query interface based on
the OpenGIS Web Map Services (WMS) specification [5]
is being developed. This simple interface does not allow
for a sophisticated set of user queries, but it does investi-
gate the most basic requirements of serving many spatial
restrictions and geometric transformations to many clients.
Basically, the interface allows users to specify specific data
products, coordinate systems, and spatial extents. Tempo-
ral restrictions can also be identified. Queries like the one
above could be specified, as long as the index itself is iden-
tified as a product in the server. The WMS specification fur-
ther simplifies query formulation by standardizing and sim-
plifying both spatial transforms and restrictions to a limited
but well-defined subset. In general, the WMS specification
limits queries to the form, a

⊕
N ◦f |X , where a, N , f , and

X are specified in a simple standard way.
Query optimization attempts to limit the processing

time and/or the amount of memory usage for the DSMS as a
whole. In GeoStreams, query optimization is primarily con-
cerned with two goals: query rewriting to limit the amount
of work done in the system, and exploiting common subsets
within the queries active against the image stream.

Consider the previous example, ((a − b)/(a + b)) ◦
UTM |X. This is a natural way to represent the query, but
not an efficient computation method. As written, the index
and spatial transform are performed on the entire domain
of the image, most of which is discarded in the final restric-
tion. Generally, moving restrictions to the front of the query
improves efficiency. Restrictions can be reordered over spa-
tial transforms by transforming the restriction point sets as
well. For example, given Y = {UTM(x) : x ∈ X}, the
above query can be rewritten as,

((a − b)/(a + b))|Y ◦ UTM or

((a|Y − b|Y)/(a|Y + b|Y)) ◦ UTM

Simple heuristics on queries, like those above, work well
in the GeoStreams architecture, especially in the case were
queries are limited in complexity, as they are with the WMS
query interface. They also allow for some independence
between the single- and multi-query optimization steps.

Once the individual queries are rewritten to optimize
their individual execution, the queries are then optimized
in a multi-query fashion as well. Optimization here centers
around grouping similar query components into a single op-
eration that works simultaneously for a group of queries. In
DSMS research this has multiple conceptual definitions, in-
cluding grouped filters [8] and query indexing [9]. Figure 3
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shows a typical query index scheme for a spatial restriction
operation, where rather than each query requiring its own
restriction operator, a single restriction module has indexed
the point sets of a number of active queries. For each con-
tinuous user query, a region is associated that describes the
restriction for that query. For incoming RSI data, it is deter-
mined what data is relevant to what user queries and which
queries can share incoming data.

Q2 Q3Q1

DCT

Q1 Q2 Q3

R1 R2 R3

RSI RSI RSI RSI

R1

R2

R3

RSI

Figure 3. Restrictions on multiple queries

By developing modules for the basic image operations
that can take as input a single RSI stream and distribute
results to multiple output streams, the complete DSMS in
the GeoStreams architecture is a number of these operators
joined together for a complete system. This allows not only
the pipelining of image data to operators to which the data
is of interest, but it also facilitates the sharing of image data
among queries that have non-disjoint query regions.

Query Execution is tied intrinsically to the query plan
developed by the optimizer, and also by the organization
of the incoming data stream. Modules are developed for
each of the basic image operations, which satisfy multiple
queries in a single operation. The modules are linked to-
gether for complete query execution. We have discussed
how our RSI data stream comes in an ordered row-by-row
arrangement. This organization plays an important role in
how modules in the query plan are arranged.

Figure 3 shows an example module for processing mul-
tiple query image restrictions. For the restriction module,
we have proposed the Dynamic Cascade Tree (DCT ) [7], a
space efficient structure to index query regions that are part
of more complex queries against RSI data streams. The spa-
tial trends inherent to most types of streaming RSI data is
exploited to build a small index that is especially efficient
when the incoming stream data are in close spatial proxim-
ity. Queries can be answered very quickly if the next data
stream segment has the same result as the previous query
and will incrementally update a new result set when the re-
sult is different. Based on the information provided by the
DCT , incoming data can be pipelined to respective query
operators, providing the basis for multiple-query processing
models for streaming RSI data.

In Conclusion, we have described some of the basic
concepts underlying the plans for a complete GeoStreams
DSMS architecture for queries on streaming RSI data. We
have already demonstrated the effectiveness of some of the
basic modules within the system, for example, using the

DCT as a method for indexing multiple query restrictions.
Work is started on developing a preliminary system using
the WMS specification as a basis for web-based access to
the DSMS. There are a number of additional issues that can
be investigated in this work, including determining the best
wire formats for streaming query results, integrating mature
publish/subscribe ideas into data delivery of RSI streams,
allowing users to start queries in the past while maintain-
ing a streaming paradigm and other issues. Our hope is
that the test-bed developed here can be used to investigate
these additional issues as well. The project is described at
http://db.cs.ucdavis.edu/geostreams.

This work is supported by the NSF grant IIS-0326517.
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Abstract

Modern geographic information systems do not only have
to handle static information but also dynamically moving ob-
jects. Clustering algorithms for these moving objects provide
new and helpful information, e.g. jam detection is possible by
means of these algorithms. One of the main problems of these
clustering algorithms is that only uncertain positional infor-
mation of the moving objects is available. In this paper, we
propose clustering approaches which take these uncertain po-
sitions into account. The uncertainty of the moving objects is
modelled by spatial density functions which represent the
likelihood that a certain object is located at a certain position.
Based on sampling, we assign concrete positions to the ob-
jects. We then cluster such a sample set of objects by standard
clustering algorithms. Repeating this procedure creates sev-
eral sample clusterings. To each of these sample clusterings a
ranking value is assigned which reflects its distance to the oth-
er sample clusterings. The clustering with the smallest rank-
ing value is called the medoid clustering and can be regarded
as the average clustering of all the sample clusterings. In a de-
tailed experimental evaluation, we demonstrate the benefits
of these medoid clusterings. We show that the medoid cluster-
ing is more suitable for clustering moving objects with fuzzy
positions than arbitrary sample clusterings or clusterings
based on the distance expectation values between the fuzzy
positions of the moving objects. 

1. Introduction

Clustering algorithms aim at grouping similar objects to-
gether, whereas dissimilar objects are assigned to different
clusters. In the area of clustering moving objects, the similar-
ity criterion is the distance between the objects. If we cluster
objects moving on a spatial network [21], the distance be-
tween the objects on the network is used for clustering. If we
aim at clustering objects which can freely move, the Euclide-
an distance between the objects can be used to measure the
similarity, i.e. the closeness, between the objects [15]. 

Clustering moving objects has many different application
ranges. For instance, clustering algorithms on a spatial net-
work can be used for traffic jam detection and prediction.

Clustering algorithms on freely moving objects can be used
for weather forecasting [6], for detecting outliers, or for de-
tecting animal migrations.

The problem of clustering moving objects is that often no
accurate positional information is available. For instance, due
to technical problems, the GPS system might not be able to
pinpoint the exact positions of the moving objects. Another
reason for uncertain positional information is that due to effi-
ciency reasons it is not possible to update the exact position
of the objects continuously. Clustering algorithms therefore
have to deal with uncertain, outdated positional information.

In this paper, we propose an approach for clustering mov-
ing objects with uncertain positional information. We moti-
vate a fuzzy modelling approach for describing moving ob-
jects and discuss several strategies which can be used for
clustering these objects with standard clustering algorithms.
After discussing the problems with the most straightforward
approaches for clustering moving objects, we introduce an
approach which uses the new concept of clustering rankings.
Based on suitable distance functions between clusterings, we
determine the medoid clustering from a set of sample clust-
gerings. The medoid clustering can be regarded as the clus-
tering which represents all sample clusterings in the best pos-
sible way. Like ranking queries in databases, we can now
return the sample clusterings according to their ranking val-
ues. The first returned clustering is the medoid clustering. In
a give-me-more manner, the user can ask for more cluster-
ings. Thus, the user gets a better picture of all clusterings
which are possible when we cluster moving objects with un-
certain positional information.

The remainder of this paper is organized as follows. In
Section 2, we present the related work in the area of clustering
moving objects. In Section 3, we introduce our fuzzy model-
ling approach which takes the uncertain positions of the mov-
ing objects into account. In Section 4, we present different ap-
proaches for clustering fuzzy moving objects. Our final
approach relies on distance functions between clusterings.
These distance functions are introduced in Section 5. In Sec-
tion 6, we present our experimental evaluation, and conclude
the paper in Section 7 with a short summary and a few re-
marks on future work.
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2. Related Work

In this section, we will present the related work in the area
of clustering moving objects. In Section 2.1, we first classify
well-known clustering algorithms according to different cat-
egorization schemes. Then, in Section 2.2, we present the ba-
sic concepts of fuzzy clustering algorithms, and describe how
the approach of this paper differs from the fuzzy clustering
approaches presented in the literature. Finally, in Section 2.3,
we present various approaches for clustering moving objects
as presented in the literature. 

2.1. Clustering Algorithms

Clustering algorithms can be classified along different, in-
dependent dimensions. One well-known dimension catego-
rizes clustering methods according to the result they produce.
Here, we can distinguish between hierarchical and partition-
ing clustering algorithms [12]. Partitioning algorithms con-
struct a flat (single level) partition of a database D of n objects
into a set of k clusters such that the objects in a cluster are
more similar to each other than to objects in different clusters.
Hierarchical algorithms decompose the database into several
levels of nested partitionings (clusterings), represented for
example by a dendrogram, i.e. a tree that iteratively splits D
into smaller subsets until each subset consists of only one ob-
ject. In such a hierarchy, each node of the tree represents a
cluster of D. 

Another dimension according to which we can classify
clustering algorithms is from an algorithmic point of view.
Here we can distinguish between optimization based or dis-
tance based algorithms and density based algorithms. Dis-
tance based methods use the distances between the objects di-
rectly in order to optimize a global criterion. In contrast,
density based algorithms apply a local cluster criterion. Clus-
ters are regarded as regions in the data space in which the ob-
jects are dense, and which are separated by regions of low ob-
ject density (noise).

The following representatives of the 4 categories are used
throughout our experimental evaluation:

2.2 Fuzzy Clustering
In real applications there is very often no sharp boundary

between clusters so that fuzzy clustering is often better suited
for the data. Membership degrees between zero and one are
used in fuzzy clustering instead of crisp assignments of the
data to clusters. The most prominent fuzzy clustering algo-
rithm is the fuzzy c-means algorithm, a fuzzification of the
partitioning clustering algorithm k-means. For more details
about fuzzy clustering algorithms, we refer the reader to [11].

In contrast to fuzzy clustering algorithms where objects
are assigned to different clusters, we cluster in this paper
fuzzy object representations. The fuzzy spatial objects are as-
signed to exactly one cluster. 

2.3. Clustering Moving Objects

In this section, we present some recent approaches from
the literature dealing with the problem of clustering moving
objects. 

Yiu and Mamoulis [21] tackled the complex problem of
clustering moving objects based on a spatial network. Here,
the distance between the objects is defined by their shortest
path distance over the network. Based on this distance mea-
sure they proposed variants of well-known clustering algo-
rithms. 

In [15], Han et al. applied micro-clustering [23] to moving
objects. They propose techniques to keep the spatial exten-
sion of the moving micro-clusters small. To detect crucial
events, e.g. split events, they measured the compactness of
the moving micro-clusters by means of their bounding rect-
angles. If the size of the bounding rectangle exceeds a certain
threshold, the micro-cluster is split. Different clustering algo-
rithms can then be carried out on the moving micro-clusters
instead of the individual points. In contrast to the experimen-
tal approach presented in [15], Har-Peled presented a more
theoretical approach which also sacrifices quality in order to
gain efficiency [10]. 

Clustering moving objects is not only interesting in its
own, but can also beneficially be used for spatio-temporal se-
lectivity estimation [22]. Zhang and Lin proposed a new clus-
tering based spatio-temporal histogram, called CSTH, which
allows to estimate the selectivity of predictive spatio-tempo-
ral queries accurately. 

3. Modelling Fuzzy Moving Objects

In this section, we motivate the use of spatial density prob-
ability functions for describing the location of moving ob-
jects. This approach is quite similar to the approach presented
by Behr and Güting [3] which use “degree or affinity” values
to describe the probability that a certain point is included in a
fuzzy spatial object. 

Normally modern GPS systems can determine the exact
position of moving objects very accurately. But, for instance,
in the case of a war, this precision is reduced due to security
aspects. Although, the system assigns a position
p(o, t) = (x, y) to each object o at a certain time t, we cannot
be sure that the object o is located at the point (x, y) at time t.
Nevertheless, it is very likely, that o is close to (x, y). This
closeness can be modelled by assigning a 2-dimensional
Gaussian density probability function ofuzzy to the object (cf.
Figure 1). The center of this probability function is at point
(x, y) and the standard deviation σ is determined by the accu-
racy of the GPS system. 

distance based density based

partitioning k-means[16] DBSCAN[7]

hierarchical Single-Link[12] OPTICS[1]
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There exist other examples where it is beneficial to assign
a 2-dimensional Gaussian distribution function ofuzzy to an ob-
ject o. For instance, animals or pedestrians which can freely
move in the 2-dimensional space with a certain maximum ve-
locity can be modelled by such a spatial density function. In
order to cluster these objects effectively, it also seems reason-
able to describe their positions by a 2-dimensional density
probability function (cf. Figure 1). The center of this proba-
bility function is the last sent position of the object. The stan-
dard deviation σ depends on the maximum velocity of the ob-
ject and the time passed since the object last sent its exact
position.

If we assume that the object moves on a spatial network,
e.g. cars moving on roads, we can assign a 1-dimensional
Gaussian distribution function to the object (cf. Figure 2). The
center of this probability function is a certain distance l away
from the last sent position of the object. The value of l de-
pends on the average velocity vavg and the time tlast which
passed since the object last sent its exact position. The stan-
dard deviation σ depends on the difference between the max-
imum and minimum assumed velocity, i.e. vmax - vmin, and on
tlast.

Finally, if we, for instance, follow the approach presented
in [15], we also cannot determine an exact position of an ob-
ject o at clustering time. But as we know that the object is lo-
cated within the bounding rectangle of the moving micro-
cluster, we can assign to each object of the micro-cluster a
density-probability function which assigns to each position a
value 1/Abox where Abox denotes the area of the bounding rect-
angle. Note that we assign to each object of a micro-cluster
the same density probability function (cf. Figure 3). 

As shown in the above examples the position of a moving
object cannot be described by only one single positional val-

ue. A better way, to describe a fuzzy moving object is to as-
sign to each object a set of possible positions. To each of these
positions, we assign a probability value which indicates the
likelihood that this position is the exact one. Obviously, the
sum of all these probability values is equal to 1.

Definition 1 (fuzzy moving object) 
Let o ∈ DB be a moving object. To each moving object, we
assign a fuzzy moving object function ofuzzy: IR

2 → 
for which the following condition holds: 

Figure 1, 2 and 3 show different fuzzy moving object func-
tions ofuzzy for two dimensional moving objects o. The func-
tions ofuzzy assigns a probability value ofuzzy(x, y) > 0 to each
possible position (x, y) of o. In the following, we use the term
fuzzy moving object for both the object o and the correspond-
ing function ofuzzy. 

4. Clustering Fuzzy Moving Objects

In this section, we present three different approaches
which enable us to cluster fuzzy moving objects. All three ap-
proaches are based on sampling. In Section 4.1, we determine
for each object o a concrete position based on the correspond-
ing fuzzy moving object function. We use the resulting sam-
ple points as input parameters for the clustering algorithms.
In Section 4.2, we carry out the clustering algorithms based
on the distance expectation values between our fuzzy moving
objects. The distance expectation values between our fuzzy
moving objects are again computed by means of sampling. In
Section 4.3, we determine a medoid clustering from a set of
sample clusterings. The sample clusterings are computed as
shown in Section 4.1. Then, we use suitable distance func-
tions (cf. Section 5) between our sample clusterings to deter-
mine the corresponding medoid clustering. 

4.1. Sampling
The most straightforward approach for clustering fuzzy

moving objects is to assign to each moving object o an exact
position according to its spatial density-probability function
ofuzzy. Figure 4 shows two possible positions p’ and p’’ of our
fuzzy moving object o. Although position p’ is much more
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likely, it is also possible that o is at position p’’. For each fuzzy
object ofuzzy, we assume a position p ∈ IR2. We can then apply
any given clustering algorithm (cf. Section 2.1) to our fuzzy
moving objects. The similarity between two fuzzy moving
objects ofuzzy and o’fuzzy is then determined by an application
dependent distance function, e.g. the Euclidean distance or
the network distance, between the assumed positions p and p’.
Based on this simple similarity measure between two fuzzy
objects, we can apply any standard clustering algorithm. 

Note that the thereby created clustering heavily depends
on what positions we assumed for our fuzzy moving objects.
Figure 5, for instance, shows a density-based clustering [7]
based on sample positions. The resulting sample clustering
does not reflect the intuitive clustering. If we look at the fig-
ure, we would rather derive a clustering Cl = {{o1, o2},
{o3, o4}} which groups o1 and o2 together and o3 and o4. On
the other hand, the sample clustering groups o2 and o3 togeth-
er and assigns the objects o1 and o4 to noise. 

4.2. Distance Expectation Values
In this section, we introduce the distance expectation value

between fuzzy moving objects. This similarity measure be-
tween fuzzy moving objects is based on distance functions
which do not express the similarity between two fuzzy mov-
ing objects by a single numerical value. Instead, we propose
to use fuzzy distance functions, where the similarity between
two objects is expressed by means of a probability function
which assigns a probability value to each possible distance
value. Then, we carry out the clustering algorithms based on
the expectation values of the fuzzy distance functions (cf.
Figure 6).

Definition 2 (fuzzy distance function)
Let d: O × O → IR0

+  be a distance function, and let
 denote the probability that d(o, o’) is be-

tween a and b. Then, a probability density function pd: O × O
→ ( IR0

+ → ) is called a fuzzy distance function if the
following condition holds:

If the distance τ = d(o,o’) between two objects can exactly
be determined, the fuzzy distance function pd is equal to the
dirac-delta-function δ, i.e. pd(o, o’)(x) = δ(x-τ) [2]. Thus the
traditional approach can be regarded as a special case of Def-
inition 2.

As traditional algorithms can only handle distance func-
tions which yield a unique distance value, we propose to ex-
tract the distance expectation value from these fuzzy distance
functions. The distance expectation value Ed: O × O → IR0

+

represents the fuzzy distance function in the best possible way
by one single value  (cf. Fig-
ure 6b). 

Although, this distance expectation value expresses the
distance between two fuzzy moving objects in the best possi-
ble way, clustering based on these expectation values might
be misleading. Figure 7, for instance, shows the computation
of the core object condition for a fuzzy moving object o. Den-
sity based clustering algorithms like DBSCAN [7], for in-
stance, decide for each object o whether MinPts objects are
located within an ε−range of o. If this is the case, we call o a
core object. Although, the object o in Figure 7a does not seem
to be located in a very dense area, it is a core object according
to the distance expectation approach. This holds as the dis-
tance expectation value between o and MinPts=4 other ob-
jects is smaller than ε. On the other hand, it is very unlikely
that all MinPts objects are indeed located in Nε(o). Therefore,
the probability that o is a core object is very small. In Figure
7b the reverse situation is sketched. Object o is located in a
very dense area but there do not exist MinPts objects o’ for
which  holds. Therefore, o is no core object ac-
cording to the distance expectation approach, although it is
very likely that there exist MinPts elements o’ for which

 holds. To sum up, clustering based on the dis-
tance expectation values might be misleading.

Figure 4. Two possible positions p’ and p’ 
of a moving object o.
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4.3. Medoid Clustering 

In this section, we propose a third approach which is based
on the computation of sample clusterings. As shown in Sec-
tion 4.1, we can compute a clustering of our moving objects
based on sampling. Obviously, we can compute several of
these sample clusterings. The question at issue is which is the
most suitable of these sample clusterings. The idea of this pa-
per is that we propose to compute the medoid clustering from
these sample clusterings. In order to determine the average
clustering, we need suitable distance functions between the
sample clusterings (cf. Section 5). If we assume that we have
functions which express the similarity between two cluster-
ings, we can assign to each clustering Cl a clustering ranking
value (cf. Definition 3) which sums up all the distances to all
the other clusterings. The clustering with the smallest ranking
value is called the medoid clustering (cf. Definition 4). 

Definition 3 (clustering ranking value) 
Let DB be a database of fuzzy objects, and let Cl1, ..., Cls be
s sample clusterings of DB. Furthermore, let d be a distance
function between clusterings. Then, we assign to each
clustering Cli a clustering ranking value Ri:

Obviously, the clustering having the smallest ranking val-
ue represents the set of clusterings in the best possible way. It
is called the medoid clustering.

Definition 4 (medoid clustering) 
Let DB be a set of fuzzy objects, and let Cl1, ..., Cls be s sample
clusterings of DB. Furthermore, let d be a distance function
between clusterings. Then, Cli is called the medoid clustering
if  holds. 

Note, that in the example of Figure 5 it is very unlikely that
the clustering Cl = {o2, o3} is the medoid clustering, although
it might be one sample clustering. If we compute, for in-
stance, s = 5 clusterings, we might once get the above cluster-
ing, once we would assign all objects to noise and three times

the sample clusterings are identical to the intuitive clustering
Cl = {{o1, o2}, {o3, o4}}. Suitable metric distance functions
between clusterings (cf. Section 5) would detect that the me-
doid clustering corresponds to the intuitive clustering
Cl = {{o1, o2}, {o3, o4}}. 

Similarly, if we look at the example presented in Figure 7,
our medoid clustering approach seems to be more suitable
than the approach based on the distance expectation values.
Although in Figure 7a it might be possible that one sample
clustering would decide that o is a core object, the majority of
the samplings would decide that o is no core object. There-
fore, it is very likely that the resulting medoid clustering
would classify o correctly, i.e. assign it to noise. Similar, in
Figure 7b it is very likely that our medoid clustering approach
would decide that o is a core object, and, again, would classify
the object correctly.

In the following, we will present an approach which helps
us to compute the medoid clustering efficiently, if we assume
that several slave computers are available.

4.3.1. Parallelization.  If we assume that L different slave
computers are available, we can easily parallelize the compu-
tation of the s sample clusterings. Obviously, each slave has
at most  clusterings to compute. Each slave can inde-
pendently compute its clusterings and send the final results to
all the other slaves. So all slaves have the final s clusterings
before the computation of the medoid clustering based on the
s sample clusterings starts. 

As the computation of the distance measures between the
clusterings can be very time consuming, we propose an ap-
proach which parallelizes the execution of the 
distance computations between our s sample clusterings.

The idea is that a master triggers the computation of the
clustering distances which are then carried out by the avail-
able slaves. Thus, one of the primary goals is that all slaves
have an equal workload. To achieve that, the master keeps an
s x s matrix M which indicates which distance computations
between clusterings have already taken place. Furthermore,
the master maintains an ordered list of the clusterings. The
clusterings are ordered ascendingly according to their current
clustering ranking values. Initially, all ranking values are set
to zero. If a slave has computed a distance between two clus-
terings Cli and Clj, the master updates the corresponding rank-
ing values Ri and Rj of these two clusterings and reorganizes
the sorted list of clusterings. Furthermore, the master indi-
cates in the matrix that the distance between Cli and Clj has
been computed. 

After initializing the matrix and the sorted list of cluster-
ings, the master continuously checks whether there exist a
slave S which is out of work. If this is the case, the master
takes the first clustering Clfirst from the sorted list and checks
by means of the matrix M whether all distances between Clfirst
and the other s-1 clusterings have already been computed. If
there is still one distance computation missing, the master
asks the slave S to carry out this distance computation. If we

Figure 7. Determination of the core object property 
based on the distance expectation value

(MinPts=4).
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assume that the distance d between the clusterings is a metric,
i.e.  holds, the algorithm terminates if
all s-1 distance computations of Clfirst have already been com-
puted. Then, the master knows that Clfirst is the searched me-
doid clustering without any further distance computations.
Note that the ranking value of all the other clusterings can
only increase but never decrease if we carry out further dis-
tance computations. Obviously, if the user is not only inter-
ested in the clustering having the smallest ranking value, the
master continues with the above described ranking process. 

The approach presented in this section is applicable to ar-
bitrary distance functions between clusterings. In the follow-
ing section, we introduce concrete distance functions be-
tween clusterings which are used throughout our
experimental evaluation.

5. Similarity Measures between Clusterings

In the literature there exist some approaches for compar-
ing partitioning [5, 17] and hierarchical [9] clusterings to
each other. All of these approaches do not take noise objects
into consideration which naturally occur when using densi-
ty-based clustering algorithms such as DBSCAN [7] or OP-
TICS [1]. In [13] similarity measures are introduced which
are suitable for generally measuring the similarity between
partitioning and hierarchical clusterings even if noise is con-
sidered. In this section, we adapt these measures to our needs.
We introduce distance functions between clusterings which
can be used for computing medoid clusterings from sample
clusterings. Based on the similarity measures for clusterings,
we introduce quality measures which allow us to compare
fuzzy clustering approaches to reference clusterings. In our
experimental evaluation, we use these quality measures to
compare the approaches presented in Section 4 to a reference
clustering which is computed based on the exact positions of
the moving objects1.

Let us first introduce some basic terms necessary for de-
scribing clusterings. The following definitions are rather ge-
neric and can be applied to both reference clusterings and ap-
proximated fuzzy clusterings.

Definition 5 (cluster)
A cluster C is a non-empty subset of objects from a database
DB, i.e. C ⊆ DB and C ≠ ∅.
Definition 6 (partitioning clustering)
Let DB be a database of arbitrary objects. Furthermore, let C1,
..., Cn be pairwise disjoint clusters of DB, i.e. ∀ i, j ∈ 1, ..., n:
i ≠ j ⇒ Ci ∩ Cj = ∅. Then, we call CLp ={C1, ..., Cn} a parti-
tioning clustering of DB. 

Note that due to the handling of noise, we do not demand
from a partitioning clustering CLp ={C1, ..., Cn} that C1 ∪ ...
∪ Cn = DB holds. Each hierarchical clustering can be repre-

sented by a tree. Even the density-based hierarchical cluster-
ing algorithm OPTICS which computes a hierarchical clus-
tering order can be transformed into a tree structure by means
of suitable cluster recognition algorithms [1, 4, 20]. 

Definition 7 (hierarchical clustering)
Let DB be a database of arbitrary objects. A hierarchical clus-
tering is a tree troot where each subtree t represents a cluster
Ct, i.e. t = (Ct, (t1, ...,tn)), and the n subtrees ti of t represent
non-overlapping subsets Cti

, i.e. ∀i, j ∈1, ..., n: i ≠ j ⇒
Cti

∩ Ctj
= ∅ ∧ Ct1

∪ ... ∪ Ctn
 ⊆ Ct. Furthermore, the root

node troot represents the complete database, i.e. Ctroot
= DB.

Again, we do not demand from the n subtrees ti of t = (Ct,
(t1, ..., tn)) that Ct1

∪ ... ∪ Ctn
 = Ct holds. 

5.1. Similarity Measure for Clusters

As outlined in the last section, both partitioning and hier-
archical clusterings consist of flat clusters. In order to com-
pare flat clusters to each other we need a suitable distance
measure between sets of objects. The similarity of two clus-
ters depends on the number of identical objects contained in
both clusters which is reflected by the symmetric set differ-
ence.

Definition 8 (symmetric set difference)
Let C1 and C2 be two clusters of a database DB. Then the sym-
metric set difference d∆: 2DB × 2DB → [0..1] and the normal-
ized symmetric set difference d∆

norm: 2DB × 2DB → [0..1] are
defined as follows: 

Note that (2DB, d∆) and (2DB, d∆
norm) are metric spaces. 

5.2. Similarity Measure for Partitioning Clusterings

In this section, we will introduce a suitable distance mea-
sure between sets of clusters. Several approaches for com-
paring two sets S and T to each other exist in the literature. In
[8] the authors survey the following distance functions: the
Hausdorff distance, the sum of minimal distances, the
(fair-)surjection distance and the link distance. All of these
approaches rely on the possibility to match several elements
in one set to just one element in the compared set which is
questionable when comparing clusterings to each other. 

A distance measure on sets of clusters that demonstrates
to be suitable for defining similarity between two partition-
ing clusterings is based on the minimal weight perfect match-
ing of sets. This well known graph problem can be applied
here by constructing a complete bipartite graph G =

 between two clusterings Cl and Cl’. The weight
of each edge  in this graph G is defined
by the distance d∆ (Ci, C’j ) introduced in the last section be-
tween the two clusters Ci ∈ Cl and C’j ∈ Cl’. A perfect
matching is a subset  that connects each clus-

1.  In order to follow the main idea of this paper, you do not 
have to understand all details presented in this section. Thus, 
you might continue reading with Section 6. 
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ter Ci ∈ Cl to exactly one cluster C’j ∈ Cl’ and vice versa. A
minimal weight perfect matching is a matching with maxi-
mum cardinality and a minimum sum of weights of its edges.
Since a perfect matching can only be found for sets of equal
cardinality, it is necessary to introduce weights for un-
matched clusters when defining a distance measure between
clusterings. We propose to penalize each unmatched cluster
by its cardinality. Thereby, large clusters which cannot be
matched are penalized more than small clusters which is a
desired property for an intuitive similarity measure between
partitioning clusterings. 

Definition 9 (partitioning clustering distance )

Let DB be a database. Let Cl = {C1, ..., C|Cl|} and Cl’ = {C’1,
..., C’|Cl’|} be two clusterings. We assume w.l.o.g. |Cl| ≤ |Cl’|.
Let  be a mapping that assigns to all C’ ∈ Cl’ a unique num-
ber , denoted by .
The family of all possible permutations of Cl’ is called

. Then the partitioning clustering distance
:  is defined as follows:

Let us note that the partitioning clustering distance is a
specialization of the metric netflow distance [19]. The parti-
tioning clustering distance  can be
computed in O(max(|Cl|,|Cl’|)3) time using the algorithm pro-
posed in [18].

Based on Definition 9, we can define our final quality cri-
terion which helps to assess the quality of partitioning fuzzy
clusterings to reference clusterings. We compare the costs
for transforming the fuzzy clustering Clfuzzy into a reference
clustering Clref, to the costs piling up when transforming
Clfuzzy first into ∅, i.e. a clustering consisting of no clusters,
and then transforming ∅ into Clref.

Definition 10 (fuzzy partitioning clustering quality QFPC)

Let Clfuzzy be a fuzzy partitioning clustering and Clref be the
corresponding reference clustering. Then, the fuzzy parti-
tioning clustering quality QFPC (Clfuzzy, Clref) is equal to 1 if
Clref = Clfuzzy, else it is defined as 

Note that our quality measure QFPC is between 0 and 1. If
Clfuzzy and Clref are identical, QFPC (Clfuzzy, Clref) = 1 holds. On
the other hand, if the clusterings are not identical and the
clusters from Clfuzzy and Clref have no objects in common,
i.e.  holds,
then QFPC (Clfuzzy, Clref) is equal to 0. 

5.3 Similarity Measure for Hierarchical Clusterings

In this section, we first present a similarity measure be-
tween hierarchical clusterings. Based on these distance func-
tions, we then introduce a quality criterion suitable for mea-
suring the quality of fuzzy hierarchical clusterings. As
already outlined, a hierarchical clustering can be represented
by a tree (cf. Definition 7). In order to define a meaningful
quality measure for fuzzy hierarchical clusterings, we need a
suitable distance measure for describing the similarity be-
tween two trees t and t’. Note that each node of the trees re-
flects a flat cluster, and the complete trees represent the entire
hierarchical clusterings.

A common and successfully applied approach to measure
the similarity between two trees is the degree-2 edit distance
[24]. It minimizes the number of edit operations necessary to
transform one tree into the other using three basic operations,
namely the insertion and deletion of a tree node and the
change of a node label. 

Definition 11 (cost of an edit sequence) 
An edit operation e is the insertion, deletion or relabeling of
a node in a tree t. Each edit operation e is assigned a non-neg-
ative cost c(e). The cost c(S) of a sequence of edit operations
S = 〈e1, …, em〉 is defined as the sum of the cost of each edit
operation, i.e. c(S) = c(e1)+…+ c(em). 

Definition 12 (degree-2 edit distance)
The degree-2 edit distance is based on degree-2 edit sequenc-
es which consist only of insertions and deletions of nodes n
with degree(n) ≤ 2, and of relabelings. Then, the degree-2
edit distance between two trees t and t’, ED2(t, t’), is the min-
imum cost of all degree-2 edit sequences that transform t into
t’ or vice versa: ED2(t, t’) = min{c(S)| S is a degree-2 edit se-
quence transforming t into t’}.

Our final distance measure between two hierachical clus-
terings is based on the degree-2 edit distance.

Definition 13 (hierarchical clustering distance )
Let DB be a database. Let Cl and Cl’ be two hierarchical clus-
terings represented by the trees t and t’. Then, the hierarchi-
cal clustering distance  is defined by: 

(Cl, Cl’ ) = ED2(t, t’)

It is important to note that the degree-2 edit distance is well
defined. Two trees can always be transformed into each other
using only degree-2 edit operations. This is true because it is
possible to construct any tree using only degree-2 edit opera-
tions. As the same is true for the deletion of an entire tree, it
is always possible to delete t completely and then build t’
from scratch resulting in a distance value for this pair of trees.
In [24] Zhang, Wang, and Shasha presented an algorithm
which computes the degree-2 edit distance in O( )
time, where D denotes the maximum fanout of the trees, and
|t| and |t’| denote the number of tree nodes.

We propose to set the cost c(e) for each insert and delete
operation e to 1. Furthermore, we propose to use the normal-
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ized symmetric set difference d∆
norm as introduced in Defini-

tion 8 to weight the relabeling cost. Using the normalized
version allows us to define a well-balanced trade-off be-
tween the relabeling cost and the other edit operations, i.e.
the insert and delete operations. 

Based on the described similarity measure between hier-
archical clusterings, we can define a quality measure for
evaluating fuzzy hierarchical clustering algorithms. We
compare the costs for transforming a fuzzy hierarchical clus-
tering Cl fuzzy modelled by a tree t fuzzy into a reference clus-
tering Clref modelled by a tree tref, to the costs piling up when
transforming t fuzzy first into an “empty” tree tnil, which does
not represent any hierarchical clustering, and then transform-
ing tnil into tref. 

Definition 14 (fuzzy hierarchical clustering quality QFHC)
Let tref be a tree representing a hierarchical reference cluster-
ing Clref, and tnil a tree consisting of no nodes at all, repre-
senting an empty clustering. Furthermore, let t fuzzy be a tree
representing a fuzzy hierarchical clustering Cl fuzzy. Then, the
fuzzy hierarchical clustering quality QFHC (Clfuzzy, Clref) is
equal to 1 if Clref = Clfuzzy, else it is defined as:

As the hierarchical clustering distance  is a
metric [24], the fuzzy hierarchical clustering quality QFHC is
between 0 and 1.

6. Evaluation

In this section, we present a detailed experimental evalua-
tion which demonstrates the characteristics and benefits of
our new approach. 

6.1. Settings
As test data sets for the effectiveness evaluation we used

1.000 2-dimensional points arbitrarily distributed in a data
space [0..1] x [0..1]. For the efficiency evaluation, we used
10.000 of these points. The points moved at each timetick
with an arbitrary velocity v ∈ [0..vmax] in an arbitrary direc-
tion. Figure 8 shows that the higher the value of vmax is, the
more uncertain is the position of the object after one timetick.
Each position within the circular uncertainty area of the ob-
ject is equally likely. As parameter for the experiments we
used the radius rU of the uncertainty area U. 

In order to evaluate the quality of the various algorithms,
we arbitrarily distributed the points in the data space. The ref-
erence clustering, was created by letting the points move as
described above. A sample clustering was created by choos-
ing one point arbitrarily from the uncertainty area of the ob-
ject. From the resulting s sample clusterings we computed the
medoid clustering by using the distance function of Defini-
tion 9 and 13 between clusterings. For the fuzzy clustering
based on the distance expectation values, we used also the

sample positions in the uncertainty areas. The distance be-
tween two moving objects is then equal to the average dis-
tance between their sample points. 

The qualities of the fuzzy clusterings w.r.t. the exact clus-
terings were measured by the quality criterions introduced in
Section 5. For DBSCAN [7] and for k-means [16], we used
the one introduced in Definition 10, and for OPTICS [1] and
for Single-Link [12], we used the one introduced in
Definition 14. 

If not otherwise stated, we used a sample rate s=10
throughout our experiments. For all clustering algorithms, we
used a parameter setting which created a clustering according
to intuition. For DBSCAN, for instance, we used a parameter
setting so that we approximately detected 20 clusters contain-
ing 80% of all objects.

All clustering algorithms, the used quality measures, and
the heuristic to accelerate the computation of the reference
clustering were implemented in Java 1.4. The experiments
were run on a Windows laptop with a 730 MHz processor and
512 MB main memory. 

6.2. Experiments

6.2.1. Sample-Clusterings.  In a first set of experiments, we
investigated the maximum and minimum quality resulting
from sampling w.r.t. the reference clustering. We compared
these quality values to the quality achieved by the medoid
clustering. Figure 9 shows clearly, that for all clustering algo-
rithms the quality decreases with an increasing uncertainty
area. Furthermore, we can see that there exist quite noticeable
quality differences between the best and the worst sample
clustering. This is especially true for interesting uncertainty
values U which are neither too small nor too large. If the un-
certainty area is too large, the quality is around zero for all
sample clusterings, which means that the sample clusterings
and the reference clustering are quite different from each oth-
er. On the other hand, if the uncertainty area is very small, all
sample clusterings are almost identical to the reference clus-
tering resulting in high quality values. Furthermore, the fig-
ure shows that the quality of the medoid clustering is some-
where in between the best and the worst sample clustering,
and often quite close to the best sample clustering. Obviously,
using the medoid clustering instead of an arbitrary sample
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clustering reduces the probability that the determined cluster-
ing is very dissimilar to the reference clustering. Further-
more, let us note that Figure 9 also indirectly demonstrates the
suitability of the distance functions and quality measures pre-
sented in Section 5.

As the partitioning density based clustering paradigm
seems to be the most important and adequate clustering ap-
proach for moving objects [21], we concentrate in the follow-
ing on the flat density-based clustering algorithm DBSCAN. 

Figure 10 shows that the quality of the medoid clustering
increases with increasing sampling rate s. This holds espe-
cially for small values of s. For values of s higher than 10 the
increase of the quality is only marginal indicating that rather
high values of s are not necessary to produce good clustering
results. Furthermore, we can see that the quality of the worst
sample clustering decreases with increasing sample rate s.
Likewise, the quality of the best sample clustering increases.
Obviously, the higher the sample rate is, the more likely it is
that we generate a clustering which has a very small or a very
high distance to the reference clustering. For the other clus-
tering algorithms we made basically the same observations. 

6.2.2. Distance Expectation Values.  In Figure 11, the re-
sults of the clustering approaches based on the distance ex-
pectation value and the medoid clustering are compared to
each other. Figure 11a shows clearly, that for high uncertainty
values the quality achieved by the medoid clustering ap-
proach is much higher than the quality achieved by a DB-

SCAN run based on the distance expectation values. It is
noteworthy, that in this case often the worst sample clustering
achieved higher quality values than the distance expectation
approach. The explanation for the bad performance of the dis-
tance expectation approach can be found in Figure 11b. Al-
though the precision of the detected core objects is very high,
the recall is very low, i.e. the approach fails to detect many
core objects. Thus we have very often the situation depicted
in Figure 7b. Let us note that for small uncertainty values the
difference between the two approaches is less significant. 

6.2.3. Other Comparison Partners. In [14] a density-based
approach for clustering multi-represented objects was pro-
posed which is based on DBSCAN. The authors propose for
sparse data sets, the union-method which assumes that an ob-
ject is a core object if MinPts objects are found within the
union of all ε-neighborhoods of all representations. Further-
more, the intersection method was introduced where an ob-
ject is a core-object, if it is a core object in each representa-
tion. We used these two approaches as comparison partners
where a representative corresponds to a sample value. Figure
12 shows again that our medoid clustering approach outper-
forms the union and intersection method by far. 

6.2.4. Efficiency. In a last set of experiments, we investigated
the efficiency of our approaches. In all tests we did not use
any index structure and all data was kept in main memory.
Figure 13 shows clearly that if only one slave is available the
single sampling approach is by far the most efficient ap-
proach. Obviously, the distance expectation approach is
much slower due to the much more expensive distance com-
putation between two objects. Note that the runtimes of the
union/intersection approach are similar to the ones of the ex-
pectation approach. When using only one slave, the medoid
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approach is even slower than the distance expectation ap-
proach because we have to determine the medoid clustering
from the sample clusterings. The more slave computers are
available, the more benefits our medoid approach. If s (=sam-
ple rate) slave computers are available, we can carry out a
sample clustering on each slave. Therefore, we have an al-
most linear speed-up until s slaves are used. For a higher num-
ber of slaves, we can only parallelize the computation of the
medoid clusterings from the sample clusterings, but not the
generation of the sample clusterings. Therefore, we suggest
to use s slaves for the computation of the medoid clustering. 

In all our tests, we noticed that the heuristic introduced in
Section 4.3.1 saves on average 12% of all distance computa-
tions between two clusterings. The ratio between the runtimes
needed for the determination of the sample clusterings and the
runtimes needed for the determination of the medoid cluster-
ing from these sample clusterings depends on the ratio of ob-
jects to be clustered and on the detected number of clusters.
If we detect only a small number of clusters, the computation
of the distances between two clusterings can be done effi-
ciently when using the distance measures introduced in
Section 5. On the other hand, distance computations between
clusterings containing many clusters are rather expensive. 

To sum up, the medoid approach is the method of choice
for clustering fuzzy moving objects, especially if several
slaves are available. 

7. Conclusions
In this paper, we tackeled the complex problem of cluster-

ing moving object with uncertain positions. In order to do this
effectively, we introduced the concept of medoid clusterings.
We showed that these medoid clusterings are more suitable to
cluster fuzzy moving objects than other approaches which are
purely based on sampling or which are based on the distance
expectation values between the fuzzy objects.

In our future work, we will show that density probability
functions describing the positions of fuzzy moving objects
can also beneficially be used in the context of location-based
services. 
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Abstract

This paper introduces a framework for Phenomena De-
tection and Tracking (PDT, for short) in sensor network
databases. Examples of detectable phenomena include the
propagation over time of a pollution cloud or an oil spill re-
gion. We provide a crisp definition of a phenomenon that
takes into consideration both the strength and the time span
of the phenomenon. We focus on discrete phenomena where
sensor readings are drawn from a discrete set of values,
e.g., item numbers or pollutant IDs, and we point out how
our work can be extended to handle continuous phenomena.
The challenge for the proposed PDT framework is to detect
as much phenomena as possible, given the large number
of sensors, the overall high arrival rates of sensor data, and
the limited system resources. Our proposed PDT framework
uses continuous SQL queries to detect and track phenom-
ena. Execution of these continuous queries is performed
in three phases; the joining phase, the candidate selection
phase, and the grouping/output phase. The joining phase
employs an in-memory multi-way join algorithm that pro-
duces a set of sensor pairs with similar readings. The can-
didate selection phase filters the output of the joining phase
to select candidate join pairs, with enough strength and time
span, as specified by the phenomenon definition. The group-
ing/output phase constructs the overall phenomenon from
the candidate join pairs. We introduce two optimizations to
increase the likelihood of phenomena detection while us-
ing less system resources. Experimental studies illustrate
the performance gains of both the proposed PDT framework
and the proposed optimizations.

∗ This work was supported in part by the National Science Foundation
under Grants IIS-0093116, IIS-0209120, and 0010044-CCR.

1. Introduction

The wide spread of sensor network applications calls for
new online query processing techniques to deal with the
continuous arrival of sensor data. Examples of these appli-
cations include surveillance [25] and environmental moni-
toring [26]. Within a sensor network, each individual sen-
sor sends a stream of data to a sensor network database. Al-
though the individual readings of each sensor is useful by
itself, the overall processing of the data in the sensor net-
work database as one unit provides a global view of the un-
derlying environment.

Recent research literature focuses on leveraging database
and data stream management systems to handle the mas-
sive amount of received data from sensor networks, e.g.,
see [5, 8, 9, 10, 12, 17, 19, 30]. The main goal is to provide
efficient query processing techniques for sensor data. In this
paper, we focus on extending data stream management sys-
tems to support sensor network applications. In particular,
we focus onPhenomena DetectionandTracking, (PDT, for
short). We propose a framework that can be plugged into
any data stream management system to provide an online
and efficient phenomena detection and tracking.

As a first step towardsphenomena detection, we pro-
pose acrispdefinition of aphenomenon. Then, we simplify
the definition by considering the discrete case of the phe-
nomenon. The proposed definition relies on two main pa-
rameters;strength(α) andtime span(w). A phenomenon is
of strengthα and time spanw when it occursα times in the
lastw time units. The main idea of our proposedphenom-
ena detectionandtracking framework (PDT) is to join dif-
ferent readings from various sensors using amulti-wayjoin
algorithm for data streams. The output of the multi-way join
algorithm feeds aconnectivitygraph that takes into consid-
eration both thestrengthandtime spanof the required phe-
nomenon. Continuously maintaining theconnectivitygraph
tracks the sensor network phenomena. Moreover, we fur-
nish our proposedPDT framework with aphenomenon-
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awareoptimizer where the execution of thePDTframework
is tuned based on the received feedback from the query re-
sult.

In general, the proposedphenomena detectionandtrack-
ing (PDT) framework has three phases; thejoining phase,
the candidate selectionphase, and thegrouping/output
phase. Thejoining phase takes the raw data from the sen-
sor network as its input and produces as output a set of
sensor reading pairs that have similar values. The out-
put of the joining phase is input to thecandidate selec-
tion phase. Thecandidate selectionphase strictly enforces
the phenomena definition by filtering the input to pro-
duce only sensor pairs with the specified strength (α) and
the time span (w). Finally, thegrouping/outputphase con-
structs the overall phenomenon from the candidate join
pairs produced by the candidate selection phase. More-
over, thecandidate selectionphase gives a feedback on the
query result to thejoining phase. Based on the query feed-
back, we introduce twophenomenon-awareoptimizations
that aim to tune the performance of thePDT frame-
work.

All the proposed ideas and algorithms in this paper are
implemented inside theNile data stream management sys-
tem [14].Nile is a research prototype that is currently be-
ing developed at Purdue University. In general, the contri-
butions of this paper can be summarized as follows:

1. We introduce acrisp definition of a phenomenon that
takes into consideration both the strength and the time
span of the phenomenon.

2. We propose an efficient technique forphenomena de-
tection and tracking (PDT). The proposed technique
adheres to the proposed phenomenon definition.

3. We propose two phenomenon-awareoptimiza-
tions where the query result, i.e., the detected phe-
nomenon tunes the execution of thePDT frame-
work.

4. We provide , based on a real implementation inside
a prototype data stream management system, an ex-
perimental evidence of the efficiency and performance
gains of thePDT framework.

The rest of the paper is organized as follows: Section 2
introduces thephenomenondefinition. The SQL queries
that initiate the processing of thePDT framework are pre-
sented in Section 3. Section 4 introduces our proposed
framework forphenomena detectionand tracking (PDT).
The phenomenon-awareoptimization techniques are pre-
sented in Section 5. Experimental results that are based on
a real implementation of the proposedPDT framework in-
side a data stream management system are presented in Sec-
tion 6. Section 7 highlights related work. Finally, Section8
concludes the paper.

2. Phenomena Definition and Applications

In this section, we introduce the definition of a phe-
nomenon along with some applications that can benefit
from our proposed definition.

Definition 1 In a sensor networkSN , a phenomenonP
takes place only when a set of sensorsS ⊂ SN report sim-
ilar reading values more thanα times within a time window
w.

Two parameters control thephenomenondefinition, the
strength(α) and thetime span(w). Thestrengthof a phe-
nomenon indicates that a certain phenomenon should occur
at leastα times to qualify as a phenomenon. (This mea-
sure is similar to the notion of support in mining associa-
tion rules, e.g., see [3].) Reading a value less thanα times
is considered noise, e.g., impurities that affect the sensor
readings. The time spanw limits how far a sensor can be
lagging in reporting a phenomenon.w can be viewed as a
time-tolerant parameter, given the common delays in a sen-
sor network. (This measure is similar to the notion of gaps
in mining generalized sequential patterns [24].)

In this paper, we focus on discrete phenomena that are
produced by sensors whose reading values are discrete. In
this case, the notion of similarity among sensor readings re-
duces to equality. Several applications benefit from the de-
tection of discrete phenomena. Examples of these applica-
tions include:

• Tracing pollutants in the environment, e.g., oil spills
in the ocean, or gas leakage out of a container. To be
considered a phenomenon, the sensor should report the
pollutant ID at leastα times perw time units.

• Reporting the excessive purchase of a certain item at
different branches of a retail store in the same day. The
purchase of an item is considered a phenomenon when
the number of purchases exceedsα times in the lastw
time units, e.g., in the last day.

• Detecting computer worms that strike various com-
puter sub-networks over a certain period of time. When
at leastα computers are infected within a certain time
windoww, a phenomenon is reported.

Our work can be extended to detect continuous phenomena
where sensors read values from a continuous range, e.g.,
temperature or density values, through a pre-processing
phase. The pre-processing phase quantizes the sensor read-
ings into a discrete set of value based on a user-defined func-
tion. Handling continuous phenomena is beyond the scope
of this paper.

In general, a phenomenon may move in space. For exam-
ple, an oil spill may surf the ocean according to the move-
ment of the wind. A phenomenon may appear, disappear,
move, expand, or shrink as time proceeds. In addition, a
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SELECT SN1.VALUE, SN1.ID, SN2.ID
FROM SN SN1, SN SN2
WHERE SN1.VALUE=SN2.VALUE
AND SN1.ID <> SN2.ID
AND <other conditions>
GROUP BYSN1.V ALUE, SN1.ID, SN2.ID

HAVING COUNT (∗) >= α

WINDOW W

Figure 1. PDT SQL queries

phenomenon may have spatial properties. For example, an
oil spill is a contiguous portion of the ocean surface. In this
case, the spatial phenomenon is termed a”cloud” .

3. PDT SQL-Queries

To support sensor network operations, we extend
data stream management systems with an abstract data
type (ADT), called SensorNetwork-ADT. SensorNetwork-
ADT handles the extraction of sensor readings from
the sensor network. Sensor readings are of the form
(ID, value, loc, ts), whereID is the identifier of the sen-
sor that emitted the reading whilevalue and loc indicate
the reading value and the location of that sensor at times-
tampts, respectively.

Figure 1 gives the general form of SQL queries that con-
tinuously detect phenomena in a sensor network database.
Basically, the sensor networkSN is joined with itself. Any
sensorSi ∈ SN is eligible to join with any other sen-
sor Sj ∈ SN , (Si 6= Sj), based on an equality join of
SN.value. Based on the application semantics, thewhere
clause specifies other conditions, e.g., the spatial and/or
temporal clustering of the phenomenon. The phenomenon
strength(α) is checked by grouping the query result by
(SN1.V ALUE, SN1.ID, SN2.ID) and thecountis cal-
culated to report only sensors that join on the same value
more thanα times within windoww. The phenomenontime
span(w) is presented within thewindow clause.

Figure 2 gives an example of an SQL query that detects
and tracks pollutants in the ocean, e.g., oil spills.OC rep-
resents a set of sensors distributed in the ocean. The sensor
networkOC is joined with itself based on theliquid value
reported from each sensor. Only sensors that report aliquid
value other than”water” are considered in the join. To re-
flect thespatial clustering of the detected pollutants, each
sensor is restricted to join with other sensors that are at a
maximum distance of ten meters. Thestrength(α) andtime
span(w) of the detected phenomena are set to five and one
minute, respectively.

SELECT OC1.LIQUID, OC1.ID, OC2.ID
FROM OC OC1, OC OC2
WHERE OC1.LIQUID=OC2.LIQUID
AND OC1.ID <> OC2.ID
AND LIQUID <>“WATER”
AND DISTANCE(OC1.LOC,OC2.LOC)<= 10
GROUP BYOC1.LIQUID, OC1.ID, OC2.ID

HAVING COUNT (∗) >= 5

WINDOW 1 minute

Figure 2. An example SQL query for pollution
detection

4. PDT Query Processing

The process ofphenomena detectionandtracking(PDT)
is initiated by issuing the SQL-query given in Figure 1.PDT
query processing is divided into three phases as illustrated
in Figure 3. The first phase, thejoining phase, accepts the
input tuples streamed out of the sensors and applies an in-
memorymulti-way join over the entire sensor network to
detect sensors with the same value within a time frame of
lengthw from each other. The second phase, thecandidate
selectionphase, receives the joined sensor pairs and checks
the sensors that qualify to be phenomena candidate mem-
bers. Based on our definition of a phenomenon, thecandi-
date selectionphase checks the density of the phenomenon
based on the user-specified strength (α) and time span (w).
Sensors that join at leastα times over a time-windoww are
reported to thegrouping/output phase. The third phase,the
grouping/output phase, groups the pairs of phenomena can-
didate members and investigates the application semantics
to form and report the phenomena to the user.

Guided by the detected phenomena candidate members
in thecandidate selectionphase, the processing is tuned to
increase the likelihood of phenomena detection while using
less resources. A phenomenon-aware feedback is provided
to thejoining phaseto draw the attention to regions where
phenomena tend to be active. For example, the input buffers
that are associated with sensors contributing to phenomena
are given higher priorities than those that do not contribute
to any phenomena. Similarly, in thejoining phase, the join
probing sequence is tuned to favor the joins that affect the
appearance or the disappearance of a phenomenon. The rest
of this section is dedicated to the three phases of the pro-
posedPDT framework.phenomenon-awareoptimizations
are presented in Section 5.

4.1. Phase I: Joining

Two alternative approaches exist for implementing the
multi-way join operator forN streams: as a series of cas-
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cadedN − 1 binary join operators where only two streams
are joined at a time, or as a single operator that takesN

streams as its input. The MJoin operator [28] employs the
second approach where it produces join results with a faster
rate than the tree of binary joins. Thus, MJoin [28] is more
suitable for data streaming applications. The main idea of
MJoin is to maintain a hash table for each stream, i.e., sen-
sor. Once a tuple arrives from one stream, it is inserted into
the stream’s corresponding hash table. Then, the incom-
ing tuple probes the hash tables of other streams. Since a
joined tuple is reported only if it appears inALL streams,
the MJoin algorithm stops probing hashing tables once the
probed value is missing in one of the streams. To avoid un-
necessary processing, the probing sequence is chosen based
on the join selectivity among the streams.

To supportphenomena detectionandtracking(PDT), we
employ three main modifications to the original MJoin al-
gorithm [28]. These modifications are summarized as fol-
lows:

1. The modified multi-way join algorithm does not stop
once the join value is missing in one of the streams.
Instead, it continues to examine the remaining streams
to produce partial results. Notice that a phenomenon
need not span all the sensors in the sensor network.

2. The notions of positive and negative tuples [13] are uti-
lized. A positive tuple is reported when a join occurs. A
negative tuple is reported when one of the previously-
reported join tuple components expires, i.e., becomes
old enough to get outside of the most recent time-
window w. The negative tuple is important to invali-
date the candidate members of a phenomenon, if the

sensors stop showing the same behavior over a time-
windoww.

3. The probe sequence and the stream sampling rate are
guided by the detected phenomena to favor the probe
sequence and the streams that participate in a phe-
nomenon. This phenomenon-aware optimizations are
discussed in detail in Section 5.

4.2. Phase II: Candidate Selection

The joining phase produces a tuple if the same read-
ing is observed by two streams within the specified time-
window. These two streams are considered phenomena can-
didate members if they persist to join with each otherα

times within the same time-window. Thecandidate selec-
tion phase employs aconnectivity graphthat is used to
record the number of joins between each pair of sensors.
Each sensorSi is represented by a node in theconnectiv-
ity graph. For any two sensorsSi andSj , (i 6= j), an edge
E(v, i, j) is added to the connectivity graph only ifSi and
Sj are joined together at least once in the lastw time units
over valuev. The weight of the EdgeEij is the number of
times thatSi andSj are joined together in the lastw time
units, i.e., the strength of the phenomenon.

Figure 4 gives the processing of input pairs re-
ceived from the joining phase. The input is ei-
ther a positive or a negative tuple with the format
±(SN1.V ALUE, SN1.ID, SN2.ID). The tuple repre-
sents the join value and two joining sensors. This tuple up-
dates the weights of the edges in the connectivity graph.
The weight of each edge is monitored. If the weight of
an edge increases to reachα (i.e., weight = α), a posi-
tive tuple is reported to denote the appearance of the candi-
date member(SN1.V ALUE, SN1.ID, SN2.ID). If the
weight of an edge drops belowα (i.e., weight = α − 1),
a negative tuple is reported to denote the disappear-
ance of that candidate member.

Figure 4.2 gives an example of the connectivity graph for
five sensors over a window of 5 time units. The connectivity
graph starts from scratch and records each join tuple by in-
creasing the weight of the edge between the two joining sen-
sors. Edges that exceedα, which is set to four, are marked as
bold lines to denote phenomenon candidate members. No-
tice that, as the window slides, the value10 from sensorS1,
that came att1, will expire, and consequently the edge be-
tweenS1 andS3 will drop belowα generating a negative
tuple to invalidate that candidate member.

4.3. Phase III: Grouping/Output

The grouping/outputphase receives phenomena candi-
date members on the form of a tuple that consists of the IDs
of the two joining sensors and the join value. Each tuple
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INPUT: the join tuple (SN1.VALUE, SN1.ID, SN2.ID) OUT-
PUT: the phenomena candidate members

Upon receiving a positive tuple,

if CheckEdge(SN1.VALUE, SN1.ID, SN2.ID)
// if edge exists increase its weight
Edge(SN1.VALUE, SN1.ID, SN2.ID).weight++
// check the appearance of a candidate
if (Edge(SN1.VALUE, SN1.ID, SN2.ID).weight=α)

Output+(SN1.VALUE, SN1.ID, SN2.ID)
else

// create a new edge with weight=1
CreateEdge(SN1.VALUE, SN1.ID, SN2.ID)
Edge(SN1.VALUE, SN1.ID, SN2.ID).weight=1;

endif

Upon receiving a negative tuple,

// Decrease the weight of the edge by 1 and
Edge(SN1.VALUE, SN1.ID, SN2.ID).weight−−
// check the disappearance of a candidate
if (Edge(SN1.VALUE, SN1.ID, SN2.ID).weight=α − 1)

Output−(SN1.VALUE, SN1.ID, SN2.ID)
// remove the edge if its weight becomes zero
if (Edge(SN1.VALUE, SN1.ID, SN2.ID).weight=0)

RemoveEdge(SN1.VALUE, SN1.ID, SN2.ID)
endif

Figure 4. Pseudo code of the candidate se-
lection phase

can be positive or negative to denote the appearance or dis-
appearance of a candidate member. A positive/negative tu-
ple indicates that the number of joins between the two sen-
sors over the lastw becomes above/belowα. Upon receiv-
ing a positive tuple, based on the application semantics, the
grouping/outputphase may start a new phenomenon, add
one sensor to an existing phenomenon, or merge two phe-
nomena together. Similarly, upon receiving a negative tu-
ple, thegrouping/outputphase may delete a phenomenon,
remove a sensor from an existing phenomenon, or split one
phenomenon into two separate phenomena.

In addition, thegrouping/outputphase has the flexibil-
ity to apply application-dependent semantics. For exam-
ple, forcing a minimum number of sensors to form a phe-
nomenon, determining the outer contour or the convex hull
of the phenomena . Also, the application may consider the
spatial clustering of sensors. The clustering or spread of
the phenomenon implies whether there is a single source
or multiple sources for the phenomenon. For example, mul-
tiple disconnected oil spills implies leakage out of more
than one container. Application-dependent semantics can
include the density of the phenomena as well. The density
is measured by the ratio of the number of sensors reading

t1 t2 t3 t4 t5

Sensor 1 10 7 10 5 5

Sensor 2 15 10 7 10 10

Sensor 3 19 7 3 10 10

Sensor 4 22 5 9 5 5

Sensor 5 18 5 5 4 23

(a) Sensors’ input over 5 time instants

S1

S2

S4

S3

S5

7(1)

5(4)

10(6)

10(6)
7(1)

5(6)

5(6)

10(4)

7(1)

(b) The connectivity graph

Figure 5. An example of the connectivity
graph

the same phenomenon to the number of sensors not read-
ing that phenomenon in a specified region. All these issues
are application-dependent and are addressed by thegroup-
ing/outputphase.

5. Phenomenon-Aware Query Optimization

This section proposes twophenomenon-awareoptimiza-
tions that aim to provide a scalable execution for the pro-
posedphenomena detectionandtracking(PDT) framework.
These optimizations tune the processing towards tuples that
contribute in producing the phenomena. The main idea is
to utilize the processing of thecandidate selectionphase to
provide feedback to thejoining phase. The feedback con-
tains information about the sensors that contribute to the
currently tracked phenomena. The two phenomenon-aware
optimizations are: (1) Controlling the sampling rate of each
sensor, and (2) Choosing the join probing sequence.

5.1. Controlling the Sampling Rate of Sen-
sors

The number of sensors in a sensor network can grow
large. These sensors may be generating stream data with
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high rates. They may show a bursty behavior as well. As a
result of all of the above reasons, the query processing en-
gine faces periods of heavy load. In these periods, it will not
be possible to cope with every sensor reading. To overcome
this problem, a sampler for each sensor is employed to con-
trol the input rate of its generated stream. Instead of a ran-
dom sampler, aphenomenon-awaresampler is preferred to
favor sensors that contribute heavily to the phenomena. The
phenomenon-awaresampler gets feedback from thecandi-
date selectionphase about the phenomena that are currently
monitored.

Notice that if the weight of an edge between two sensors
is highly below or highly aboveα, it is less likely to pro-
vide new information. If it is highly belowα, it is less likely
to increase instantly toα and form a phenomenon candi-
date member. Similarly, if it is highly aboveα, it is less
likely to decrease instantly belowα and eliminate a can-
didate member. Sensors with edges that are close toα are
considered strong candidates to form or eliminate a phe-
nomenon. Hence, as given in Equation 1, theedge strength
(ES)between two sensorsi, j is inversely proportional to
the absolute difference between the edge weight andα

(|Edge(v, i, j).weight − α|), whereEdge(v, i, j).weight

is the weight of the edge between sensorsi and j based
on the valuev (or zero if no edges at all). However, there
may be more than one edge between the two sensors if they
join over multiple values. To be conservative, the edge gets
the maximum strength over all of these values and thesen-
sor strength (SS)is considered to be the maximum strength
over all of the edges connecting that sensor to its neighbors
(Equation 2). To favor sensors that are involved in phenom-
ena, thesampling factor (SFi) of each sensori is propor-
tional to its strength as given in Equation 3.

Let R∗ be the global desired sampling rate over all sen-
sors, and letRi be the sampling rate of each sensor.R∗

is formed by adding the sensor ratesRi after they are be-
ing adjusted bySFi (Equation 4). Equation 4 is rewritten
again in the form of a summation in Equation 5. In Equa-
tion 6, we substitute forSFj by Equation 3. From Equa-
tion 7, we can obtainSFi given the rate of each sensor, the
strength of each sensor and the desired rateR∗. These pa-
rameters are continuously updated as the streams are run-
ning. The stream rates (Ris) and the desired rate (R∗) are
updated periodically to avoid unnecessary fluctuations and
bursty behaviors of sensors. The sensor’s strength (SSi) is
updated with the arrival of each tuple to eagerly detect the
new phenomena.

ES(i, j) = MAXv{
1

1 + |Edge(v, i, j).weight− α|
}

(1)

SSi = MAXj(ES(i, j)) (2)

SFi

SFj

=
SSi

SSj

(3)

SF1 · R1 + SF2 · R2 + · · · + SFn · Rn = R∗ (4)

SFi · Ri +
n∑

j=1,j 6=i

SFj · Rj = R∗ (5)

SFi · Ri +
n∑

j=1,j 6=i

SFi · SSj

SSi

· Rj = R∗ (6)

SFi · (Ri +

∑n

j=1,j 6=i SSj · Rj

SSi

) = R∗ (7)

Reducing the stream sampling rate of a sensor may lead
to delaying the discovery or to entirely missing new phe-
nomena because they will take a longer time to increase the
edge weights between participating sensors till they reach
to the desiredα. A sensor needs to be persistent in pro-
ducing the phenomenon and to increase its strength gradu-
ally till the phenomenon is discovered. The difference be-
tween the time at which the phenomenon is formed and the
time at which it is reported is known as the response time.
We trade the response time of discovering new phenomena
for the sake of monitoring already existing phenomena ef-
ficiently. Otherwise, monitoring all sensors with the same
quality would degrade the whole system’s performance and
may result in losing phenomena.

5.2. Choosing the Join Probing Sequence

Once a tuple arrives from one sensor, it is used to probe
the hash tables of other sensors looking for matches. The
sequence in which the tuple probes other hash tables af-
fects the performance of the join operator. In the origi-
nal MJoin [28] algorithm, the selectivity factors among the
joins are taken into consideration. The least selective join
is evaluated first. Consequently, the number of partial out-
put tuples is reduced at early steps. In our context, choosing
the join order based on the selectivity is not of great bene-
fit where we are interested in partial results as well. More-
over, in large sensor networks, probing hundreds or thou-
sands of sensors may be prohibitive, specially when the sen-
sor joins with a very small subset of the sensors. Instead, we
choose a probing sequence in which probing is based on the
likelihood of producing a tuple that contributes to a phe-
nomenon.

If a tuple arrives at sensori, it probes the hash table of
sensorj with probabilityP , where

P =
1

1 + |Edge(v, i, j).weight− α|
(8)

Equation 8 adjusts the probing probability based on how
close the edge between sensorsi andj on valuev to α. The
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INPUT: a tuple from sensorSi with valuev

OUTPUT: the join probing sequence

for j=1 to NoOfSensors
begin

P = min(BaseProb, 1
1+|Edge(v,i,j).weight−α|

)

Generate a random variableU between0, 1
if (U ≤ P )

ProbeSensor(j)
end

Figure 6. The join probing sequence

join probing sequence is evaluated as given in Figure 6. On
the arrival of a tuple with valuev from sensori, a complete
traversal over all sensors is performed. Because the probing
operation is costly, we decide to either probe or skip sensor
j based on the probabilityP . Notice thatP should not go
below a minimumBaseProb to avoid the zero join prob-
ability among sensors with no edges in between. This pol-
icy reduces the number of joins dramatically and focuses on
joins that contribute in phenomena. Eliminating the cost of
unnecessary joins allows our technique to be scalable with
respect to the number of sensors. Similar to the case of Sec-
tion 5.1, a delay may be observed in detecting new phe-
nomena. A sensor needs to strengthen the edge between it-
self and other sensors gradually to get a higher probability
in the join operation.

6. Experiments

In this section, we conduct an experimental study of
the proposedphenomena detectionandtracking PDTtech-
nique. Three sets of experiments are conducted. The first
set of experiments (Section 6.1) is concerned with the ef-
fect of thePDT parameters; the strengthα and the time
spanw on the number of detected phenomena. The sec-
ond (Section 6.2) and the third sets (Section 6.3) of experi-
ments study the performance of thePDToptimization tech-
niques with the change of the number of sensors and data
arrival rates, respectively. For the last two sets of experi-
ments, we compare the performance of the following four
versions of the proposedPDT framework:

1. Simple PDT, where processing is not guided by the de-
tected phenomena.

2. PDT+1, where the sensor’s sampling rate is controlled
based on the detected phenomena as discussed in Sec-
tion 5.1.

3. PDT+2, where the join probing sequence is controlled
based on the detected phenomena as discussed in Sec-
tion 5.2.

α w=5 w=10 w=15 w=20

3 1010 4350 7150 11150
4 121 498 815 1256
5 20 220 270 320
6 4 19 56 140
7 0 5 11 18
8 0 0 2 5

Table 1. The effect of application-dependent
parameters

4. PDT+1&2, where both of the optimizations in (2) and
(3) are applied together.

Various PDT techniques are compared with respect to
three performance measures: (1) Theinput drop ratewhere
some of the input sensor data tuples have to be dropped due
to the scarcity of system resources. (2) Theresponse time,
which is measured by the difference between the time in
which a phenomenon is reported by the system and the ac-
tual time in which it took place. (3) Theoutput loss rate
where some phenomena are lost as a result of losing some
of the input tuples. A smart technique tries to minimize all
these measures. rate.

All the experiments are triggered by the execution of
the continuous query given in Figure 2. A synthesized data
set is used to simulate the sensor network readings. Unless
mentioned otherwise, we maintain 1000 sensors uniformly
distributed over a 100× 100 meters rectangular space. Each
sensor generates a stream of 10,000 tuples where the tu-
ple values follow the zipfian distribution. The interarrival
time of sensor data follows an exponential distribution with
an average of one second. All the experiments in this sec-
tion are based on a real implementation of thePDT frame-
work inside theNile data stream management system [14].
The Nile engine executes on a machine with Intel Pentium
IV, CPU 2.4GHZ with 512MB RAM running Windows XP.

6.1. PDT parameters

Table 1 gives the number of detected phenomena for var-
ious values of the strength (α) and time span (w). As given
in the table,α andw have opposite effects. The increase in
α results in less detected phenomena as the condition for
detecting a phenomenon becomes more restrictive. On the
other side, the increase in the time spanw relaxes the con-
dition for the detected phenomena. Thus, more phenomena
can be detected. The largest number of detected phenom-
ena is obtained forw = 20 andα = 3. At this point,PDT
tracks up to 11,150 different phenomena over the lifetime
of the experiment.
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Figure 7. The effect of the number of sensors

6.2. The effect of the number of sensors

Figure 7 studies the scalability of the four variations of
thePDT framework with respect to increasing the number
of sensors from 200 to 2000. ThePDT parametersα andw

are set to 5 and 10 seconds, respectively.PDT-1decreases
the input drop rate over thesimple PDTbecause it reduces
the sampling rate of sensors that do not contribute to any
phenomenon and, hence, keeps the input buffers less occu-
pied (Figure 7a). The response time of thePDT+1 is less
than that of thesimple PDTbecause the size of the hash

structures gets smaller after reducing the sampling rate of
irrelevant sensors (Figure 7b). As a result of controlling the
sampling rates, the output loss rate of thePDT+1 is re-
duced (Figure 7c). Notice that as the number of sensors in-
creases, more load is posed against the system and the dif-
ference in the output loss rate becomes significant (up to
25% for 2000 sensors).PDT+2 reduces the response time
(Figure 7b) because it favors the join over sensors that con-
tribute to phenomena and leaves other joins to be performed
with a lower probability. This behavior increases the pro-
cessing time availability and reduces the input drop rate
(Figure 7a). The controlled join probing sequence reduces
the output loss rate through the efficient management of the
time budget in useful joins (Figure 7c).PDT+1&2 com-
bines the features of both of thePDT+1 andPDT+2 tech-
niques.PDT+1&2 decreases the input drop rate (Figure 7a),
the response time (Figure 7b), and the output loss rate (Fig-
ure 7c). There is a reduction of up to 78% in the output loss
rate over thesimple PDTfor 2000 sensors.

6.3. The effect of the stream rates

Figure 8 compares the performance of the four varia-
tions of thePDT framework with respect to varying the sen-
sor data interarrival rates from 0.1 to 1.5 seconds. ThePDT
parametersα andw are set to 5 and 10 seconds, respec-
tively. Small interarrival times imply scarcity in resources.
Large interarrival times imply an increased availability of
resources, where all curves approach each other and the
drop rate approaches zero. For the same reasons, as dis-
cussed in Section 6.2, bothPDT+1 andPDT+2 decrease
the input drop rate over thesimple PDT(Figure 8a), the re-
sponse time (Figure 8b), and the output loss rate (Figure 8c).
ThePDT+1&2 combines the benefits of both optimizations
and reduces the output loss rate by up to 45% over thesim-
ple PDT(for a 0.1 second average interarrival time).

Notice that the response times of thesimple PDTand
PDT+1 are constant over time because the join probing se-
quence spans all of the 1000 sensors for all stream rates.
However, thePDT+2 andPDT+1&2 increase the length of
the probing sequence with the increase of the time availabil-
ity. The response time increases because the technique tra-
verses a larger probing sequence per tuple for the sake of
decreasing the output loss rate.

7. Related Work

A lot of research interest has been directed recently to
data stream processing. Data stream systems, e.g., Stan-
ford STREAM [22], AURORA [1], NiagaraCQ [7], Tele-
graph [6], are developed to cope with the new challenges
imposed by the nature of data streams [4]. The COUGAR
system [5, 30] introduces a new abstract data type for sen-
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sors to facilitate the extraction of data and to process queries
over sensor networks. The Borealis engine [2] proposes a
scalable QoS-based optimization model to operate across
sensor networks. The Fjords architecture [17] proposes an
infrastructure for query processing over sensor data.

The physical acquisition or sampling of sensor data is ex-
plored in [19, 11, 16, 23] to extract the sensor data with low
cost but still accurate methods. The work in [8, 18, 20] pro-
poses the aggregation of sensor data tuples before reaching
the data management system. Aggregates reduce the data
size and, consequently, consume less power in the transmis-
sion process.

Some prior work has been conducted to track moving ob-
jects in sensor networks [12]. Similar to our work, the join
operation is used to detect similar readings over the sensor
network. It proposes a new non-blocking multi-way join op-
erator over a sliding window, the W-join operator, to track
the readings of the same object-ID that appears in different
locations over the sensor network. Our work tracks mov-
ing phenomena, where each phenomenon is a group of sen-
sors producing the same value, rather than tracking individ-
ual moving point objects.

The join operation over data streams has been explored
in the literature. Symmetric Hash Join [29] is proposed to
take care of the infiniteness of the data source. XJoin [27]
provides disk management to store overflowing tuples on
disk for later processing. An asymmetric window join over
two data streams with different arrival rates is discussed
in [15]. The Hash-Merge Join (HMJ) [21] is a non-blocking
join algorithm that produces early join results. In our work,
a modified version of the M-Join [28] is used to detect
streams with similar behavior over a window of time.

8. Conclusions

In this paper, we proposed a framework forphenomena
detectionand tracking (PDT, for short) in sensor network
databases. To identify a phenomenon, we provided acrisp
definition for the phenomenon that takes into consideration
both the strength (α) and the time span (w). A phenomenon
of strength (α) and time spanw occurs at leastα times in
the lastw time units.

The proposedPDT framework has three phases: The
joining phase, thecandidate selectionphase, and thegroup-
ing/outputphase. Thejoining phase employs a multi-way
join algorithm that joins the raw data from the sensor net-
work and produces a set of sensor pairs with similar val-
ues. Thecandidate selectionphase takes the output of
the joining phase as input and applies a filter to enforce
the strength and time span of the phenomena. Finally, the
grouping/outputphase is application-specific where it en-
forces the application semantics. Furthermore, we provided
two phenomenon-awareoptimizations that aim to : (1) In-
crease the sampling rate of the sensors that are part of any
phenomenon, and (2) Choose the join order of the multi-
way join algorithm to increase the likelihood of detecting
the phenomena.

Experimental study based on a real implementation in-
side a research prototype for data stream management sys-
tems shows that the proposedPDT technique is scalable
in terms of the number of streams, the stream rates, and
the number of detected phenomena. Theoptimized PDTre-
duces the output loss rate over thesimple PDTby up to 78%
for a network of size 2000 sensors.
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Abstract

Trajectory properties are spatio-temporal properties that
describe the changes of spatial (topological) relationships
of one moving object with respect to regions and trajecto-
ries of other moving objects. Trajectory properties can be
viewed as continuous changes of an object’s location re-
sulting in a continuous change in the topological relation-
ship between this object and other entities of interest. In
this paper we develop a query language TQ for expressing
trajectory properties. Our model and query language are
based on the framework of constraint query languages. We
present some preliminary complexity and expressive power
results for the proposed language.

1 Introduction

Rapid technology advancement is revolutionizing the
modern society in almost every possible ways. In particular,
the ever shrinking computing devices and wireless commu-
nication devices are making it easier to collect, transmit,
and process data. For example, wireless applications are
now seen in everyday activities ranging from mobile phones
applications to military and navigational applications. To-
day’s market already has cellular phones (GSM), global po-
sitioning systems (GPS), traffic navigational systems, sen-
sor networks, digital assistants (PDA); more innovations are
on their way. Such an explosion of technology not only
brings new problems but also presents serious challenges in
areas such as data management.

Moving object databases (spatio-temporal databases) are
one of those recent evolutions that emerged to fulfil some of
the new urging requirements. Moving object databases in-
tegrate traditional spatial and temporal databases and stud-
ies managing and querying objects whose location and/or

∗Support in part by NSF grant IIS-0101134.

shape change over time. Moving object databases ap-
pear in numerous applications including emergency ser-
vices (E911), navigational and military services, flight man-
agement and tracking, m-commerce, and various location
based services (LBS) as fleet management, vehicle track-
ing, mobile advertisements, etc. These advancements de-
mand new techniques for managing and querying changing
location information.

The aim of this paper is to study time varying topological
properties for moving objects that we refer to as trajectory
properties. In general, both moving object databases and
topological properties have been of interest in a number of
research work. For moving objects databases many research
work was conducted to examine some problems including
modeling and query languages [33, 38, 14, 12, 18, 35, 26,
7], handling large volume of location information through
the use of efficient index structures [29, 21, 1, 32, 36, 5, 24],
efficient data management, specifically, processing queries
and handling updates [33, 34], query evaluation [20, 34, 3],
and uncertainty management [28, 30, 37, 4, 25]. On the
other hand topological predicates where studied in several
works including [10, 11, 22, 27].

Nevertheless, designing efficient trajectory query lan-
guages continues to be an interesting problem. Prior ap-
proaches to query languages are mostly based on extend-
ing known languages or frameworks for spatial or spatio-
temporal databases to allow expressing properties concern-
ing trajectories (e.g., [33, 7, 18, 35, 15]). While general pur-
pose spatial query languages could be used, the uniqueness
of trajectories representing objects moving in space makes
these general-purpose spatio-temporal languages unfit. For
example, [26] exhibits difficulties for the general constraint
query language to express some trajectory specific queries.
In fact, querying trajectories seems to demand new tech-
niques in the query languages. The recent effort in [13, 9]
made a significant step towards understanding some of these
issues. In [13] Erwig and Schneider elevate topological
predicates to spatio-temporal predicates by aggregating a

1
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temporal dimension to spatial predicates. They present a
framework for expressing spatio-temporal predicates. The
framework is based on aggregating time to elementary spa-
tial predicates and sequential composition of predicates. In
[9] du Mouza and Rigaux introduced the notion of mobility
patterns which describe the motion pattern of a moving ob-
ject. They model a moving object trajectory as a sequence
of spatial zones and time spent at each zone. Their focus
is on continuous evaluation of pattern matching queries and
how to incrementally maintain the results.

Following those efforts we propose in this paper a con-
straint based query language (TQ) for reasoning about tra-
jectory properties. We use the prevailing model of lin-
ear motions for moving object trajectories and allow a
database to consist of a finite set of trajectories and a finite
set of regions. We adopt constraint databases techniques
[19, 23, 6, 16] to represent the trajectories and regions as
“generalized relations”, i.e., boolean combination of linear
constraints interpreted over the structure of real numbers.
By basing our design on constraint databases, many tech-
niques of constraint query languages and evaluations are
immediately available to use.

Our language TQ consists of two components: a spatial
component (called SQ) focussing on expressing spatial re-
lationships at a time instant and a temporal component. SQ
generalizes the classical CQL of [19] by allowing variables
to represent regions and trajectories. This permits express-
ing spatial properties among trajectories and regions. SQ
queries are then generalized to allow existential and uni-
versal quantification on a time interval, i.e., interval based
spatial properties. The instant/interval properties are then
put together in the temporal component as regular (formal)
languages to model properties of trajectories. While such
a method of “gluing” spatial properties along the time line
is similar to [13, 9], it turns out that the use of constraint
query languages in SQ significantly enhances the query lan-
guage. We provide an expressive power comparison of our
language with the languages in [13, 9] in the paper.

We study the expressive power of TQ and the complexity
of evaluating queries in TQ. In this paper we establish the
following technical results.

1. SQ (i.e. snapshot query language) has polynomial time
data complexity and exponential space combined com-
plexity (i.e. query expression and database complex-
ity).

2. TQ queries can be effectively evaluated.

3. TQ is more expressive than the language of [13] and
the variable free queries of [9].

The paper is organized as follows. Section 2 defines the
model for the moving object trajectories. Section 3 intro-
duces the language TQ for trajectories. Section 4 presents

the complexity results for TQ and a sublanguage of TQ
(star-free). Section 5 studies expressive power of TQ. Sec-
tion 6 concludes the paper.

2 A Data Model for Moving Objects

In this section we present necessary concepts for spatio-
temporal objects to be used in the paper. Key notions
include that of a “moving object” and its “trajectory.”
Roughly speaking, moving objects are spatio-temporal ob-
jects whose location and/or extent change over time. In
general, such spatio-temporal objects can be points or re-
gions. Moving points are suitable to model planes, cars,
buses, trains, people, etc. whose locations and movements
are important. On the other hand, applications concerning
oil spills, fires, forests, pollution, etc. are very dependent on
both shapes and locations of such moving objects. In this
paper, we assume moving points and static regions to focus
on query languages for trajectories. With some proper mod-
eling of regions that changing over time, the results may be
generalized to include such regions.

Our data model is based on “linear constraints” that are
logical formulas over the real closed field. Kanellakis, Ku-
per, and Revesz in their seminal paper [19] demonstrated
that such logical formulas can represent spatial and spatio-
temporal information in an abstract manner independent of
the underlying storage mechanisms (cf [23]).

Specifically, our model is an extension of the constraint
data model [19] to represent a finite set of regions1 and mov-
ing object trajectories in the database. Some key techniques
of the results concerning constraint formulas in this paper
are also extended from the constraint query evaluation tech-
niques [23]. More details will be discussed in Sections 3
and 4.

We now proceed with the technical presentation, start-
ing with constraints. LetR,N be the set of real and nat-
ural numbers (respectively). Consider a first order lan-
guageL for R that includes equality and order predicates
(=, <, 6, >, >), a binary function for addition (+), and a
unarycoefficientfunction “c·” for each real numberc ∈ R.
Intuitively, the unary coefficient functions are used to repre-
sent real coefficients. For simplicity, we will denote “c·(x)”
as “cx” for eachx ∈ R.

Let n ∈ N andn > 0. An atomic linear constraintover
variablesx1, ..., xn is an expression of the following form:

(Σn
i=1cixi) θ c0 or c1x1+c2x2+ · · ·+cnxn θ c0

where c0, c1, ..., cn are real numbers inR and θ is a
predicate inL. Constraints are interpreted over the real
numbers in the natural manner, i.e., ifϕ(x1, ..., xn) =

1Regions in this paper are non-changing and spatial. Generalization to
time-dependent regions can be done easily.
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(Σn
i=1cixi)θc0 is an atomic constraint, anda1, ..., an are

real numbers inR, ϕ(a1, ..., an) is true if (Σn
i=1ciai)θc0

is satisfied (interpreted over the real numbers).
A linear constraintover variablesx1, ..., xn is a boolean

combination of atomic linear constraints over variables
x1, ..., xn. An advantage of (linear) constraints is their abil-
ity to finitelyrepresent potentiallyinfinitesets of points (i.e.,
regions).

Definition: Let n > 0 be a natural number. Ann-
dimensional regionis a linear constraint in disjunctive nor-
mal form overn variables. LetRegn denote the set of all
n-dimensional regions.

In the remainder of the paper, we will fix the dimension-
ality of the space to ben for somen > 0 and may simply
useReg instead ofRegn.

We now consider moving objects and regions in then-
dimensional real spaceRn. Object movements are viewed
as location changes over “time”. We model the time do-
main as a domain isomorphic toR (with a dense total order,
addition, and multiplication by a real number). As we shall
see in the technical presentation, we will introduce some re-
strictions on time instants in both the data model and query
languages. To make the presentation clear, we useT to de-
note the densely ordered domain oftime instants. We only
allow one variable for the time domain, denoted ast.

A moving object trajectory basically defines the motion
of an object. Different alternatives for modeling trajecto-
ries have been studied in [33, 38, 14, 12, 18, 35, 26]. In
this paper we use the standard model for trajectory as a se-
quence of line segments in then-dimensional space. Instead
of keeping the segments’ endpoints to define a trajectory as
in [14, 29], we use constraints to define a trajectory. Con-
traints allow us to focus on logical properties in querying
trajectories. Technically, a trajectory is a sequence of linear
motions defined as follows.

Let Flin be a set of expressions of the form “at+b” where
a, b ∈ R. Each element inFlin represents a linear function
fromT toR.

Definition: An n-dimensionalmotion is ann-tuple m ∈
Flinn. For each1 6 i 6 n, mi denotes thei-th value ofm.

Intuitively, ann-dimensional motionm defines a linear
function fromT to Rn; mi represents the location change
along thei-th dimension. For example, for a given time
instanta and a motionm, m(a) represents the point (loca-
tion) inRn at timea, whilemi(a) is the position on thei-th
dimension.

Definition: A trajectory is a sequence(z0, m0, z1,m1, ...,
zk,mk), wherek ∈ N and for each0 6 i 6 k,

• zi is a time instant inT such that for each0 6 i < k,
zi < zi+1, and

• mi is a motion such that for0 6 i < k,

mi(zi+1) = mi+1(zi+1).

Let Traj denote the set of all trajectories.

Intuitively, in a trajectory(z0, m0, z1,m1, ..., zk,mk),
the motionmi (for 1 6 i < k) defines the object location
from timezi to zi+1, mk defines the object location for all
times afterzk, and the object does not exist before timez0.
It is easy to see that a trajectory is a continuous piecewise
linear function fromT to Rn which always has a starting
time but no ending time.

x

t
1 2 5 6

Figure 1. A 1-dimensional Trajectory

Example 2.1 Consider the 1-dimensional space and a mov-
ing object whose trajectory is defined as:

(1, (t + 4), 2, (2t + 2), 5, (−t + 17), 6, (2t− 1)) .

Figure 1 shows the beginning part of the trajectory. The
trajectory consists of a sequence of four motionsh, p, q, r
whereh = (t + 4) defined the object location for the time
interval [1, 2], p = (2t + 2) for the time interval[2, 5], q =
(−t + 17) for the time interval[5, 6], andr = 2t− 1 for all
times after6.

We assume thatUR andUT are two disjoint countably
infinite set of names (identifiers) for regions and trajecto-
ries, respectively.

Definition: A (moving object) database(or MOD) is a
quadrupled = (NR, NT , fR, fT ) whereNR ⊆ UR and
NT ⊆ UT are finite subsets,fR is a mapping fromNR to
Reg, andfT is a mapping fromNT to Traj.

The data model (trajectories and regions) are similar to
the ones in the literature (e.g., [18, 38, 35]), except that re-
gions do not change over time. The trajectory model was
originally defined in [26], it is different from the model used
in [9] where a trajectory is a sequence of spatial zones and
time values representing the time spent at each zone. In
[13] the authors also discuss spatio-temporal properties but
no model for trajectories is provided in their framework.

Finally, the model ignores the usual semantic modeling,
i.e., separating the set of “cars” from that of “trucks”. This
is to simplify the technical presentation and to allow us fo-
cussing on the querying aspect of trajectories.
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3 A Query Language for MOD

In this section we propose a trajectory query language
(TQ) for expressing spatio-temporal properties of moving
object trajectories. TQ is based on constraint query lan-
guages and is powerful enough to express properties be-
tween objects and regions and between different objects.

Definition: A (spatial) termis an expression of one of the
following forms:

• a wherea ∈ R,

• x wherex is a spatial (i.e., real) variable,

• cx wherec ∈ R is a coefficient function andx a spatial
variable, and

• s1 + s2 wheres1 ands2 are spatial terms.

We now define the central notion of a “spatial formula”.
Intuitively, a spatial formula can express properties con-
cerning positions with the time variablet as a parameter.
Spatial formulas resemble formulas in constraint query lan-
guages of [19]. However, the primary difference is that
in constraint query languages, only named regions can be
used, while in our language, spatial formulas can reference
named regions (i.e., region names), named trajectories, and
also variables that represent regions and trajectories. This is
natural since a moving object database may have arbitrary
number of regions and trajectories.

Recall thatn is the number of dimensions andt is the
time variable.

Definition: The set ofspatial formulasis defined recur-
sively as follows.

• s1θs2 is anatomicspatial formula ifs1 ands2 are spa-
tial terms andθ ∈ {=, <, >, 6, >},

• v(s1, ..., sn) is anatomicspatial formula ifv is a re-
gion variable or a region name inUR ands1, ..., sn are
spatial terms,

• v(t, s1, ..., sn) is an atomic spatial formula ifv is a
trajectory variable or a trajectory name inUT and
s1, ..., sn are spatial terms,

• (ϕ ∧ ψ), (ϕ ∨ ψ), and(¬ϕ) are spatial formulas ifϕ
andψ are spatial formulas,

• ∃xϕ, ∀xϕ are spatial formulas ifx is a spatial variable
andϕ a spatial formula.

The semantics of spatial formulas is defined in the
straightforward manner. Technically, avaluationis a map-
ping that maps

• each spatial variable toR,

• the time variablet toT,

• each region name and each region variable to a region
(a generalized relation) inReg, and

• each trajectory name and each trajectory variable to
Traj.

A valuation can be naturally extended to all spatial terms.
Then thetruth value of a spatial formulaϕ under a valua-
tion is identical to a constraint formula in a constraint query
language with the following exception:

• We will represent the time domainT as real numbers in
R, and consequently, each trajectory inTraj is treated
as an(n + 1)-ary generalized relation with the first
dimension representing the time.

Spatial formulas are then used to construct “query for-
mulas” defined below.

Definition: Let d = (NR, NT , fR, fT ) be aMOD. The set
of query formulasoverd is defined below.

• A spatial formulaϕ is a query formula ifϕ has no spa-
tial variables occurring free and each region (respec-
tively trajectory) name occurring inϕ is in NR (re-
spectivelyNT ).

• z1=z2 is a query formula if bothz1, z2 are region vari-
ables/names, or trajectory variables/names.

• (ϕ1 ∧ ϕ2), (ϕ1 ∨ ϕ2), (¬ϕ), (∃zϕ), (∀zϕ) are query
formulas ifz is a region variable or trajectory variable
andϕ,ϕ1, ϕ2 are query formulas.

A snapshot (trajectory) queryis a query formula with ex-
actly two variables occurring free: the time variablet and
a trajectory variable. Let SQ denote the set of all snapshot
queries.

The semantics of the query language SQ is defined in the
standard way based on the semantics of spatial formulas.
Let d = (NR, NT , fR, fT ) be a moving object database
andϕ(t, z) a snapshot query. A mapping is said to be an
assignmentwith respect tod if it maps each variable to its
domain, i.e., spatial variables toR, t to T, region variables
to NR, and trajectory variables toNT . Indeed, letα be an
assignment, we can derive a valuation by simply taking the
compositionα ◦ (fR ∪ fT ). The semantics for quantifiers
on region and trajectory variables is standard, here we take
the “active domain” semantics for these variables, i.e., only
region and trajectory names in the database are considered.
Finally, we say that the databasesatisfiesϕ at timec ∈ T for
some trajectory (name)τ ∈ NT , written as(d, c) |= ϕ[τ ],
if the query formula returns true.
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Example 3.1 Let τ be the name of an object trajectory and
r1, r2 be names of two regions in the 2 dimensional space.
The property thatτ is in the intersection ofr1, r2 can be
expressed as the following spatial formula (snapshot query).

∃x∃y τ(t, x, y) ∧ r1(x, y) ∧ r2(x, y)

The property that no regions intersecting the rectangle of
size 2a centered atτ can be expressed by the following
snapshot query:

∃x∃y τ(t, x, y) ∧ ∀r∀x′∀y′(r(x′, y′) →
¬(x−a6x′6x+a ∧ y−a6y′6y+a))

Snapshot queries provide a basis for expressing trajec-
tory properties. In [13, 9] trajectory properties are consid-
ered as spatial properties varying along time. Similar to
their approaches, we will develop a “temporal” portion on
top of the SQ language to express trajectory properties. Dif-
ferent from their approaches, our language allows explicit
definition of transition time (from one spatial property to
the next) through querying the database explicitly, and the
use of SQ significantly enriches the expressiveness of spa-
tial properties.

Trajectory properties maybe expressed as snapshot prop-
erties or interval properties. As in SQ, snapshot proper-
ties focus on the properties that a moving object trajectory
would satisfy at a given time instant, whereas interval prop-
erties require a moving object trajectory to satisfy the prop-
erty during a given interval.

Since trajectory properties depend on either the time in-
stant or the time interval it is checked against, expressing
time in a trajectory property is a key issue. In many appli-
cations, a query checks a reoccurring property that repeats
itself at different time instants. Such queries require the
language to support expressing both absolute and relative
times. The following example illustrates the difference be-
tween queries that require absolute and relative time resp.

Example 3.2 Consider the following queries on trajecto-
ries:

Q1: Retrieve all delivery trucks that entered the Santa Bar-
bara area at 2:00pm and stayed there until 5:00pm.

Q2: Retrieve all delivery trucks that entered the Santa Bar-
bara area at 2:00pm and stayed there for 35 minutes.

The main difference betweenQ1 andQ2 is that the end-
ing time for Q1 is fixed. On the other hand,Q2 requires
the trajectory property of staying inside Santa Barbara to be
checked until 35 minutes after the time when the object en-
tered.Q2 thus requires the language to express things like
“entering time”+35.

In our design, we capture this requirement through (1)
the use of “time expressions” to define time instants, (2) the
use of a “relative time expressions” to refer to the difference
between the current time and the previous time instant of
interest.

To facilitate the development, we start with some neces-
sary technical notions. Note thatt is the time variable,

Definition: Let ϕ be a query formula with onlyt occurring
free. Then, atime expressionis one of the following:

• c, if c ∈ T,

• min(ϕ), or

• max(ϕ).

A relative time expressionis an expression “+e” wheree is
a time expression and “+” is a special symbol.

Intuitively, a (relative) time expression defines a time
instant either explicitly or through querying the database.
The functionsmin, max returns the smallest, respectively
largest time instant that satisfies the query formula. In
case the smallest/largest instant does not exist, the expres-
sion is notwell-formed. Let e be a time expression and
d a database. We denote bye(d) the result of e underd.
The following property shows that well-formedness can be
checked if a database is given; undecidable if it is well-
formed independent of databases.

Proposition 3.3 For a given time expressione and aMOD

d, it can be decided wheree is well-formed. However, it is
undecidable ife is well-formed for all databases.

The positive result can be proved using an argument sim-
ilar to the proof of Lemma 4.1 in Section 4 about complex-
ity. The negative results is a direct consequence of undecid-
ability results of constraint query properties [17].

Combining snapshot queries with (relative) time expres-
sions we can define a language for expressing trajectory
properties.

Definition: Let z be a designated trajectory variable. Ifε is
a (relative) time expression andϕ is a snapshot query in SQ,
then the following arestartless atomic trajectory queries:

• ϕ(t, z) is a startlesssnapshottrajectories query,

• ε∃.ϕ(t, z) is a startlessexistential-timetrajectory query,
and

• ε∀.ϕ(t, z) is a startlessuniversal-timetrajectory query.

A startless trajectory queryis a regular expression over
the set of startless atomic trajectory queries, i.e., composed
from startless atomic trajectory queries using concatenation
(q1q2), union (q1 + q2), and closure (q∗), whereq, q1, q2 are
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startless trajectory queries. If the regular expression does
not use the closure operator, the startless trajectory query is
calledstar-free.

A startless trajectory queryq defines a formal language
(i.e., set of words) over startless atomic trajectory queries.
We denote the language asSEQ(q). Each word expresses
a sequence of atomic properties. There are three types of
atomic properties in the language. A snapshot trajectory
query examines the spatial properties at a time instant. An
existential-time trajectory query checks if the spatial prop-
erties hold at some time instant during a time interval. Fi-
nally, a universal-time trajectory query insists that the spa-
tial properties should be true for all time instants during
the time interval. The word “startless” indicates that the
start time is not given. The end of a time interval for an
existential- or universal-time trajectory query is given by the
time expressionε preceding the snapshot query formula.

Definition: An (atomic, snapshot, existential-time, univer-
sal-time, star-free) trajectory queryis a pair(ε, q), whereε
is a time expression andq a startless (resp., atomic, snap-
shot, existential-time, universal-time, star-free) trajectory
query. Let TQ denote the set of all trajectory queries.

We outline the semantics for TQ below.
Let c0 ∈ T be a time instant,q1···q` be a sequence of

atomic trajectory queries, andd a MOD database. We define
a time instant sequencec0, c1, ..., c` as follows: for each
1 6 i 6 `,

• if qi is a snapshot query,ci = ci−1,

• otherwise, letei be the time expression inqi. Let
ci = ci−1 + ei(d) if qi has a relative time expression,
otherwise letci = ei(d).

Let τ ∈ UT be a trajectory name. We say that the database
d satisfiesthe atomic query sequenceq1···q` for τ at c0, de-
noted as(d, c0) |= q1···q`[τ ], if the sequencec0, c1, ..., c`

is monotonically increasing (not necessarily strict) and for
each1 6 i 6 `, the following are true:

1. If qi = ϕ(t, z) is a snapshot query, then(d, ci) |= ϕ[τ ],

2. If qi = ε∃.ϕ(t, z) is an existential-time query, then
(d, c) |= ϕ[τ ] for someci−1 < c < ci, and

3. If qi = ε∀.ϕ(t, z) is a universal-time query, then
(d, c) |= ϕ[τ ] for eachci−1 < c < ci.

Let q = (ε, q1···q`) be a trajectory query where each
qi (1 6 i 6 `) is atomic, andd = (NR, NT , fR, fT ) a
database. A trajectory (name)τ ∈ NT is in theanswerto q
overd, if (d, ε(d)) |= q1···q`[τ ]. Denote byq(d) the set of
all trajectories in the the answer toq overd.

Let q = (ε, q′) be a trajectory query andd = (NR, NT ,
fR, fT ) be aMOD database. Theanswerof q overd is the
setq(d) =

{τ | τ∈NT , and∃q′′∈SEQ(q′), (d, ε(d)) |= q′′[τ ]}

4 Complexity Results

In this section we present complexity results for the tra-
jectory query language TQ. In the literature, data and com-
bined complexity are used to measure the complexity of
query languages. The main results in the section show that
SQ and TQ have polynomial time data complexity and ex-
ponential space combined complexity.

The complexityof a query is the time/space needed to
compute the answer. We consider two complexity mea-
sures.Data complexityof a query measures the complex-
ity in terms of the database size, i.e., the query expression
is considered fixed;combined complexityof a query mea-
sures the complexity in terms of both the database size and
query expression size. We use PTIME, EXPSPACE to de-
note the polynomial time, (respectively) exponential space
complexity classes. A query language hascomplexityC if
every query in the language has complexityC.

Lemma 4.1 The snapshot query language SQ has PTIME
data complexity and EXPSPACE combined complexity.

We note here that the main source of combined complex-
ity is from the number of variables. Indeed, we can show
that the space complexity is exponential in the number of
variables in a query expressionϕ.

Proof: (Sketch) Technically, the result states that for each
time instantc∈T, each SQ queryϕ(t, z), each database
d=(NR, NT , fR, fT ), and each trajectory (name)τ∈NT ,
(d, c) |= ϕ[τ ] can be decided in (1) polynomial time in the
size ofd, and (2) exponential space in the size ofd andϕ.

The main idea of the proof is as follows. We consider a
fixed mappingγ that assigns a region name inNR to each
region variable and a trajectory name inNT to each tra-
jectory variable includingτ . Let Q[γ] denote the snapshot
query obtained fromQ by replacing each region/trajectory
variablez by γ(z). Note thatQ[γ] is a snapshot query with-
out any region and trajectory variables, it does have, how-
ever, spatial variables. Mapping the time domainT to real
numbersR andt to a spatial variable, we can now viewQ[γ]
as a constraint query in the model of [19, 17]. It can be con-
cluded thatQ[γ] can be evaluated in polynomial time in the
size of the image of the composed mappingγ ◦ (fR ∪ fT )
which is a subset ofd. From the results in [19], the result
of evaluatingQ[γ] is a set of intervals fort that makesϕ[γ]
true. In particular, the set can be computed effectively since
ϕ[γ] has only linear constraints.
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Now letτ, z1, ..., z` be an enumeration of region and tra-
jectory variables occurring inϕ. We can consider all pos-
sible assignments from{τ, z1, ..., z`} to NR ∪NT that pre-
serve the type. For each such assignmentγ, we can repeat
the above process. Since the total number of assignments is
(|NR| + |NT |)`+1, and` depends on the query expression
ϕ that is considered as fixed, the number of assignment is a
polynomial in the size ofd.

Finally the combined complexity is due to fact that the
complexity of evaluating queries is double exponential time
in the number of quantifiers [31].

Theorem 4.2 Atomic trajectory queries have PTIME data
and EXPSPACE combined complexity.

Proof: (Sketch) Clearly, snapshot queries have PTIME
data and EXPSPACE combined complexity, by Lemma 4.1.
From constraint query evaluation algorithms, we can see
that the result of evaluating a snapshot query is a set of time
instants (possibly infinite) represented in constraint form as
a generalized relation. Therefore, checking the existential-
time and universal-time property simply becomes checking
the intersection and (respectively) containment of interval,
which can be done efficiently.

We now consider general trajectory queries. The idea
is to use the evaluation procedure for atomic queries as the
basis and extend for “path queries” defined in regular ex-
pressions. Technically, we will construct from a trajectory
query a “query graph” and then develop a generic iterative
process for query evaluation. We show that the iterative pro-
cess ends in finite number of steps. The number of steps,
however, may depend on the properties of the constraints
used in defining the regions and trajectories in the database.

Let q=(ε, q′) be a trajectory query. Sinceq′ is a regu-
lar expression, letGq be a finite automaton that accepts the
same language asq′ (see [2]). Without loss of generality, we
assume thatGq does not haveemptymoves. In fact,Gq can
be viewed as a(query) graph(V, E, v0, F, Q) whereV is a
finite set of nodes (states),E ⊆ V × V is a set of edges be-
tween nodes,v0 ∈ V andF ⊆ V are the starting and final
nodes respectively, andQ is a mapping fromE to atomic
trajectory queries inq′.

A path u0, u1, ..., u` in a query graphGq is called an
advancing edgeif (i) ` > 0, and (ii) eitheru` ∈ F is a final
node, orQ(u`−1, u`) is not snapshot butQ(ui−1, ui) is a
snapshot for all1 6 i < `.

Let d = (NR, NT , fR, fT ) be a database. We define an
(infinite) relationE ⊆ T2 × V 2 ×NT as follows:

• (c1, c2, u0, u`, τ) ∈ E if there is an advancing edge
u0, u1, ..., u` such that ifQ(u`−1, u`) is not snapshot,
(d, c1) |= ∧`−1

i=1Q(ui−1, ui)[τ ], c2 is the result of (rel-
ative) time expression inQ(ui−1, ui), and τ satis-

fies Q(u`−1, u`) in d from time c1 to c2, otherwise,
(d, c1) |= ∧`

i=1Q(ui−1, ui)[τ ] andc1 = c2.

By Theorem 4.2,(c1, c2, u0, u`, τ) ∈ E can be decided in
polynomial time in the size ofd.

Finally, we define a sequence of relationsAi ⊆ T×V ×
NT as follows:

(i) A0 = {c0} × {v0} × NT wherec0 is the value ofε,
and

(ii) Ai+1 = Ai 1 E, where the join is defined as
(c2, u2, τ) ∈ Ai 1 E if both Ai(c1, u1, τ) and
E(c1, c2, u1, u2, τ) hold.

Proposition 4.3 Given the above context,
q(d) = π3σ2∈F ∪i>0 Ai.

The procedure outlined above can semi-compute the
query answer, i.e., if a trajectoryτ ∈ π3Ai for somei, then
τ is in the answer. However, it is not clear when we can de-
cide if τ is not in the answer. The following result implies
that there is a time upper bound to decide ifτ will never be
in the answer.

Theorem 4.4 Given a trajectory queryq, a MOD d, and a
trajectory name ind, there existsc ∈ T such that for all
h, h′ ∈ T if h > c andh′ > c, (d, h) |= q′[τ ] iff (d, h′) |=
q′[τ ] whereq′ is an atomic query inq.

The proof of the result is rather involved and will be
given in the full paper. The key idea is based on alge-
braic cell decomposition (e.g., [31, 8]). Specifically, for a
given finite set of constraints, there is a partition of space
into a finite number of “cells”, each of which preserves
the constraints. This intuitievly would indicate that after
some point in time, the constraint (spatial) properties will
not change.

Theorem 4.5 1. Let q be a trajectory query andd aMOD.
It can be decided if a trajectory is inq(d).

2. Star-free TQ has PTIME data and EXPSPACE com-
bined complexity.

In the remainder of the section we introduce a restricted
sublanguage of TQ, called “intermediate-variable free” tra-
jectory queries. Roughly, these queries use neither region
nor trajectory variables, and have onlyn quantifiers over
the spatial variables for then dimensions.

Definition: A query formula isintermediate-variable free,
(or int-var-free), if it only has n quantifiers, one for each
spatial variable for a dimension. A trajectory query in TQ
(snapshot query in SQ) isintermediate-variable freeif all
query formulas in it are int-var-free.
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Example 4.6 The query “was the United Flight UA80 in-
side the Los Angeles airport between 5pm and 5:10pm?”
can be expressed by in int-var-free TQ as

(e0, e
∀
1 .∃x1∃x2UA80(t, x1, x2) ∧ LAX (x1, x2)),

wheree0, e1 are time expressions.

We argue that many queries can be expressed in this
set. For technical results, we show that star-free trajectory
queries in this subclass have PTIME combined complexity.

Theorem 4.7 Int-var-free SQ and star-free, int-var-free TQ
have PTIME combined complexity.

5 Expressive Power

In this section we study the expressive power of trajec-
tory languages developed in this paper. Our main goal is to
compare our languages with the trajectory query languages
in [13, 9]. Our results show that TQ is quite expressive, and
even int-var-free TQ is sufficient to express many queries in
the languages of [13, 9].

Since we will compare different languages that are de-
fined over different data models, we need to formulate the
technical basis for comparison. We outline the compari-
son framework informally below, the precise definitions are
provided in the full paper.

In the “mobility patterns” language developed by du
Mouza and Rigaux [9], a database consists of (1) a set of
regions that form a partition ofR2, and (2) a set of ob-
jects each of which is a sequence of regions the object goes
through (in that order) and the length of time it stays in each
region. The time domain used in their model is discrete. For
the sake of comparisons, we extend their time domain to a
continuous one isomorphic toT. Although the change may
affect query evaluation, the semantics is clear. We use MP
to denote the mobility patterns language with this extension.

Given a MOD d over R2, we mapd into the MP data
model in the following sense: we construct a partition of
R2 using the regions ind by considering all possible com-
binations among them. Given a trajectoryz in d, we then
construct an MP objecto by listing the regions in the parti-
tion z goes through. The time lengths can also be computed
easily. We denote the mappingMP.

A TQ queryQ1 and an MP queryQ2 areequivalentif
for eachMOD d, MP(Q1(d)) = Q2(MP(d)).

A language QL2 is as expressiveas another language
QL1, denoted as QL1 v QL2, if for every query in QL1
there is an equivalent query in QL2. QL1 and QL2 are
equivalent, QL1 ≡ QL2, if QL1 v QL2 and QL2 v QL1.

Roughly speaking, a mobility pattern is a sequence of
regions that a moving object goes through. Based on a sin-
gle “inside-a-region” predicate, a mobility pattern is a reg-
ular expression over the predicates. MP allows regions to
be identified with either names or variables. When a vari-
able is used, the variable is instantiatedprior to matching
the patterns. In other words, region variables are global to
the mobility patterns. Clearly TQ has no such global region
variables and having such global region variable would in-
crease expressive power. Thus,

Theorem 5.1 Variable-free MPv6≡ int-var-free TQ.

The reason for the converse is that more spatial proper-
ties can be expressed in TQ using SQ.

The main reason that MP is not contained in int-var-free
TQ is that it can use (existentially quantified) region vari-
ables while describing pattern expressions. It appears that
TQ can be extended to allow free region and even trajectory
variables while expressing patterns. Although it is interest-
ing to work out the detailed semantics (e.g., allowing arbi-
trary quantifications), we think the data and combined com-
plexity will remain unchanged with respect to the PTIME
and EXPSPACE complexity classes.

We now consider the “language” proposed by Erwig and
Schneider [13], which we call MS. Technically, MS allows
expressing temporal properties in the same spirit as TQ, but
it does not have a coincide language corresponding to SQ
to express spatial properties. For our comparison purposes,
we will use (a sublanguage of) SQ as the underlying sub-
language for spatial properties. For example, the language
MS+SQ uses SQ for spatial properties and MS for temporal
trajectory properties. Note that by using MS+SQ, compar-
isons will useMOD databases.

There are two important differences. Firstly, time is im-
plicit in the predicates through lifting them from pure topo-
logical predicates to spatio-temporal predicates. In contrast,
TQ allows an SQ query to be evaluated to define the time.
For example, one can express in TQ when two moving ob-
jects enter regionr1, the third object must be outside of
regionr2. Such a flexibility of referencing time is not pro-
vided in MS. Secondly, MS does not allow the use of clo-
sure in expressing patterns. Clearly this puts a severe re-
striction on its expressiveness.

Thus our comparison is based on the setting that when
(int-var-free) SQ is used as the underlying spatial language
in MS. We have:

Theorem 5.2 (1) MS+SQv6≡ star-free TQ.

(2) MS+int-var-free SQv6≡ star-free int-var-free TQ.
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6 Conclusions

In this paper we consider the problem of querying about
spatial properties of moving objects. We presented a lan-
gauge TQ for expressing trajectory properties. We studied
the complexity and expressive power of TQ. Our prelimi-
nary results show that TQ queries can be effectively evalu-
ated, star-free TQ queries have PTIME data complexity, and
intermediate variable free TQ queries have PTIME com-
bined complexity.

Our work reported here makes only one step towards the
design of query languages for trajectories. One immedi-
ate problem is to identify sublanguages of TQ that allow
lower theoretical complexity bounds, efficient algorithms,
and suitable data structures. It is unclear at this point how
the known trajectory index techniques could be utilized in
the query evaluation algorithms for trajectory query lan-
guages.
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Abstract

Data summarization is an important data analysis task
in data warehousing and online analytic processing. In this
paper, we consider a novel type of summarization queries,
probable group queries, such as “What are the groups of
patients that have a50% or more opportunity to get lung
cancer than the average?” An aggregate cell satisfying the
requirement is called aprobable group. To make the answer
succinct and effective, we propose that only the most gen-
eral probable groups should be mined. For example, if both
groups (smoking, drinking) and (smoking, *) are probable,
then the former groups should not be returned. The problem
of mining the most general probable groups is challenging
since the probable groups can be widely scattered in the
cube lattice, and do not present any monotonicity in group
containment order. We extend the state-of-the-art BUC al-
gorithm to tackle the problem, and develop techniques and
heuristics to speed up the search. An extensive performance
study is reported to illustrate the effect of our approach.

1 Introduction

Data summarization is an important data analysis task
in data warehousing and online analytic processing. For
example, an insurance company may want to summarize
the common features of low-risk customers based on a data
warehouse of customers’ claims. High accuracy and good
understandability are the major requirements for high qual-
ity summarization.

Summarization from large databases, including multidi-
mensional databases and data warehouses, has been studied

∗This research is supported in part by National Natural Science Founda-
tions of China Grant NSFC 60473072, NSERC Grant RGPIN312194-05,
NSF (US) Grant IIS-0308001, a President’s Research Grant and an En-
dowed Research Fellowship Award in Simon Fraser University. All opin-
ions, findings, conclusions and recommendations in this paper are those of
the authors and do not necessarily reflect the views of the funding agencies.

extensively in previous work. For example, as a major re-
search field in machine learning and data mining, accurate
classification has been investigated intensively. A classifier
for a target class can be viewed as the summarization. Ac-
curate classifiers with good understandability, such as deci-
sion trees [16] and Bayesian networks [6], are often used as
summarization of concepts in data analysis. As another ex-
ample, the attribute-oriented induction [4] method is one of
the pioneering database-oriented methods for concept sum-
marization and generalization.

Although previous studies developed effective and effi-
cient methods for summarization, most of them only work
for large classes. That is, the previous methods implicitly
or explicitly assume that the data (e.g., the training data set
or the base table in a data warehouse) contains sufficient at-
tributes and enough instances to support the summarization
of the target class. However, this assumption may not be
honored in some applications.

Example 1 (Motivation) In practice, more often than not
a minor class may not be accurately characterized using the
available attributes and cases. For example, although it is
well known that smoking may lead to lung cancer, fortu-
nately, more than90% of smokers will not end up getting
lung cancer. Generally, lung cancer happens in less than
0.1% of average population. In other words, lung cancer
patients form a minor class. The available attributes in con-
sensus data may not be sufficient to characterize the class
of lung cancer patients. Therefore, it is often impossible to
build an accurate classification model for lung cancer pa-
tients on consensus data sets. Instead, it would be more
practical to identify the combinations of attributes, such as
“smoking” and “family history of lung cancer”, that have
a much higher probability to lead to lung cancer than the
average cases. For example, the statistics identifying the
high-risk groups that have50% or more opportunities to get
lung cancer than the average might be very interesting and
helpful in health-informatics research.

As another example, in security-informatics, it is gener-
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ally very hard, if not impossible at all, to construct an accu-
rate model for terrorists, since the class terrorists is a very
minor class in population. Instead, it is more practical to
identify the suspicious groups and then follow-up investi-
gations can be conducted.

From the above example, we obtain the motivating ob-
servations as follows. There are real applications where the
task is to summarize some minor classes that might not be
accurately characterized using the available attributes and
instances. In such cases, it is often useful to query the
groups of instances that have a much higher probability to
belong to the target minor classes. Such groups are called
probable groups.

In this paper, we tackle the problem ofmultidimensional
summarization of probable groups in data warehouses, and
make the following contributions.

• We identify a novel type of data summarization queries
– probable group queries. We illustrate that the prob-
able group summarization queries are useful for sum-
marization of minor classes. We also show that the
problem of multidimensional summarization of proba-
ble groups in data warehouses is challenging since the
probable groups may be widely scattered in the data
cube lattice as the search space, and they do not present
any monotonicity in group containment order.

• We propose mining the most general multidimensional
summarization. We show that finding all probable
groups can be ineffective and computational costly. In-
stead, we propose mining the most general probable
groups as the succinct summarization.

• We develop efficient algorithms. We extend the sate-
of-the-art cubing algorithm BUC [3] to compute all
the most general probable groups. To make the mining
more efficient, we further develop a heuristic dynamic-
ordering method with smart techniques to prune un-
promising recursive search. The new method is up to
3 times faster than the simple extension of BUC.

• We report an extensive performance study. The exper-
imental results strongly suggest that our approach is
efficient and scalable.

The rest of the paper is organized as follows. The prob-
lem is defined in Section 2. We develop algorithms for the
problem in Section 3. An extensive performance study is
presented in Section 4. We review related work in Section 5.
The paper is concluded in Section 6.

2 Problem Description

In this section, we first introduce the preliminaries.
Then, we present the probable group queries. Last, we ex-

amine how such queries should be answered effectively.

2.1 Preliminaries

Consider abase tableB = (D1, . . . , Dn, C), whereD1,
. . . ,Dn are then dimensionsandC is the attribute ofclass
labels. We assume that all dimensions are in categorical
domains. For any tuplet, the value oft on attributeA is
denoted byt.A.

An (aggregate) cell is a tuplew = (w1, . . . , wn), where
wi ∈ Di ∪ {∗} (1 ≤ i ≤ n). Whenwi = ∗, the dimension
Di is generalized inw. That is,∗ matches any value in a
dimension. Thecoverof an aggregate cellw, denoted by
cov(w), is the set of tuples inB that have the same values
asw in all dimensions thatwi 6= ∗. That is,

cov(w) = {t|(t ∈ B)∧(t.Di = w.Di for anyw.Di 6= ∗)}.
A cell w is called abase cellif for any dimensionDi,

w.Di 6= ∗. A base cell is a group-by of all dimensions in
the base table.

For aggregate cellsw1 andw2, w1 is anancestorof w2

andw2 is a descendantof w1, denoted byw1 Â w2, pro-
vided (1) for every dimensionDi such thatw1.Di 6= ∗,
w2.Di = w1.Di; and (2) there exists some dimensionDi0

such thatw1.Di0 = ∗ andw2.Di0 6= ∗. Particularly, ifw2

is a descendent ofw1 and agrees withw1 on(n−1) dimen-
sions, thenw1 is called aparent cellof w2, andw2 is achild
cell of w1. It is easy to show the following.

Lemma 1 (Cover containment [12]) For any cellsw1 and
w2 such thatw1 Â w2, cov(w1) ⊇ cov(w2).

However, the reverse direction of Lemma 1 is not true.
That is, generally, we cannot derivew1 Â w2 based on the
fact cov(w1) ⊇ cov(w2) [12].

2.2 Probable Group Queries

For a giventarget classc ∈ C and an aggregate cellw,
theprobabilityof c in w, denoted byprob(w, c), is the ratio
of tuples incov(w) that belong to classc. That is,

prob(w, c) =
|{t|(t ∈ cov(w)) ∧ (t.C = c)}|

|cov(w)| .

When the target classc is fixed and clear from context,
we omitc and writeprob(w, c) asprob(w).

An aggregate cellw is called aprobable groupor aprob-
able cellprovided thatprob(w, c) ≥ min prob, wherec is
the target class andmin prob is theminimum probability
thresholdspecified by a user.

Problem definition 1 (Probable group queries) Given a
base table, a target class and a minimum probability thresh-
old, a probable group queryis to retrieve the complete set
of probable groups.
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A B C # tuples # tuples inP prob

a1 b1 c1 7 1 14.29%
a1 b1 c2 9 2 22.22%
a1 b2 c1 4 1 25.00%
a1 b2 c2 7 3 42.86%
a1 b3 c1 10 2 20.00%
a1 b3 c2 8 3 37.50%
a2 b1 c1 5 0 0.00%
a2 b1 c2 11 1 9.09%
a2 b2 c1 7 2 28.57%
a2 b2 c2 15 3 20.00%
a2 b3 c1 4 0 0.00%
a2 b3 c2 12 3 25.00%

Table 1. The base table as our running exam-
ple.

As shown in Example 1, probable group queries are use-
ful in summarization of minor classes, such as “What are
the groups of patients that have a50% or more opportunity
to get lung cancer than the average?”

Now, the problem becomes searching all probable
groups in a data warehouse. A nice property of data ware-
house is that all aggregate cells in data warehouse can be
organized in a lattice (calledcube lattice) by the cell cover
containment order [9, 12].

Example 2 (Cube lattice) Consider the base tableB in Ta-
ble 1 as our running example. The table has3 dimen-
sions, namelyA = {a1, a2}, B = {b1, b2, b3}, andC =
{c1, c2, c3}. The number of tuples in every group-by on di-
mensionsA, B andC is also shown in the table (column “#
tuples”). Let classP be the target minor class. The number
of tuples of classP in every group-by is also shown in the
column “# tuples inP ”. prob(w, P ) is also shown for every
base cellw.

The set of all possible aggregate cells has|A∪{∗}|· |B∪
{∗}| · |C ∪{∗}| = 3×4×3 = 36 cells. The aggregate cells
form a lattice as shown in Figure 1.

Suppose we are interested in the aggregate cells that have
a ratio of25% or up. Those aggregate cells are highlighted
in Figure 1. There are in total13 probable groups (cells).

Probable cells are scattered in the cube lattice, as demon-
strated in Figure 1. If the probable cells have some
monotonic properties in the cube lattice, the search can be
facilitated substantially. Unfortunately, probable cells do
not carry such a nice property.

Example 3 (Probable cells have no monotonic property)
For aggregate cellsw1 = (a1, b2, c1), w2 = (a1, ∗, c1), and
w3 = (a1, ∗, ∗) in Figure 1,w1 ≺ w2 ≺ w3. As shown

in the figure,w1 andw3 are probable cells, butw2 is not.
Therefore, probable cells are not monotonic. That is, a
probable cellw does not imply that the ancestors or the
descendants ofw must be probable cells.

2.3 Most General Probable Cells: Succinct Sum-
marization

Although probable cells are not monotonic, as shown in
Example 3, fortunately, they have a weak monotonic prop-
erty as follows.

Lemma 2 (Weak monotonicity) If w is a probable cell,
then at least one child ofw must also be a probable cell.
Proof sketch.Letw′ be a child cell ofw such thatprob(w′)
is the maximum among all children cells ofw. It can be
shown thatprob(w) ≤ prob(w′). Sincew is a probable
cell, w′ is also a probable cell.

Example 4 (Weak monotonicity) It is easy to verify that,
in Figure 1, every probable cell has at least a child that is
also a probable cells. In fact, for any probable cellc that is
not a base cell, there is a path from some base probable cell
to c such that each cell on the path is a probable cell.

The weak monotonicity gives us two important hints.

• All probable cells stem from base probable cells. In
other words, although there can be many probable cells
in a data warehouse, the base cells that have much
higher ratio of the target class enable the more gen-
eral aggregate probable cells. They are the “roots” of
those probable cells.

• The most general probable cells summarize the prob-
able cells. For any probable cella, if it has some an-
cestor cell that is also a probable cell, it still can be
generalized. A cell ismost generalif every ancestor
cell of it is not a probable cell. The set of most gen-
eral probable cells describe the most general extent of
probable cells. Each probable cell is either most gen-
eral, or is summarized by some most general probable
cell.

Based on the above discussion, we can use the set of base
probable cells and the set of most general probable cells to
succinctly summarize a minor class.

Example 5 (Most general probable cells)In our running
example, there are in total13 probable cells.5 of them are
base probable cells. There are3 most general probable cells,
namely(a1, ∗, ∗), (∗, b2, ∗) and(∗, b3, c2). In other words,
only 3

13 = 23.08% of probable cells are most general, and
another 5

13 = 38.46% of probable cells are base cells. If
only the base probable cells and the most general probable
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(a1, b1, c1)

(a2, b2, *) (a2, b3, *)

(a1, b1, c2) (a1, b2, c1):25%

(a1, *, *):26.67%

(a2, b3, c2):25%(a2, b3, c1)(a2, b2, c2)

(a1, b1, *)(a1,b2,*):36%(a1,b3,*):28%(a2, b1, *) (a1,*,c2):33%(a1, *, c1) (*, b3, c1)(*, b1, c1) (*, b1, c2)(*,b2,c1):27%(*,b2,c2):27%

(*, *, c1)

(a1, b2, c2):42.9% (a1, b3, c1) (a1, b3, c2):37.5% (a2, b1, c1) (a2, b1, c2) (a2, b2, c1):28.6%

(a2, *, c1) (a2, *, c2) (*, b3, c2):30%

(*, b2, *):27.27%

(*, *, *)

(*, b3, *)(*, b1, *)(a2, *, *) (*, *, c2)

Figure 1. The cube lattice.

cells are used for the succinct summarization, we only need
to record8 probable cells, or813 = 61.54% of all probable
cells. There is a considerable saving.

As shown in our experimental results, using the base
probable cells and the most general probable cells can
achieve good saving in summarizing probable cells.

Clearly, the set of base probable cells can be computed
as the group-by on all dimensions. Since the dimensions
are categorical, we can use counting sort1 to compute them
efficient. As will be shown later, computing the set of base
probable cells can be a byproduct of computing the set of
most general probable cells.

Now, the problem becomes whether we can compute the
set of most general probable cells efficiently. In the rest of
the paper, we will focus on this issue.

Problem definition 2 (Succinct Summarization) Given a
base table, a target class, and a minimum probability
threshold, the problem ofsuccinct summarization of the tar-
get classis to compute the complete set of base probable
cells and the complete set of most general probable cells.

3 Algorithms

In this section, we first review BUC [3], a state-of-the-
art algorithm for computing complete data cubes. Then,
we discuss how BUC can be extended to mine the set of
most general probable cells. We further develop a heuristic
algorithm that can be much faster.

3.1 BUC: Bottom-up Cubing

In [3], Beyer and Ramakrishnan developed algorithm
BUC, which computes the complete cube for a given base
table, i.e., the complete set of aggregate cells. Extensive
performance studies [3, 15] showed that BUC is efficient,
scalable and moderate in main memory usage.

1According to Knuth, counting sort was invented by H.H. Seward in
1954. It is explained in many text books on algorithms, such as [5].

BUC conducts bottom-up computation and can use the
monotonic iceberg conditions to prune. To compute a data
cube on a base tableT (A,B, C, D), BUC first partitions the
table according to dimensionA, i.e., computing group-bys
(A, ∗, ∗, ∗). Then, BUC recursively searches the partition
of cov(a, ∗, ∗, ∗), wherea ∈ A, and computes the descen-
dant aggregate cells in depth-first search manner, such as
(a, b1, ∗, ∗), (a, b2, ∗, ∗), and so on. The computation order
is summarized in Figure 2. It also employs counting sort to
make partitioning and group-by operations efficient.

(A, *, C, *) (A, *, *, D) (*, B, C, *) (*, B, *, D) (*, *, C, D)

(A, *, *, *) (*, B, *, *) (*, *, C, *) (*, *, *, D)

(*, *, *, *)

(A, B, C, *) (A, B, *, D) (A, *, C, D) (*, B, C, D)

(A, B, C, D)

(A, B, *, *)

Figure 2. Bottom-up computation in BUC.

BUC can also efficiently incorporate monotonic condi-
tions to compute iceberg cubes. A monotonic condition
says that if an aggregate cell fails an iceberg condition,
any descendants of it must also fail. If an aggregate cell
(a, ∗, ∗, ∗) fails the monotonic iceberg condition, any de-
scendant of it, such as(a, b, ∗, ∗), (a, ∗, c, ∗) must also fail
the condition and thus does not need to be computed in the
depth-first search of BUC.

3.2 eBUC: Extending BUC to Mine Most General
Probable Cells

Although BUC is efficient to compute the complete data
cube, it cannot be directly used to compute the most gen-
eral probable cells – it cannot use the weak monotonicity
of probable cells to prune in a depth-first search. Here, we
propose eBUC (for extended BUC), an extension of BUC
to use the weak monotonicity in the mining.

The central idea of eBUC is the following observation.
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Theorem 1 An aggregate cellw is a probable cell only if
w is a base probable cell or it is an ancestor of some base
probable cell.
Proof sketch. The theorem can be proved by induction on
the number of∗-dimensions inw. Lemma 2 can be applied
repeatedly in the induction.

eBuc conducts depth-first search just like BUC. At the
beginning of eBUC, by sorting all tuples in the base table
using counting sort, eBUC computes the complete set of
base cells as a byproduct. It stores those base cells that are
probable.

During the rest of the depth-first search, when a new ag-
gregate cellw is encountered, eBUC “looks ahead”. That
is, it checks whetherw is an ancestor of some base proba-
ble cells. If not, then following Theorem 1,w cannot be a
probable cell. Moreover, any descendant ofw cannot be an
ancestor of a base probable cell, either. Thus, the recursive
search starting atw cannot find any probable cells and thus
can be pruned.

When the search encounters a probable cellw, it does not
need to search any descendants ofw, since they cannot be
most general.w is stored and checked after the search. Ifw
is not a descendant of any other probable cells encountered
by the search, thenw is one of the most general probable
cells.

Example 6 (Extended BUC) Let us run eBUC on the run-
ning example (Table 1). The search is shown in Figure 3.
Only the cells connect by a directed edge are searched. The
isolated cells are not searched.

eBUC starts from the most general cell(∗, ∗, ∗). It is not
a probable cell, but it is an ancestor of some base proba-
ble cells. Thus, eBUC searches its children recursively in
depth-first manner. The children are sorted in the dimen-
sions orderA-B-C, and within each dimension, the alpha-
betical order is used.

The first child,(a1, ∗, ∗), is probable. Thus, no descen-
dants of(a1, ∗, ∗) are searched.

The second child,(a2, ∗, ∗), is not a probable cell, but
it is an ancestor of base probable cells(a2, b2, c1) and
(a2, b3, c2). Thus, eBUC recursively searches its children.
The first child,(a2, b1, ∗), is not a probable cell, and it is
not an ancestor of any base probable cells. Thus, as sug-
gested by Theorem 1, the search of(a2, b1, ∗) as well as its
descendants can be pruned. eBUC moves to the sibling of
(a2, b1, ∗) and search recursively.

The rest of the search is conducted similarly. Limited by
space, we omit the details here.

After the search, eBUC checks all the probable cells en-
countered. For example, although probable cells(a2, b2, c1)
and(a2, b3, c2) are encountered by eBUC, they are not the
most general since they are descendants of probable cells

(∗, b2, ∗) and(∗, b3, c2), respectively, and thus will not be
output.

As shown in Figure 3, eBUC can find the complete set
of most general probable cells.

From Example 6, we can see that the most general prob-
able cells and the weak monotonicity of probable cells can
prune the search substantially. In this running example,
only 17 of the 36 aggregate cells are searched. In other
words, summarization takes only1736 = 47.22% of the cost
of computing the complete cube.

3.3 DYNO: Heuristic Search by Dynamic Order-
ing

Algorithm eBUC shows good progress on mining the
most general probable cells. It can be further improved
based on the following two observations.

• In depth-first search, when an aggregate cell has multi-
ple children to be searched, the search from the left-
most child covers the largest number of descendant
cells. The search from a child cell always covers more
descendant cells than that from its right sibling. If a
child cell is probable, then all its descendants do not
need to be searched. Thus, if we can order the cells
dynamically such that the more promising a cell or its
descendants are probable, the more left the cell is put,
then sharper pruning is likely accomplished.

• As indicated by Theorem 1, only aggregate cells that
are ancestors of some base probable cells should be
considered. Thus, when expanding the search to chil-
dren cells, only the dimension values that appear in
some base probable cells that are descendants of the
current cell should be used to expand the children of
the current cell. All other children of the current cell
are not promising.

Based on the above two observations, we develop algo-
rithm DYNO (for DYNamic Ordering). DYNO follows the
framework of eBUC and has the major improvements as
follows.

In the depth-first search, if the current cellw is not a
probable cell but is an ancestor of some base probable cell,
then DYNO dynamically generates and orders the children
cells.

DYNO does not expand all children cells ofw. Instead,
DYNO collects all base probable cells that are descendants
of w. Only dimension values of those base probable cells
are used to assemble children cells ofw. The correctness
of this improvement follows the second observation above.
Moreover, to guarantee the completeness of the search and
avoid searching a cell more than once in the depth-first
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(*, *, c1) (*, *, c2)(a2, *, *) (*, b1, *) (*, b3, *)

(*, *, *)

(*, b2, *):27.27%

(*, b3, c2):30%(a2, *, c2)(a2, *, c1)

(a2, b2, c1):28.6%(a2, b1, c2)(a2, b1, c1)(a1, b3, c2):37.5%(a1, b3, c1)

(a1, *, *):26.67%

(a2, b3, *)(a2, b2, *)(a2, b1, *)(a1,*,c2):33%(a1, *, c1) (*,b2,c2):27%(*,b2,c1):27%(*, b1, c2)(*, b1, c1) (*, b3, c1)(a1,b3,*):28%(a1,b2,*):36%(a1, b1, *)

(a2, b2, c2) (a2, b3, c1) (a2, b3, c2):25%(a1, b2, c2):42.9%(a1, b2, c1):25%(a1, b1, c2)(a1, b1, c1)

Figure 3. Search using eBUC.

search, DYNO joinsw with the right siblings ofw to gen-
erate its children cells, where the join is defined as follows.

For a pair of sibling cellsw1 and w2, two cases may
arise.

• w1 andw2 agree on all dimensions except for one di-
mensionD. That is,w1.D 6= w2.D and both do not
take∗ on dimensionD. In this case, the join is not
defined. In other words,w1 andw2 cannot be joined.

• w1 andw2 agree on all dimensions except for two di-
mensionsD andD′. That is,w1.D = ∗, w2.D 6= ∗,
w1.D

′ 6= ∗ andw2.D
′ = ∗. In this case, the join is

defined asw3 such thatw3 take values as its parent
except for dimensionsD andD′, w3.D = w2.D and
w3.D

′ = w1.D
′.

The current cellw may have multiple children. Then, ac-
cording to the first observation discussed above, we should
search them in the order of likelihood that they are probable
cells. Heuristically, we can search them in their probabil-
ity descending order – the higher the probability, the better
chance that it or some of its descendants are a probable cell.

We need to show that the above dynamic generation
and ordering of children retains the completeness and non-
redundancy of depth-first search.

Theorem 2 (Dynamic generation and ordering)A
depth-first search with the dynamic generation and order-
ing of children cells visits each aggregate cell once and
only once if no pruning is taken.
Proof sketch. The theorem can be proved by induction on
the number of non-∗ dimensions in aggregate cells. For
each cellw, it can be shown thatw will be generated once
and only once. Limited by space, we only show the essen-
tial idea here.

Example 7 (DYNO) Let us apply algorithm DYNO on our
running example. The search is illustrated in Figure 4.

DYNO starts from the most general cell(∗, ∗, ∗). Since
it is not a probable cell, but it is an ancestor of some base
probable cells, we need to search its children.

(*, b2, *):27.27% (a1, *, *):26.67%

(a2, *, c1)(a2, b3, *)(a2, *, c2)(*, b3, c2: 30%)

(*, *, *)

(*, *, c1)(a2, *, *)(*, b3, *)(*, *, c2)

Figure 4. Search using DYNO.

When generating the children cells of(∗, ∗, ∗), DYNO
notices thatb1 never appears in any base probable cell.
Thus, any aggregate cells havingb1 cannot be a proba-
ble cell. Although(∗, b1, ∗) is a child of (∗, ∗, ∗), it is
unpromising and thus should not be generated. The chil-
dren cells of(∗, ∗, ∗) generated by DYNO are(∗, b2, ∗),
(a1, ∗, ∗), (∗, ∗, c2), (∗, b3, ∗), (a2, ∗, ∗), and(∗, ∗, c1), in
the probability descending order.

(a1, ∗, ∗) and (∗, b2, ∗) are probable cells. They are
stored for postprocessing. The descendants of the two cells
will not be searched.

DYNO recursively searches cell(∗, ∗, c2). By joining
the right siblings, two children cells are generated, namely
(∗, b3, c2) and(a2, ∗, c2). The mining can be conducted re-
cursively. Limited by space, we omit the details here.

After the search, for each probable cellw encountered
in the search, DYNO checks whetherw is a descendant of
some other encountered probable cells. If not, then cellw
is output as a most general probable cell.

It can be verified that DYNO can find the three most gen-
eral probable cells.

From the above example, we can see that DYNO can find
the complete set of most general probable cells. Moreover,
DYNO searches much fewer cells than eBUC. In this ex-
ample, DYNO searches11 cells, while eBUC searches17
cells. DYNO searches617 = 35.29% less cells than eBUC.
Our experimental results show that DYNO can search over
50% less cells than eBUC. This is a major saving in the min-
ing. To summarize, algorithm DYNO is shown in Figure 5.
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Algorithm DYNO
Input: a base tableB, a target classc, and a minimum

probability thresholdδ;
Output: the set of base probable cells and the set of most

general probable cells;
Method:
1. sort tuples inB, compute and output the base probable

cells, also computeprob(∗, . . . , ∗);
2. letW = ∅;
3. conduct depth-first search from cell(∗, . . . , ∗), for

each current cellw, do
4. if w is not an ancestor of any base probable cell

then return;
5. if prob(w) ≥ δ thenW = W ∪ {w}, return;
6. generate children ofw by joiningw with the right

siblings ofw, using only the dimension values that
appear in descendant base probable cells ofw

7. compute probability for children cells;
8. sort the children ofw in the probability descending

order;
9. search the children recursively in depth-first

manner;

// Postprocessing
10. remove cellsw from W such thatw has an ancestorw′

in W ;
11. outputW ;

Figure 5. Algorithm DYNO.

4 Experimental Results

We conducted extensive experiments using synthetic
data sets. The results are consistent. Limited by space, we
only reported some results in this section.

All the algorithms are implemented using Microsoft Vi-
sual C++ V6.0. The experiments are conducted on a PC
with a P4 1.5G Hz CPU and 512 MB main memory. The
operating system is Microsoft Windows XP.

By default, a base table has10 dimensions. The cardinal-
ity of each dimension is100. There are100 thousand tuples
in the base table. Each tuple is a base cell with a popula-
tion and a probability of the target class. The probability of
the target class in base cells follows the Half-Normal Dis-
tribution in [0, 1], i.e., a normal distribution with mean0
and standard deviation1θ limited to the domain[0, 1]. In the
results reported in this section, we setθ = 1.

First of all, it is interesting to examine the change of the
number of probable cells and the number of most general
probable cells with respect to the probable threshold, which
is shown in Figure 6. As the minimum probability thresh-
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Figure 6. Number of probable cells with re-
spect to minimum probability threshold.

old goes down, the number of probable cells keeps growing.
However, the number of most general probable cells does
not monotonically change. When the minimum probability
threshold is high, there are only a small number of prob-
able cells, and the number of most general probable cells
is also small. As the minimum probability threshold goes
down, both the number of probable cells and the number of
most general probable cells increase. When the minimum
probability threshold is lower than50% in our experiments,
there are many probable cells. They can be summarized by
some quite general probable cells. The strong capability of
high level aggregate cells to summarize the low level cells
brings down the number of most general aggregate cells. In
the extreme case, when the most general cell in the cube,
(∗, . . . , ∗), is probable, there is only one most general prob-
able cell.
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Figure 7. The number of probable cells with
respect to dimensionality.

The number of probable cells and the number of most
general probable cells also increase as the dimensionality
increases, as shown in Figure 7. However, the number of
most general probable cells has a much more moderate in-
crease rate.
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In Figure 8, we tested the scalability of eBUC and
DYNO with respect to the probability threshold. When
the probability threshold is set high, the number of prob-
able cells and the number of most general probable cells
are small. Thus, both algorithms are fast and the differ-
ence between the two algorithms is minor. However, when
the probability threshold is low, there can be many probable
cells. DYNO has a much better scalability than eBUC.
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Figure 9. The depth-first search runtime with
respect to minimum probability threshold.

The runtime of both DYNO and eBUC can be divided
into two parts: the time for depth-first search and the time
for postprocessing. An interesting observation is that the
depth-first searches in DYNO and eBUC only take a small
part in the total runtime. The runtime for depth-first search
is shown in Figure 9. As can be seen, when the minimum
probability threshold is low and the number of most general
probable cells decreases, DYNO and eBUC become more
efficient in the depth-first search. In other words, the curves
of depth-first search runtime of DYNO and eBUC in Fig-
ures 9 are consistent with the curve of number of most gen-
eral probable cells in Figure 6. In terms of search time per
cell, eBUC is shorter than DYNO since DYNO needs to

collect more information than eBUC. However, the major
advantage of DYNO is that it generates much less candi-
date cells than eBUC, which makes the postprocessing of
DYNO clearly faster.
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Figure 10. The postprocessing runtime with
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Figure 10 shows the postprocessing runtime. Both
DYNO and eBUC use the same method in postprocessing
to remove the non-most general probable cells. Since the
heuristic search in DYNO (dynamic generation and order-
ing of children cells) can effectively reduce the number of
probable cells searched, the postprocessing cost in DYNO
is substantially smaller than that in eBUC.
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Figure 11. The number of aggregate cells
searched with respect to minimum probability
threshold.

Figure 11 supports the claim that DYNO visits substan-
tially less aggregate cells in finding the most general prob-
able cells. DYNO also encounters much less probable cells
in the depth-first search than eBUC. The numbers of prob-
able cells encountered by DYNO and eBUC, respectively,
follow the trends similar to the results in Figure 10. Lim-
ited by space, we omit the details here. It shows that the
pruning techniques in DYNO are effective.

To test the scalability of our methods, we ranged the di-
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mensionality from4 to 10. The results are shown in Fig-
ure 12. DYNO has a better scalability. Moreover, the re-
sults are consistent with the number of most general scal-
able cells shown in Figure 7.
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Figure 12. The runtime with respect to dimen-
sionality.

We also tested the runtime of DYNO and eBUC on the
number of tuples in the base table. Both are linearly scal-
able, and DYNO has a better scalability. Limited by space,
we omit the details here.

In summary, the extensive experimental results strongly
suggest that using the most general aggregate cells can ef-
fectively summarize the probable cells. DYNO is an effi-
cient method to compute the most general probable cells.

5 Related Work

The data cube operator [9] is one of the most influential
operators in OLAP. Many approaches have been proposed
to compute data cubes efficiently from scratch (e.g., [24, 17,
18, 3]). In general, they speed up the cube computation by
sharing partitions, sorts, or partial sorts for group-bys with
common dimensions.

It is well recognized that the space requirements of data
cubes in practice are often huge. Some studies investigate
partial materialization of data cubes, e.g., [11, 3]. Example
methods to compress data cubes are [19, 20, 12, 13]. More-
over, [1, 2, 21] investigate various approximation methods
for data cubes.

There are several major methods on computing (ice-
berg) cubes. MultiWay [24] is an array-based top-down
approach to computing complete data cube. The basic
idea is that a high level aggregate cell can be computed
from its descendants instead of the base table. To com-
pute a data cube on a base tableT (A, B,C, D), Multi-
Way first scans the base table once and computes group-bys
(A,B, C, D), (∗, B, C,D), (∗, ∗, C, D), (∗, ∗, ∗, D) and
(∗, ∗, ∗, ∗). These group-bys can be computed simultane-
ously without resorting the tuples in the base table. Once

these group-bys are computed, we do not need to scan the
base table any more. MultiWay may not be efficient in com-
puting iceberg cubes with monotonic iceberg conditions,
since the top-down search cannot use the monotonic iceberg
condition to prune.

Fang et al. [7] proposed the concept of iceberg queries
and developed some sampling algorithms to answer such
queries. An iceber cube is the set of aggregate cells in a
cube that satisfy some user-specified condition. Beyer and
Ramakrishnan [3] introduced the problem of iceberg cube
computation in the spirit of [7] and developed algorithm
BUC, which is revisited in Section 3.1. Often, monotonic
iceberg conditions are used to prune in the computation of
iceberg cubes.

H-cubing [10] uses a hyper-tree data structure called
H-tree to compress the base table. Then, the H-tree can
be traversed bottom-up to compute iceberg cubes. It also
can prune unpromising branches of search using monotonic
iceberg conditions. Moreover, a strategy was developed
in [10] to use weakened but monotonic conditions to ap-
proximate non-monotonic conditions to compute iceberg
cubes. The strategies of pushing non-monotonic conditions
into bottom-up iceberg cube computation were further im-
proved by Wang et al. [22]. A new strategy, divide-and-
approximate, was developed. The general idea is that the
weakened but monotonic condition can be made up for each
search sub-branch and thus the approximation and pruning
power ca be stronger.

In [23], Xin et al. developed Star-Cubing by extend-
ing H-tree to Star-Tree and integrating the top-down and
bottom-up search strategies. Feng et al. [8] proposed an-
other interesting cubing algorithm, Range Cube, which uses
a data structure called range trie to compress data and iden-
tify correlation in attribute values. On the other hand, since
iceberg cube computation is often expensive in both time
and space, parallel and distributed iceberg cube computa-
tion has been investigated. For example, Ng et al. [15] stud-
ied how to compute iceberg cubes efficiently using PC clus-
ters.

In all the previous studies, either the complete cube or
the complete iceberg cube is computed. None of them con-
sider the problem of computing a summarization of the cells
that satisfy some user-specified condition. None of them ei-
ther deal with mining the most general aggregate cells. To
the best of our knowledge, this paper is the first one that
addresses the issue.

On the other hand, this paper is also related to previ-
ous work on concept summarization [4], generalization and
learning [14]. However, different from those approaches,
we use the most general aggregate cells to summarize prob-
able groups, which have not been discussed in those previ-
ous studies.
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6 Conclusions

Data summarization is an important data analysis task
in data warehousing and online analytic processing. In this
paper, we identified a new type of summarization queries,
probable group queries, and proposed a succinct summa-
rization answer to the queries using the base probable cells
and the most general probable cells. The problem of min-
ing the most general probable cells is challenging since the
probable cells can be widely scattered in the cube lattice,
and do not present any monotonicity in cover containment
order. We extended the state-of-the-art BUC algorithm to
tackle the problem, and developed techniques and heuris-
tics to speed up the search. An extensive performance study
verified that our approach is effective and efficient.

This study raises several interesting problems for future
studies. For example, it is interesting to improve the per-
formance of DYNO further, especially reducing the cost of
ancestor-descendant checking in the postprocessing. More-
over, summarization and understanding of minor classes are
important for data analysis and applications. Theoretical
framework as well as practical mining methods should be
explored further.
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Abstract

Advanced Data Mining applications require more and
more support from relational database engines. Especially
clustering applications in high dimensional features space
demand a proper support of multiple Top-k queries in order
to perform projected clustering. Although some research
tackles to problem of optimizing restricted ranking (top-k)
queries, there is no solution considering more than one sin-
gle ranking criterion. This deficit - optimizing multiple Top-
k queries over joins - is targeted by this paper from two per-
spectives. On the one hand, we propose a minimal but quite
handy extension of SQL to express multiple top-k queries.
On the other hand, we propose an optimized hash join strat-
egy to efficiently execute this type of queries. Extensive ex-
periments conducted in this context show the feasibility of
our proposal.

1. Motivation

With the advent of data warehousing concepts, knowl-
edge discovery in general became one of the most promi-
nent database application areas. Many extensions were pro-
posed to better support KDD and warehouse queries and
optimize their execution. Before the SQL:1999/SQL:2003
standardization, a top-k query with a single rank could be
written as SELECT statement containing an ORDER BY plus
a limiting clause like STOP AFTER k ROWS [3] or FETCH

FIRST k ROWS ONLY (DB2 dialect) to retrieve the top-k
results. The standard introduced an alternative formulation
with nested SELECT statements making use of OLAP func-
tions like RANK in combination with the OVER clause.

The extension of the OVER()-clause allows the specifica-
tion of a column-wise ordering, partitioning and windowing
scheme. Positions are computed by three additional aggre-
gation functions RANK(), DENSERANK(), and ROWNUM-
BER() differing in the semantics of breaking ties. Due to
simplicity, we do not further consider ties and refer to the

RANK()-operator. The limitation with respect to the first k
rows must be indirectly specified in a surrounding query.
The following example shows how to state one or more top-
k queries within a single SQL query.

SELECT x.id, x.pos1, x.pos2

FROM (
SELECT id ,

RANK( ) OVER (ORDER BY f1() ) AS pos1 ,
RANK( ) OVER (ORDER BY f2() ) AS pos2

FROM R INNER JOIN S ON . . .
WHERE . . . ) x

WHERE x.pos1 ≤ : k OR x.pos2 ≤ : k

Computing top-k queries using this SQL extension is
based on the principle of ordering the underlying data set
with regard to the (usually numeric) ranking criterion and
returning only the first k values per column. In the above ex-
ample, after joining tables R and S, two different ranks are
determined for each tuple according to sort criteria func-
tions f1() and f2(). The restriction to the top-k tuples of
both rankings is applied in an surrounding select statement.

Example 1: The concept of multiple top-k queries natu-
rally appears in several relevant data mining and informa-
tion retrieval applications. Many information retrieval sys-
tems employ relevance feedback. The idea is that the system
learns iteratively from the users rating of the presented re-
sults to improve the retrieval quality. For example the con-
cept of Kim and Chung [12] extends the basic idea of query
point movement. Instead of moving the query point based
on user feedback towards an assumed ideal query point the
extended concept of complex similarity queries allows a set
of multiple query points Q = {q1, . . . , qn}. The top-k re-
sult tuples can be defined by a new distance function, which
requires that the result tuple is close to at least one of the
query points in Q:

dist(x, Q) = mink
qi∈Q

{dist(x, qi)}, 1 ≤ i ≤ n

The distance function can be expressed as a SQL query us-
ing n top-k rankings, one for each query point. The com-
bined results of the top-k queries are ordered according to
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SID PID QUAN. SALES

1 1 500 1200,00
1 2 300 100,50

. . .
10 5 100 50,00

SID G F EU

1 0.2 0.3 0.2
2 0.1 0 0.05
3 0 0.2 0.1

. . .

(a) fact table (b) weighting table

Figure 1. Example for multiple top-k queries
over joins

the distance to their nearest query points and the k tuples
with the smallest distance are returned.

Example 2: Another application scenario appears in data
warehouse environments, where multiple top-k queries over
joins are useful. Consider following example, where a fact
table holds objects like products or shops and correspond-
ing facts. These informations are either stored in the data
warehouse or computed with SQL-statements. The table
in figure 1(a) holds some facts for sold products (PID) in
shops (SID), like quantity and sales. The objects can now
be ranked according to the different facts with regard to
weighting factors. Such factors represent the importance of
the objects in different contexts and they are used to align
raw data and to statistically correct samples. For example,
typical weighting factors for shops are the market power
with regard to geographic location, e.g. Germany, France
and Europe. This weighting factors are typically stored in a
dimension table (figure 1(b)). To rank the objects into mul-
tiple directions with regard to the multiple facts and multi-
ple weighting factors a join between the fact table and the
weighting table is necessary and the result have to be or-
dered according to multiple ranking functions. In this case,
the parameters of the ranking functions come from both re-
lations.

Our Contribution

In this paper we consider a class of ranking functions
described by f(g1(R.A1, R.A2, . . .), g2(S.B1, S.B2, . . .))
where f(·, ·) is monotonic in its two input attributes. The
functions g1() and g2() might be any functions taking in-
puts from tables R and S respectively. We also consider mul-
tiple ranking functions taking only inputs from one relation.

Moreover, it is worth mentioning that without applying
very specific optimization strategies the top-k-computation
is done by computing the ranks for all tuples requiring one
sort for each individual ranking criterion. Finally, for apply-
ing specific optimization algorithms, the currently available
top-k ranking formulations show the problem that the in-
formation about the top-k predicate is structurally very far
from the ranking declaration implying very sophisticated

query graph pattern recognition mechanisms to detect sit-
uations in which the query could be optimized.

To soften the two major problems - no direct support of
top-k queries in the SQL formulations and no internal op-
timization algorithms for computing multiple top-k queries
simultaneously, we propose the following concepts in this
paper:

• First of all, we introduce a small SQL extension of OR-
DERING SETS to simplify the declaration of multiple
rankings. Additionally, we inject LIMIT BY clauses in
the ORDERINGS SETS as well as within the already ex-
isting OVER-clause.

• We discuss the limitations of existing rank optimiza-
tions in the presence of multiple ranks and give a po-
tential extension of an early stop algorithm based on
sort-merge joins.

• We finally propose a variation of the well-known hash-
join algorithm which considers the presence of multi-
ple top-k columns. This variation outperforms all other
join strategies and can be easily integrated into exist-
ing database engines.

The rest of the paper is organized as follows: After glean-
ing related work in the following section, we present our
SQL extension for computing multiple top-k queries in sec-
tion 3. In section 4 we consider simple queries with multi-
ple ranks, but without joins. Thereafter, in section 5, we de-
scribe an extension of an early stop algorithm and introduce
our proposed extension of a hash-join method considering
the existence of rankings. In section 6, we demonstrate the
improved efficiency of our algorithms by describing the re-
sults of extensive experiments run on a prototypical imple-
mentation. The paper closes with a summary and conclu-
sion.

2. Related Work

The goal behind top-k queries is to apply a scoring func-
tion on multiple attributes coming from one or multiple ta-
bles to select the best k tuples ranked by the function. So far,
top-k queries with single ranking function have been inten-
sively studied in the last years of database research. In par-
ticular it is worth mentioning that top-k queries have been
considered in various contexts.

Carey and Kossmann [3] extended SQL’s SELECT state-
ment by a STOP AFTER clause, which limits the cardinal-
ity of a query result. The authors showed that this clause
especially in combination with ORDER BY leads to signif-
icant better query plans and execution times. In the follow
up paper [4] they presented extended implementation tech-
niques for the STOP AFTER clause based on range par-
titioning. Donjerkovic and Ramakrishnan [7] proposed to
map a top-k query to a range query with the range [max, κ]
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where κ is chosen in a probabilistic way so that the range
contains approximately k tuples. While this and the pre-
vious articles focused on orderings based on the column
values of a single attribute themself, later papers take also
ranking conditions based on multiple attributes, e.g. multi-
dimensional metrics, into account. Chaudhuri et. al [1, 5]
studied the use of multi-dimensional histograms to eval-
uate top-k queries with multi-attribute ranking conditions,
namely metrics like Maximum, Euclidean and Manhattan.
Here a top-k query is mapped to a multi-dimensional range
query centered around a given query point. In their work
they included experiments with ranking conditions based
on up to four attributes. Cheng and Ling [6] proposed an
approximative variant of the method of Chaudhuri et al.
based on sampling, which scales better to high-dimensional
data (up to 100 attribute) and has only a small loss of ac-
curacy. Another approach was taken by Hristides et al. [9],
who used multiple materialized views to efficiently answer
top-k queries, with ranking conditions based on linear func-
tions of the attributes of a relation. For a given ranking con-
dition the best matching materialized view is selected to ap-
proximate the query answer.

None of the above described approaches considered top-
k queries in conjunction with joins. Ilyas et. al [10,11] pro-
posed a new rank join operator producing single top-k re-
sults progressively during the join results. They consider a
set of tables R1 to Rn, where each tuple in Ri is associated
with a local score. The global score is computed accord-
ing to a function f combining the local scores of the indi-
vidual tables. In section 5 we give a more detail descrip-
tion, because one of our algorithm extends the rank join ap-
proach to evaluate multiple top-k join results. In [11] Ilyas
et. al present a rank-aware query optimization framework
integrating the rank-join operators into relational query en-
gines. The generation of a rank-aware query plan is done
with a probabilistic model for estimating the input cardinal-
ity, and cost of the rank-join operators.

In a recent article Slivinskas, Jensen and Snodgrass [13]
identified the optimization problem of database queries con-
taining ORDER BY as a very important problem, which has
been underestimated in the database community. They pro-
pose an extended algebra taking a single ORDER BY and
top-k queries into account and give several formal transfor-
mation rules for such queries.

However, research so far on top-k queries considers only
queries with a single ranking, i.e. sort and limitation condi-
tion.

3. SQL Extension for Top-k Queries

This section outlines minimal SQL extensions providing
a new concept of computing multiple top-k queries within
a single select statement. In a first step, we revise the cur-
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Figure 2. Schematic sketch of the possibili-
ties for returning result of queries with multi-
ple ranking conditions.

rent state of the art, demonstrate the problems in retriev-
ing multiple top-k database entries and finally introduce the
ORDERING SET() and LIMIT BY() concepts from a syntac-
tical as well as a semantic point of view.

3.1. Multiple Top-k Queries

Conceptually there are two possible methods to re-
turn multiple top-k results without unnecessary informa-
tion. Figure 2 illustrates the shape of the resulting ta-
bles.

The following query pattern basically extends the basic
SQL pattern given in the motivation with the assumption
that only the first k values of each sorting criterion have to
be considered. This can be achieved by performing an n−1-
ary outer join to compute the required result (figure 2a).

SELECT v1.id ,v1.pos1 ,COALESCE(v1.ind1 , 0 ) AS ind1 ,
v2.pos2 ,COALESCE(v2.ind2 , 0 ) a s ind2

FROM (
(SELECT v1.id, v1.pos1, 1 AS ind1

FROM (
SELECT id ,

RANK( ) OVER(ORDER BY f1() ) AS pos1 ,
FROM . . .
WHERE . . . ) u1

WHERE u1.pos1 ≤: k ) v1(id, pos1)
FULL OUTER JOIN

(SELECT v2.id, v2.pos2, 1 AS ind2

FROM (
SELECT id ,

RANK( ) OVER(ORDER BY f2() ) AS pos2 ,
FROM . . .
WHERE . . . ) u2

WHERE u2.pos2 <=: k ) v2(id, pos2)
ON v1.id = v2.id )

Within this query template, each subquery locally com-
putes the individual ranking results which are then ’concate-
nated’ using a full outer join so that the individual ranks
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larger than the given k are set to NULL. Additionally, an
indicator function COALESCE is used to differentiate be-
tween natural NULL values and NULL values generated by
full outer joining the individual top-k queries. In the worst
case, this may yield an extremely sparse table where each
tuple holds only one valid rank. So for computing n ranks
of size k, we may yield a cardinality between k and n · k.

Alternatively (figure 2b), the local results of the individ-
ual ranking values can be concatenated vertically by per-
forming an union after computing the local ranks. For the
running example, the corresponding query pattern might
look like the following:

SELECT u1.id , ′1′ AS indicator , u1.pos1 AS pos
FROM (

SELECT id ,
RANK( ) OVER (ORDER BY f1() ) AS pos1 ,

FROM . . .
WHERE . . . ) u1

WHERE u1.pos1 ≤ : k
UNION
SELECT u1.id , ′2′ AS indicator , u2.pos2 AS pos
FROM (

SELECT id ,
RANK( ) OVER (ORDER BY f2() ) AS pos2 ,

FROM . . .
WHERE . . . ) u2

WHERE u2.pos2 ≤ : k

An additional indicator column denotes the local result
set. This solution is perfect if there is almost no overlap in
the result set implying that a single row appears only once
within the top-k values with regard to a single ranking.

Comparing both alternatives from a query formulation
and query optimization perspective leads to the following
observation. The individual subqueries are computed lo-
cally and combined in a subsequent step, which is either a
union or a full outer join so that applying sophisticated rank-
operators eventually computing multiple top-k results be-
comes extremely difficult. Additionally, the query structures
of both variants are inadequate to serve as language expres-
sions because of the huge statements necessary to express
the same pattern and repetitive computation of the (poten-
tially complex) table expressions in the FROM clauses.

To put it into a nutshell, it is clear that SQL does not ad-
equately support multiple orderings in combination with a
limitation of the output stream either for vertically or hori-
zontally constructed result sets. The query expressions are
extremely voluminous. Additionally, it is extremely diffi-
cult for the rewrite system inside of the database engine to
detect these query patterns and to apply specific optimiza-
tion techniques.

3.2. The ORDERING SET-Operator

To weaken the problems of multiple orderings and limit-
ing the output stream, we propose a much simpler language
construct, namely ORDER BY ORDERING SET, which op-
erates quite similar to the GROUPING SET-operator and
therefore fits nicely into the set of SQL extensions.

The ORDERING SET()-operator (as an extension of the
ORDER BY-clause) denotes that the same data is sorted ac-
cording to multiple ordering criteria and may be seen quite
similar to the construct of a GROUPING SET()-operator,
which is an extension of the simple GROUP BY-clause. Ad-
ditionally, the individual ordering criteria may be extended
with a LIMIT BY-parameter to restrict the number of rows
for the particular ordering criterion. The ORDERING SET()-
operator delivers the tuples of a table in the order according
to the actual ranking criterion. When all tuples of the ta-
ble are returned or the limit is reached the next ranking is
processed.

SELECT . . . , f1(), f2()
FROM . . .
WHERE . . .
ORDER BY ORDERING SET (

(f1() DESC LIMIT BY : k ) ,
(f2() DESC LIMIT BY : k ) )

To illustrate the ORDERING SET()-operator, we refer to
the example in figure 3, which shows how to compute the
first 3 rows with the highest values in f1() and f2().

The result (right table) of the ORDERING SET()-
operator, which ranks first according to column f 1 and then
f2 with the limit k = 3. The horizontal line in the right ta-
ble indicates when the second ordering starts.

Like the normal ORDER BY expression, one single OR-
DERING SET expression can exhibit multiple sorting cri-
teria including ASC and DESC annotations to distinguish
between ascending and descending ordering. A single OR-
DERING SET expression is equivalent to a normal ORDER

BY expression, e.g.

ORDER BY ORDERING SET ( f1() ASC, f2() DESC)
≡
ORDER BY f1() ASC, f2() DESC

Although in the general case, the value for k may be dif-
ferent for each individual ranking, in many applications k

ID f1 f2

1 4 11
2 3 22
3 2 33
4 1 44

⇒

ID f1 f2

1 4 11
2 3 22
3 2 33
4 1 44
3 2 33
2 3 22

Figure 3. Example of a 2-ary ranking of size 3
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ID f1() f2()

1 44 11
2 33 22
3 22 33
4 11 44

⇒

ID ORDERING(f1()) ORDERING(f2() DESC) ORDERING(f1() DESC, f2())

4 1 0 0
3 1 0 0
4 0 1 0
3 0 1 0
1 0 0 1
2 0 0 1

Figure 4. Example for the ORDERING function

will be the same for all sorting criteria. In this case, we allow
an alternative global limitation for the ORDERING SETS as
a shortcut, e.g.

ORDER BY ORDERING SET ( (f1() LIMIT BY : k ) ,
(f2() LIMIT BY : k ) )

≡
ORDER BY ORDERING SET ( ( f1() ) , ( f2() ) )

LIMIT BY : k

Like the GROUPING()-function for the GROUPING SET-
extension we introduce the ORDERING()-function, which
indicates to which ordering set a tuple in the result set be-
longs to. The function returns 1 if the current row was
sorted according to the given sorting criterion. Thus, OR-
DERING(x) returns 1 if the current row was sorted accord-
ing to expression x. In case the ordering set is defined over
multiple sorting criteria (e.g. f1() DESC, f2() ASC) the
ORDERING()-function takes also a list of expressions.

To illustrate the semantics in more detail, we consider the
following ORDERING SET()-clause returning the first three
rows of each ranking:

SELECT . . . ,
ORDERING(f1() ) ,
ORDERING(f2() DESC) ,
ORDERING(f1() DESC, f2() )

FROM . . .
WHERE . . .
ORDER BY ORDERING SET ( (f1() ) , (f2() DESC) ,

(f1() DESC, f2() ) ) LIMIT BY 2 ;

Figure 4 illustrates the identification of the individual or-
dering set membership for each row.

In case the ranking criteria are compatible with each
other, e.g. only one expression is used for each ordering
set, the result table can be explicitly transformed into the
schema shown in figure 2b with the help of the ORDER-
ING()-functions by adding a CASE statement like the fol-
lowing:

SELECT . . . ,
1 ∗ ORDERING(f1() ) +
2 ∗ ORDERING(f2() ) AS indicator ,
CASE WHEN ORDERING(f1() ) = 1 THEN f1()

WHEN ORDERING(f2() ) = 1 THEN f2()
END AS value , . . .

FROM . . .
WHERE . . .
ORDER BY ORDERING SET ( ( f1() ) , ( f2() ) ) LIMIT BY : k

3.3. The LIMIT BY Over-Clause Extension

Similar to the relationship of GROUP BY (with GROUP-
ING SETS()) and PARTITION BY in the context of the
OVER()-clause, we extend the functionality of reporting
functions by a local LIMIT BY clause resulting in multi-
ple benefits. This implies that the restriction of the output
data is now close to the RANK() function avoiding nested
queries. The scenario above may now be specified without
any nesting by the following expression:

SELECT . . . ,
RANK( ) OVER(ORDER BY f1()

LIMIT BY 10 ) AS pos1 ,
RANK( ) OVER(ORDER BY f2()

LIMIT BY 10 ) AS pos2 ,
LIMIT ( ) OVER(ORDER BY f1()

LIMIT BY 10 ) AS indicator1 ,
LIMIT ( ) OVER(ORDER BY f2()

LIMIT BY 10 ) AS indicator2

FROM . . .
WHERE . . .

From a local perspective of a single column, the val-
ues are sorted according to the given ORDER BY crite-
rion. In a second step, the LIMIT BY-clause propagates the
first k rows from the preceding sort operator to the follow-
ing RANK() function. All subsequent values are replaced by
NULL values indicating that they are not contributing to the
overall result. As an indicator, the new LIMIT()-function re-
turns a numeric 0 if the corresponding original value with
regard to the given OVER()-clause is omitted and 1 if the
original value is part of the aggregation process (in most
cases applied to the RANK()-operator). The same seman-
tics applies in the presence of an additional PARTITION BY-
clause with an optional window specification. The limita-
tion applies to each partition locally without affecting the
succeeding window definition.

3.4. Summary

Supporting ordering in relational database systems has
a long tradition to pre-process returning data for presenta-
tional use. With the advent of data warehouse and informa-
tion retrieval applications limited orderings (i.e. ranks) and
multiple orderings (according to different combinations of
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the data space) are becoming tremendously important. We
introduced a small and seamless SQL-extension dedicated
to support these requirements. The ORDERING SETS and
the LIMIT BY extension fits seamlessly into the SQL lan-
guage and greatly enhances query capability by reducing
the complexity of the query statement. The following two
sections outline the implementation of a special operator for
simple queries and join queries with multiple ranks.

4. Simple Queries with Multiple Ranks

This section introduces the MRANK()-operator support-
ing our new language concepts and details the underlying
algorithm. In the presence of joins the MRANK()-operator
will be combined with join algorithms as shown in the next
section. Since the mechanism of locally computing ranks
using the OVER-clause with the LIMIT BY-extension is
similar to the global construct of ORDERING SETS(), we
restrict the following discussion to the latter one.

Assume the underlying data is stored in a rela-
tion R(tid, col1, . . . , colm) and the ranking functions
F = {f1, . . . , fn} order the objects in descending man-
ner. When mapping the ORDERING SET()-operator to
queries of forms like presented in section 3.1 the cur-
rent implementations compute the query body individ-
ually, apply the specific ordering functions, return the
first k rows, and concatenate the single tuple streams us-
ing an union operator thus forming the overall result
stream. Figure 5a) illustrates this approach. Unfortu-
nately, such implementations require the complete sort
of the underlying data stream according to each order-
ing function fi. Instead we propose a novel (logical) op-
erator MRANK() with multiple corresponding (physical)
operators, which can be directly exploited when pars-
ing the query. Figure 5b) shows how the query plan
changes.

Figure 5. Applying MRank()-operator to com-
pute limited ordering sets

The simplest implementation of the MRANK()-operator
is based on data structures holding a minimal set of data
in main memory. The algorithm holds a heap structure for
every ranking criterion. It computes a single top-k query
holding the rowid and the values of the ordering function
(Algorithm 1).

Algorithm 1 Main memory based algorithm

Require: Relation R(id, col1, . . . , coln)
Query Q with ordering functions F = {f1, . . . , fn} and
local limits k1, . . . , kn

1: H := set of heap data structures hi[id, fi] of size ki for
all top-k operators 1 ≤ i ≤ n

2: {Phase 1: Compute Multiple Orderings}
3: for all tuple t ∈ R do
4: for all i ∈ H do
5: if hi.count() < ki then
6: hi.add(t[id], fi(t))
7: else if fi(t) > min(hi) then
8: hi.remove(min(hi))
9: hi.add(t[id], fi(t))

10: end if
11: end for
12: end for
13: {Phase 2: Generate Output Stream}

In a first phase, each row of the incoming data stream is
split according to the individual sorting criteria and added
to the heap structure if the number of elements in the heap
is still below the limit. If the heap size has already reached
the limit, the current value c replaces the minimum value m
stored at the top of the heap, if the c > m. When all heaps
have been checked in that way the next tuple is processed.

In a second phase, the entries of the heaps are sorted,
the final positions are assigned and the final rows are con-
structed and given to the next operator.

In case not enough main memory is available to hold all
heaps, vertical or horizontal splitting and temp table tech-
niques can be applied. However, due to the lack of space we
do not present those technique in this paper .

Please note that the query body may include join-
expressions. Still the basic MRANK()-operator can be ap-
plied, but the whole join has to be performed. In the next
section we investigate how to push down the top-k crite-
ria which may result in an early stop of the join.

5. Join Queries with Multiple Ranks

For single top-k queries with joins [10] proposes a rank
join, which avoids to perform a full join of the underlying
tables. First, we give an extension of the idea to deal with
multiple top-k queries, which however requires the rank-
ing functions to be linear combinations of the attributes.

200



Figure 6. Evaluation of a single top-k join
query

Second, we propose a new join method for multiple top-
k queries, which is faster and is not limited to linear rank-
ing functions.

5.1. Early Stop in Sort Merge Joins

The section of related work already mentioned the core
principle of the approach given by [10]. From a join opera-
tor perspective, the main idea consists in stopping the flow
of incoming tuples from the join partners, if future combi-
nations of join tuples can never be within the set of the top-k
tuples.

Given the join tables R and S and the ranking func-
tion f(g1(R), g2(S)) the key idea of the rank join is to
process the tuples from R and S in decreasing order of
g1(R) respectively g2(S). Let be xmax the first tuple (which
yields the maximum of g1(R)) and x the current tuple
from R and ymax and y the analogous tuples from S then
T = max{f(g1(xmax), g2(y)), f(g1(x), g2(ymax))} is an
upper bound for the ranks of unprocessed join combina-
tions. If T is smaller than the smallest rank of the top-k
tuples seen so far, than the join can be stopped early as no
future tuple combination will be included in the top-k re-
sult.

Consider the following example with the ranking func-
tion f(R, S) = g1(R)+g2(S), g1(R) = R.A1 +R.A2 and
g2(S) = S.B1 + S.B2. The join condition is R.id=S.id. To
achieve an early stop, the input data streams are sorted ac-
cording to local scores g1(R) respectively g2(S). In the ex-
ample of figure 6, after reading the third tuple of R and
S the join can be early finished. The two circled results of
the three matches are the top-2 tuples based on the ranking
function. All other potential join combinations can never
contribute to the top-2. An early stop after reading three tu-
ples from R and only two tuples from S is not possible al-

though two join combinations are found. This is because the
upper bound T is still 25 and thus exceeds the smallest rank
of top-k tuples seen so far, which is 23.

Although the idea works well for single top-k queries,
however it is not directly applicable in the context of multi-
ple independent ranking criteria. The problem is that in gen-
eral we have no ordering of R and S for which we can de-
termine an upper bound for all local scores of the different
ranking functions.

In the special case that the ranking functions differ only
in their local scores fi(R, S) = f(g1,i(R), g2,i(S)), 1 ≤
i ≤ n and the local scores have the form g1,i(R) = α1,i ·
R.A1 + α2,i ·R.A2 + . . . and g2,i(S) = β1,i ·S.B1 + β2,i ·
S.B2+. . . we can extend the idea from [10] to multiple top-
k queries.

Therefore we define a global score function for R
ḡ1(R) = max

1≤i≤n
{α1,i}|R.A1| + max

1≤i≤n
{α2,i}|R.A2| + . . ..

The global score function ḡ2(S) for S is analogous. It
is easy to see that global scores ḡ1(R), ḡ2(S) are al-
ways larger or equal than the respective local scores
g1,i(R), g2,i(S).

The tuples from tables R and S are processed in decreas-
ing order according to their global scores ḡ1(R), ḡ2(S).
With the global sorting criteria we cannot assume that the
largest local scores appear in the first tuples, so we must
keep the maximum local scores gmax

1,i , gmax
2,i seen so far

for each of the n ranking functions as we scan through R
and S. Also the top-k tuples for each ranking seen so far
are stored in heap structures Hi. Each heap has the small-
est rank minHi of the particular ranking on top.

Let be x the current tuple from R and y the current tuple
from S. Then Ti = max{f(gmax

1,i , ḡ2(y)), f(ḡ1(x), gmax
1,i )}

is an upper bound for the ranks of future join combinations
of ranking i. We can stop early if the condition minHi ≥ Ti

holds for all rankings. In the experiment section we show
that the proposed global sorting criteria has a negative ef-
fect on the performance of the algorithm because the lin-
ear combination of many attributes slowly pushes the upper
boundaries to the lower values and thus delaying the early
stops.

5.2. Early Stop in Hash Joins

The global orderings of R and S are suboptimal for most
of the ranking functions. To avoid that disadvantage we can
extend the hash-join principle to compute multiple top-k
rankings and make use of early stops as much as possible.
In this subsection we do not assume any special structure
of the local scores g1,i(R) and g2,i(S) as well as the fi(·, ·)
might be different but monotonic.

The basic idea of the hash join extension is to partition
the incoming (and not necessarily sorted) data stream of one
join partner (in general the smaller table, say R) according
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Figure 7. Evaluation multiple top-k with hash
join

to the local scores g1,i(R) (and not according to the join at-
tribute). Therefore we need n hash tables of size l i, one for
each local score.

Our hash-join for multiple top-k queries process R it-
eratively, with two phases per iteration. In a first phase
we select the top-li tuples of R according to the local
scores g1,i(R) into the hash tables Pi. For this we use the
MRANK()-operator for simple multiple top-k queries (see
section 4). Figure 7 illustrates an example with the three
top-k ordering functions. Note that a single tuple may be
placed into more than one hash table. As all hash tables fit
in main memory this phase requires one scan over R.

In a second probing phase, all tuples of the join part-
ner S are probed against the hash entries. If a join part-
ner is found in hash table Pi, the joined tuple is inserted
into the corresponding top-k heap structure H i (used al-
ready within the MRANK()-operator) if the ith rank func-
tion of the combined tuple yields a value larger than the
smallest top-k value for this ranking seen so far. The prob-
ing phase requires one scan over S. Then the hash tables are
emptied and in the next iteration the next l i tuples are filled
into the hash tables.

The two phases are repeated until all entries of table
R are handled once in each hash table Pi or the com-
putation of all top-k values stops early. For early stops
we maintain for each ranking an individual upper bound
Ti = fi(min{g1,i(Pi)}, max{g2,i(S)}). Note that the tu-
ples of R are put into the hash table Pi in decreasing order
according to g1,i(). The maximal local score g2,i(S) can be
determined during the probing phase of the first iteration. If
the probing phase of the first iteration is not finished we use
the maximum seen so far.

It is worth mentioning that each local partition P i holds

the complete tuple such that the final result can be computed
without any further effort. An important effect on the per-
formance of the algorithm have the cardinalities of the hash
tables Pi. Given an amount C of main memory (in num-
ber of tuples) we determine the cardinalities li = |Pi| as
follows:

|Pi| =
|C|

∑n
i=1

ki
· ki

In this case the partitioning of the main memory depends
only on the local limits of the multiple rankings. The run-
time of the hash join for multiple top-k rankings is O(iter ·
(|R| + |S|)), where iter is the number of iterations. In the
experimental section we show that in most cases the num-
ber of iteration is quite low, because the individual upper
bounds Ti are quite tight.

5.3. Summary

In this section, we outlined two alternatives to push-
down the limitation of multiple ranks into join operators.
The first idea is based on the proposal of [10]. This only
suitable if the sorting expressions have special structure and
are highly correlated. For the general case of arbitrary sort-
ing expressions, we propose a solution based on the hash
join technique, which is expected to run faster than the sort-
merge join approach.

6. Experiments

We conducted multiple experiments of our MRANK op-
erator to demonstrate the benefit in multiple situations, i.e.
with different implementations and different parametric en-
vironments. All experiments were carried out on a Linux
machine with an AMD Athlon XP 3000+ CPU and 1.5 GB
main memory. The following subsections describe different
scenarios based on single table expressions and – most im-
portant – in combination with joins.

6.1. Simple Queries with Multiple Ranks

In this section we present our experiment results, which
are based on simple queries. The real data we used come
from the UCI KDD Archive and contain 32-dimensional
color histograms of 66.615 images. For this experiments we
used the commercial DB2 V8.1 database system. We also
implemented a prototype of our MRANK-operator as C++
client on top of DB2, which has to read the data over an
ODBC connection. So our MRANK-operator had a much
slower access to the data as the system itself.

We simulated an image search application based on com-
plex similarity search queries. For the experiment we varied
the number of query points in the query point set Q from 1
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Figure 8. Experimental comparison: images

to 45. Each query point translates to a separate ranking cri-
teria. The limit parameter was set to k = 20, which means
that each query point the 20 best matching objects were
returned. The results are shown in figure 8. The MRANK

implementation performs better than the database systems
original implementation when more than 5 query points
(different ranking functions) are used. We argue that the mi-
nor performance for small query point sets (1-5 points) is
caused by the top of database implementation of our proto-
type. In case of 45 query points the MRANK-operator is 7
times faster than the database system. As the query point set
and the limit k were reasonably small the main memory ap-
proach was used only.

6.2. Join Queries with Multiple Ranks

We proposed two algorithms to optimize multiple ranks
over joins. The first algorithm is an extension of [10] con-
sidering multiple top-k ranking, which have a special form
(linear). Ilays et. al. [10] showed that the rank join oper-
ator outperforms existing methods in database today. Our
approaches performs also better than the today’s database
operators, because we avoid multiple sorts after joining R
and S. Therefore we concentrate on analyzing and compar-
ing our two proposed algorithms for joins in this section.

In the first experiment we compared the run time of the
two approaches. The result is shown in figure 9. For this ex-
periments we generated relations where the local scores are
independently from the join condition and varied the num-
ber of multiple top-k ordering functions (k = 10). The rela-
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Figure 9. Comparing Sort-Merge and Hash
Join approach

tion R contains 50, 000 and S 150, 000 tuples. With a join
selectivity of 0.01, 75, 000, 00 join combinations exists. All
temporary data structures are kept in main memory. For the
hash join we limited the main memory space for all hash ta-
bles to 1, 000 tuples and respectively to 5, 000 tuples. We
distributed the available space proportional to individuals
hash tables. With increasing number of ranking functions
the sizes of the individual hash tables decrease.

The hash join outperforms the sort merge approach, be-
cause the hash join does not sort the relations according
global score functions. Furthermore, the upper bounds for
early stop condition of the sort merge join become less tight
as the number of ranking functions increases. Beyond a cer-
tain number of rankings all tuples of R and S have to be
processed (see figure 10). A second observation from fig-
ure 9 is that the hash join gets faster when more main mem-
ory is available because of fewer scans of S.

That fact is further investigated in the second experi-
ment. It shows the effect of the main memory on the per-
formance of the algorithm. We varied the number of tuples
in R and generated S, such that each tuple in R had 5 join
partners in S. In the experiments we computed ten top-k
ranking function, with k = 20. Figure 11(a) shows the re-
sult for main memory space of 1, 000 and 5, 000 tuples for
the hash tables. The figure shows clearly, that the hash join
can utilize the larger main memory very effectively.
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Figure 11. Hash Join

Our hash join approach extents the classic hash tech-
nique to join two relations considering multiple ranking
functions. The classic hash join technique puts a fraction
of the tuples from the smaller relation in the main memory.
With a scan over S all tuples of S are probed against the tu-
ples in the main memory hash tables. The amortized com-
plexity is O(R + C

|R| · S), because the relation R have to
be read only once. In our approach we invest more time to
built up the hash tables but can reduce on the other hand
the number of scans over S because of early stops. Figure
11(b) presents the percentage reduction of the number of
scan over S compared to the classic hash join with the same
amount of main memory.

7. Conclusion

In this paper, we analyzed the problem of supporting
multiple top-k queries from a relational database engine
perspective. We proposed a minimal SQL extension to ease
the specification of multiple rankings within one SQL query
and gave some ideas of applications which can benefit
from it. Additionally, we proposed a variant of the well-
known hash-join strategy which enables an early pruning
of potential join candidates. Finally, we demonstrated the
feasibility of our approach with a variety of different ex-
periments. With our proposed SQL extension of ORDER-
ING SET and column wise limitation in combination with
an optimized implementation, we are convinced that this
technology pushes the envelope and makes relational data-

base technology more applicable for a huge range of data-
intensive applications.
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Abstract

In this paper we present a number of techniques that can
be at the basis of a practical integration tool for multidi-
mensional databases. We start by addressing the basic is-
sue of matching heterogeneous dimensions and provide a
number of general properties that a dimension matching
should fulfill. We then propose two different approaches
to the problem of integration that try to enforce matchings
satisfying these properties. The first approach refers to a
scenario of loosely coupled integration, in which we just
need to identify the common information between sources
and perform drill-across queries over the original sources.
The goal of the second approach is the derivation of a ma-
terialized view built by merging the sources, and refers to
a scenario of tightly coupled integration in which queries
are performed against the view. We finally show how these
techniques can be actually used to perform drill-across op-
erations over heterogeneous multidimensional information
sources.

1 Introduction

The problem of integrating heterogeneous multidimen-
sional databases arises in common scenarios in which in-
formation from autonomous (i.e., independently developed
and operated) data marts need to be combined. A common
practice for building a data warehouse is indeed to imple-
ment a series of integrated data marts, each of which pro-
vide a dimensional view of a single business process. These
data marts should be based on conformed (i.e., common) di-
mensions and facts, but very often different departments of
the same company develop their data marts independently,
and it turns out that their integration is a difficult task. The
need for combining autonomous data marts arises in other
common cases. For instance, when different companies
merge or get involved in a federated project or when there is
the need to combine a proprietary data warehouse with data
available elsewhere, for instance, in external (and likely het-

erogeneous) data warehouses.

In an earlier paper [5], we have introduced and inves-
tigated a fundamental notion underlying data mart integra-
tion: dimension compatibility. Intuitively, two dimensions
(belonging to different data marts) are compatible if their
common information is consistent. We have shown that
dimension compatibility gives the ability to correlate, in a
correct way, multiple data marts by means of drill-across
queries [9], based on joining data over common dimen-
sions. Building on this preliminary study, in this paper
we introduce a number of notions and algorithms that can
be used in a practical integration tool for multidimensional
databases, similarly to how Clio [12] supports heteroge-
neous data transformation and integration.

We start from the problem of integrating a pair of au-
tonomous dimensions and identify a number of desirable
properties that a matching between dimensions (that is, a
one-to-one correspondence between their levels) should sat-
isfy: the coherence of the hierarchies on levels, the sound-
ness of the paired levels, according to the members associ-
ated with them, and the consistency of the functions that re-
late members of different levels within the matched dimen-
sions. We propose two different approaches to the problem
of integration that try to enforce matchings satisfying the
above properties. The first approach refers to a scenario
of loosely coupled integration, in which we need to iden-
tify the common information between sources (intuitively,
the intersection), while preserving their autonomy. This ap-
proach supports drill-across queries, to be performed over
the original sources. The goal of the second approach is
rather merging the sources (intuitively, making the union)
and refers to a scenario of tightly coupled integration, in
which we need to build a materialized view that includes
the sources. With this approach, queries are then performed
against the view built from the sources. As a preliminary
tool, we introduce a powerful technique, the chase of di-
mensions, that can be used in both approaches to test for
consistency and combine the content of the dimensions to
integrate.

We believe that the proposed techniques can be applied
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in more general contexts in which there is the need to in-
tegrate generic heterogenous data sources and we have at
our disposal taxonomies of concepts describing the sources
(e.g, ontologies).

The concept of compatibility among dimensions in a
data warehouse has been discussed, under the name of “con-
formity”, by Kimball [9] in the context of data warehouse
design. Our notion of compatibility is actually more suit-
able to autonomous multidimensional data integration than
the notion of conformity since we consider an “integration”
perspective rather than a “design” one. The integration of
heterogenous databases has been studied in the literature ex-
tensively (see, e.g., [6, 7, 10, 13, 17]). In this paper, we take
apart the general aspects of the problem and concentrate our
attention on the specific problem of integrating multidimen-
sional data. Differently from the general case, this problem
can be tackled in a more systematic way for two main rea-
sons. First, multidimensional databases are structured in a
rather uniform way, along the widely accepted notions of di-
mension and fact. Second, data quality in data warehouses
is usually higher than in generic databases, since they are
obtained by reconciling several data sources. To our knowl-
edge, the present study is the first systematic approach to
this problem. A somehow related issue is the derivabil-
ity of summary data from heterogeneous data sets in the
context of statistical databases [11, 18]. Some work has
been done on the problem of integrating data marts with
external data, stored in various formats: XML [8, 14] and
object-oriented [15]. This is related to our tightly coupled
approach to integration, where dimensions are “enriched”
with external data. On the other hand, our loosely cou-
pled approach to integration is related to the problem of
drill-acrossing [1]. Finally, the chase of dimensions can be
viewed as exact method of missing value imputation, which
has been studied in statistical data analysis and classifica-
tion, for instance, by use of estimation with the EM algo-
rithm [16]. However, the goal of these studies is different
from ours.

The paper is organized as follows. In Section 2 we re-
call a multidimensional model that will be used throughout
the paper. In Section 3 we present the notion of dimension
matching and provide a basic tool, called d-chase, for the
management of matchings. In Section 4 we illustrate two
techniques for dimension integration and, in Section 5, we
describe how they can be used to integrate data marts. Fi-
nally, in Section 6, we sketch some conclusions.

2 Preliminaries

2.1 A dimensional data model

In this section, we will briefly recall the MD data
model [4], a multidimensional conceptual data model. It

generalizes the notions commonly used in multidimensional
analysis or available in commercial OLAP systems and, for
this reason, is adopted as a basic framework for our study.
MD is based on two main constructs: the dimension and
the data mart.

Definition 2.1 (Dimension) A dimension d is composed
of:

• a scheme S(d), made of: (i) a finite set L =
{l1, . . . , ln} of levels, and (ii) a partial order � on L
(if l1 � l2 we say that l1 rolls up to l2), and

• an instance I(d), made of: (i) a function m associating
members with levels; and (ii) a family of functions ρ
including a roll up function ρl1→l2 : m(l1) → m(l2)
for each pair of levels l1 � l2.

We assume that L contains a bottom element ⊥ (wrt �)
whose members represent real world entities that we call
basic.1 Members of other levels represent groups of basic
members.

Let {τ1, . . . , τk} be a predefined set of base types, (in-
cluding integers, real numbers, etc.).

Definition 2.2 (Data mart) A data mart f over a set D of
dimensions is composed of:

• a scheme f [A1 : l1, . . . , An : ln] → 〈M1 :
τ1, . . . ,Mm : τm〉, where each Ai is a distinct attribute
name, each li is a level of some dimension in D, each
Mj is a distinct measure name, and each τj is some
base type; and

• an instance, which is a partial function mapping coor-
dinates for f to facts for f , where:

– a coordinate is a tuple over the attributes of f
mapping each attribute name Ai to a member of
li;

– a fact is a tuple over the measures of f mapping
each measure name Mj to a value in the domain
of type τj .

Example 2.1 Figure 1 shows a Sales data mart that repre-
sents daily sales of products in a chain of stores.

It is worth noting that, according to the traditional database
terminology, the MD is a conceptual data model and there-
fore its schemes can be implemented using several logical
data models [3].

1In [5], we called them ground members.
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Figure 1. Sales data mart

2.2 An algebra for dimensions

Let d denote a dimension having scheme (L,�) and in-
stance (m, ρ). The dimension algebra (DA) can be used to
manipulate dimensions and is based on three operators, as
follows.

Definition 2.3 (Selection) Let G be a subset of the basic
members of d. The selection σG(d) of G over d is the di-
mension d′ such that: (i) the scheme of d′ is the same of
d and (ii) the instance of d′ contains: the basic members
in G, the members of d that can be reached from them by
applying roll-up functions in ρ, the restriction of the roll-up
functions of d to the members of d′.

Definition 2.4 (Projection) Let X be a subset of the levels
of d including ⊥d. The projection πX(d) of d over X is the
dimension d′ such that: (i) the scheme of d′ contains X and
the restriction of � to the levels in X , (ii) the instance of d′

contains: the members of d that belong to levels in X and
the roll-up functions ρl1→l2 of d involving levels in X .

Definition 2.5 (Aggregation) Let l be a level in L. The
aggregation ψl(d) of d over l is the dimension d′ such that:
(i) the scheme of d′ contains l, the levels of d to which l
rolls up, and the restriction of � to these levels, and (ii) the
instance of d′ contains: the members of d that belong to
levels in d′ and the roll-up functions ρl1→l2 of d involving
levels in d′.

For a DA expression E and a dimension d, we denote by
E(d) the dimension obtained by applying E to d.

Example 2.2 Let us consider the time dimension t1 of
the data mart in Figure 1 and let D2002 denote the days
that belong to year 2002. The DA expression E =
πday,month,year (σO2002

(t1)) generates a new dimension
with level day, month and year having as basic members
all the days of 2002 (see Figure 2).

Time
Dimension (t1)

day

month

year

week

time span: 2000-2003

Time
Dimension (E(t1))

day

month

year

time span: 2002

Figure 2. Application of a DA expression

The following is a desirable property of DA expressions.

Definition 2.6 (Lossless expression) A DA expression E
over a dimension d is lossless if for each member o in E(d),
all the members that roll up to o in d belong to E(d).

In [5] we have shown that the satisfaction of this property
prevents inconsistencies between aggregations over d and
aggregations over E(d).

DA expressions involving only projections and aggrega-
tions are always lossless [5]. On the other hand, if a DA
expression involves selections, the lossless property can fail
to hold: it depends on the particular sets of elements chosen
to perform the selections.

3 Matching autonomous dimensions

In what follows, d1 and d2 denote two dimensions, be-
longing to different data marts, having scheme S(di) =
(Li,�i) and instance I(di) = (mi, ρi), respectively.

3.1 Dimension matching and its properties

Let us start with the basic notion of dimension matching.

Definition 3.1 (Dimension Matching) A matching be-
tween two dimensions d1 and d2 is a (one-to-one) injective
partial mapping µ between L1 and L2.

With a little abuse of notation, given a matching µ, we will
denote by µ also its inverse. We also extend µ to sets of
levels in the natural way (that is, µ(L) is the set containing
µ(l) for each level l in L). Also, we will assume that µ is
the identity on the levels on which it is not defined.

A number of desirable properties can be defined over a
matching between dimensions.

Definition 3.2 (Matching Properties) Let µ be a match-
ing between two dimensions d1 and d2. Then:

• Coherence: µ is coherent if, for each pair of levels
l, l′ of d1 on which µ is defined, l �1 l′ if and only if
µ(l) �2 µ(l′);
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Figure 3. A matching between two dimen-
sions

• Soundness: µ is sound if, for each level l ∈ L1 on
which µ is defined, m1(l) = m2(µ(l));2

• Consistency: µ is consistent if, for each pair of lev-
els l �1 l′ of d1 on which µ is defined, ρl→l′

1
=

ρ
µ(l)→µ(l′)
2

.

A total matching that is coherent, sound and consistent is
called a perfect matching.

Note that coherence means order preservation, sound-
ness means member set preservation, and consistency
means roll-up functions preservation.

Example 3.1 Figure 3 shows an example of matching be-
tween two geographical dimensions that associates store
with shop, city with town, zone with area, and country with
state. The matching is coherent. If the mapped levels have
the same members it is also sound. Consistency follows
from the equivalence of the roll-up functions between lev-
els.

Clearly, a perfect matching is very difficult to achieve in
practice. In many cases however, autonomous dimensions
actually share some information. To identify this common
information, we need the ability to select a portion of a di-
mension. This comment leads to the following definition.

Definition 3.3 (Dimension Compatibility) Two dimen-
sions d1 and d2 are compatible if there exist two lossless
DA expressions E1 and E2 over d1 and d2, respectively,
such that there is a perfect matching between E1(d1) and
E2(d2). In this case we say that d1 and d2 are compatible
using E1 and E2.

The rationale underlying the definition of compatibility
is that: (i) two dimensions may have common information;

2Note that, for simplicity, we follow a conceptual approach, under
which two levels coincides if they are populated by the same real world
entities. In a logical approach this notion would be based on a bijection
between the identifiers representing the entities.

(ii) the intersection can be identified by DA expressions;
and (iii) lossless expressions guarantee the correctness of
OLAP operations over the intersection [5].

Example 3.2 The dimensional matching reported in Fig-
ure 3 can be made perfect by applying the following expres-
sions to d1 and d2:

πstore,city,zone,country(σm1(store)∩m2(shop)(d1)),

πshop,town,area,state(σm1(store)∩m2(shop)(d2)).

provided that the roll-up functions of the two dimensions
are consistent. If the original dimensions had basic mem-
bers in common and the selection over them made the two
expressions lossless, then they would be compatible.

3.2 Chase of dimensions

We now describe a procedure called d-chase (for chase of
dimensions) that applies to members of autonomous dimen-
sions and show that it can be used for integration purposes.

Let V be a set of variables and L = l1, . . . , lk be a set of
levels. A tableau T over L is a set of tuples t mapping each
level li to a member of li or a variable in V .

Now, let µ be a matching between two dimensions d1

and d2.

Definition 3.4 (Matching Tableau (MT)) The matching
tableau over d1, d2 and µ, denoted by Tµ[d1, d2], is a
tableau over L = L1

⋃
µ(L2) having a tuple tm for each

member m of a level l ∈ L such that:

• tm[l] = m,

• tm[l′] = ρl→l′(m), for each level l′ to which l rolls up,

• tm[l′′] = v, where v is a variable not occurring else-
where, for all other levels in L.

Example 3.3 A possible matching tableau for the matching
between dimensions in Figure 3 is the following.

store city zone country district state prov. region
1st NewYork v1 USA v2 NY v3 v4

2nd LosAng. U2 USA Melrose CA v5 v6

1er Paris E1 France Marais v7 v8 v9

1mo Rome E1 Italy v10 v11 RM Lazio
1st NewYork U1 USA v12 v13 v14 v15

1er Paris E1 France v16 v17 75 IledeFr

In this example, the first three tuples represent mem-
bers of d1 and the others members of d2. The first four
columns represent the matched levels and the other columns
represent levels of the two dimensions that have not been
matched. Note that a variable occurring in a tableau may
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represents an unknown value (for instance, in the first row,
the zone in which the store 1st is located, an information
not available in the instance of d1) or an inapplicable value
(for instance, in the last row, the district in which the store
1er is located, a level not present in the scheme of d2).

The d-chase (chase of dimensions) is a procedure in-
spired by an analogous procedure used for reasoning about
dependencies in the relational model [2]. This procedure
takes as input a tableau T over a set of levels L and gener-
ates another tableau that, if possible, satisfies a set of roll-
up functions ρ defined over the levels in L. This procedure
modifies values in the tableau, by applying chase steps. A
chase step applies when there are two tuples t1 and t2 in
T such that t1[l] = t2[l] and t1[l′] �= t2[l′] for some roll
up function ρl→l′ ∈ ρ and modifies the l′-values of t1 and
t2 as follows: if one of them is a constant and the other is
a variable then the variable is changed (is promoted) to the
constant, otherwise the values are equated. If a chase step
tries to identify two constants, then we say that the d-chase
encounters a contradiction, and the process stops generating
a special tableau that we denote by T∞ and call the incon-
sistent tableau.

Definition 3.5 (D-chase) The d-chase of a tableau T , de-
noted by DCHASEρ(T ), is a tableau obtained from T and a
set of roll-up functions ρ by applying all valid chase steps
exhaustively to T .

Example 3.4 By applying the d-chase procedure to the
matching tableau of Example 3.3 we do not encounter con-
tradictions and obtain the following tableau.

store city zone country district state prov. region
1st NewYork U1 USA v2 NY v3 v4

2nd LosAng. U2 USA Melrose CA v5 v6

1er Paris E1 France Marais v7 75 IledeFr
1mo Rome E1 Italy v10 v11 RM Lazio

The d-chase promotes, for instance, v1 to U1, and v8

to 75.

Note that in the d-chase procedure, a promotion of a vari-
able always corresponds to the detection of an information
present in the other dimension and consistent with the avail-
able information but not previously known.

An important result about the d-chase, which follows
from general properties of d-chase, is the following.

Lemma 3.1 The d-chase process terminates on any input
with a unique end result.

The following result states that the d-chase provides an
effective way to test for consistency.

Theorem 3.5 A matching µ between two di-
mensions d1 and d2 is consistent if and only if
DCHASEρ1∪µ(ρ2)(Tµ[d1, d1]) �= T∞.

We finally define a special operation over a tableau that
will be used in the following. Let T be a tableau over a set
of levels L and S = (L′,�) be the scheme of a dimension
such that L′ ⊆ L.

Definition 3.6 (Total projection) The total projection of
T over S, denoted by π↓

S(T ), is an instance (m, ρ) of S
defined as follows.

• for each level l ∈ L, m(l) includes all the members
occurring in the l-column of T .

• for each pair of levels l1, l2 in L such that l1 � l2 and
for each tuple t of T such that: (i) both the l1-value
and the l2-value are defined, and (ii) there is no other
tuple t′ in T such that t[l1] = t′[l1] and t[l2] �= t′[l2],
then ρl1→l2(t[l1]) = t[l2] and is undefined otherwise.

Let d be a dimension and µ a matching between d and any
other dimension d′. We can easily show the following.

Lemma 3.2 I(d) ⊆ π↓
S(d)

(DCHASEρ∪µ(ρ′)(Tµ[d, d′])).

This result states an interesting property of the chase that
goes beyond the test of consistency. If we apply the d-chase
procedure over a matching tableau that involves a dimen-
sion d and then project the result over the scheme of d,
we obtain the original instance and, possibly, some addi-
tional (and consistent) information that has been identified
in the other dimension. As noted above, this situation oc-
curs when, in a tuple for a member in d, the d-chase pro-
motes a variable to a member of the other dimension.

4 Two approaches to dimension integration

In this section we propose two different approaches to
the problem of the integration of autonomous data marts.

4.1 A loosely coupled approach

In a loosely coupled integration scenario, we need to
identify the common information between various data
sources and perform drill-across queries over the original
sources. Therefore, our goal is just to select data that is
shared between the sources. Thus, given a pair of dimen-
sions d1 and d2 and a matching µ between them, the ap-
proach aims at deriving two expressions that makes µ per-
fect. The approach is based on Algorithm 1, which is re-
ported in Figure 4.

First of all, the algorithm selects the levels L of d1 in-
volved in the matching µ (Step 1). Then, for each minimal
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Algorithm 1
Input: two dimensions d1 and d2 and a matching µ;
Output: two expressions E1 and E2 that make µ perfect;
begin
1) L := the levels of d1 involved in µ;
2) for each minimal level lm of L do
3) L := L − {l ∈ L such that lm ��1 l};
4) if there exist l1, l2 ∈ L such that

l1 �1 l2 and µ(l1) ��2 µ(l2)
then output ‘not coherent’ and exit;

5) E1 := πL(ψlm(d1)); E2 := πµ(L)(ψµ(lm)(d2));
6) M := m1(lm)

⋂
m2(µ(lm));

7) T := Tµ[σM (E1(d1)), σM (E2(d2))];
8) T := DCHASEρ1∪µ(ρ2)(T );
9) if T = T∞ then output ’not consistent’ and exit;
10) d1 := π↓

S(d1)
(T ); d2 := π↓

S(d2)
(T );

11) for each non basic member m ∈ m1,2(l) in T do
12) if ∃ m′ ∈ m1,2(l

′) such that l′ �1,2 l and
ρl′→l
1,2 (m′) = m and m′ does not occur in T

then T := T − {t | t[l] = m}
13) M := {m | t[lm] = m for some t ∈ T};
14) E1 := σM (E1(d1)); E2 := σM (E2(d2));
15) output E1 and E2;

endfor
end

Figure 4. An algorithm for deriving the com-
mon information between two dimensions.

level lm in L (that is, for which there is no other level l ∈ L
such that l �1 lm), it selects only the levels to which lm
rolls up (Step 3). The rationale is to find the expressions that
detect the intersection of d1 and d2 in the levels above lm. If
there are several minimal levels, the algorithm iterates over
all of them (Step 2) thus possibly generating several pairs
of expressions.

Step 4 consists of testing for coherence of the matching
according to Definition 3.2. Actually, this test can be done
efficiently by taking advantage of the transitivity of �.

In Step 5 two preliminary expressions E1 and E2 are
identified: they aggregate over lm (µ(lm)) and project over
L (µ(L)). Since no selection is involved, by a result in [5],
these expressions are lossless.

The rest of the algorithm aims at finding the selection
of members that, applied to E1 and E2, identifies common
data in the two dimensions. This is done by building a
matching tableau over the members that occur both in lm
and µ(lm) (Steps 6 and 7) and then chasing it (Step 8). Ac-
cording to Theorem 3.5, this corresponds to a test of consis-
tency for the restriction of µ to the levels in L.

As we have noticed at the end of Section 3, when the
d-chase promotes a variable to a member, this means that a
previously unknown value in one dimension has been iden-

Dimension E2(d2)Dimension E1(d1)

store

city

zone

country

shop

town

area

state

Figure 5. The dimensions generated by Algo-
rithm 1 on the matching in Figure 3

tified in the other dimension. To preserve soundness, this
event asks for the addition of this member in the original
dimension: this is implemented by Step 10.

Steps 11 and 12 serves to identify, from the members oc-
curring in the working tableau T , all the members that in-
validate the property of lossless expression (Definition 2.6).
Finally, all the members that still occur in T at level lm are
used to perform the final selection (Steps 13 and 14).

Example 4.1 Let us consider the application of Algorithm
1 to the dimensions and the matching in Figure 3, as-
suming that that the dimensions are populated by the
members of Example 3.3. Since the matching involves
the bottom levels of the two dimensions, no aggregation
is required and the first part of the algorithm generates
the following expressions: πstore,city,region,country(d1) and
πshop,town,area,state(d2). The intersection of the basic
members contains only the stores 1st and 1er and so the
d-chase produces the following tableau:

store city zone country district state prov. region
1st NewYork U1 USA v2 NY v3 v4

1er Paris E1 France Marais v7 75 IledeFr

This tableau contains the member E1 at the zone level to
which a member of d2 rolls up (the store 1mo), but is not
present in the tableau. It follows that in Step 12 the second
row is deleted and we obtain as output of the algorithm the
following final expressions:

σ{1st}(πstore,city,region,country(d1)),

σ{1st}(πshop,town,area,state(d2)).

The schemes of the dimensions we obtain by applying these
expressions to the original dimensions are reported in Fig-
ure 5.

By construction, and according to the results of the pre-
vious section, we can state the following.

Theorem 4.2 The execution of Algorithm 1 over two di-
mensions d1 and d2 and a matching µ between them returns
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Algorithm 2
Input: two dimensions d1 and d2 and a matching µ;
Output: a new dimension d that embeds d1 and d2;
begin
1) L := the levels of d1 involved in µ;
2) if there exist l1, l2 ∈ L such that

l1 �1 l2 and µ(l1) ��2 µ(l2)
then output ‘not coherent’ and exit;

3) L := L1

⋃
µ(L2);

4) �:= (�1

⋃
µ(�2))

+;
5) if � has several minimal levels

then
6) d′

1 := d1 augmented with a new bottom level ⊥′
1;

7) d′
2 := d2 augmented with a new bottom level ⊥′

2;
8) µ′ := µ

⋃{(⊥′
1,⊥′

2)};
9) L := L

⋃⊥′
1;

10) �:= (�′
1

⋃
µ(�′

2))
+;

else d′
1 := d1; d′

2 := d2; µ′ := µ;
11) T := DCHASEρ′

1∪µ(ρ′
2)(Tµ′ [d′

1, d
′
2]);

12) if T = T∞ then output ’not consistent’ and exit;
13) d := π↓

(L,�)(T );
14) output the dimension d;
end

Figure 6. An algorithm for merging two dimen-
sions.

two expressions E1 and E2 if and only if d1 and d2 are com-
patible using E1 and E2.

The most expensive step of the algorithm is the d-chase
that requires time polynomial with respect to the size of the
tableau, which in turn depends on the cardinality of the di-
mensions involved. It should be said however that the size
of dimensions in a data warehouse is much smaller than the
size of the facts. Moreover, the content of a dimension is
usually stable in time. It follows that the algorithm can be
executed off-line and occasionally, when it arises the need
for integration or when changes on dimensions occur.

4.2 A tightly coupled approach

In tightly coupled integration, we want to build a mate-
rialized view combining different data sources and perform
queries over this view. Our goal is the derivation of new di-
mensions obtained by merging the dimensions of the origi-
nal data sources. In this case, given a pair of dimensions d1

and d2 and a matching µ between them, the integration tech-
nique aims at deriving a new dimension obtained by merg-
ing the levels involved in µ and including, but taking apart,
all the other levels. The approach is based on Algorithm 2,
which is reported in Figure 6.

First of all, similarly to Algorithm 1, Algorithm 2 per-

forms a check for coherence of the input matching. If the
test is successful, it then builds a new (preliminary) dimen-
sion scheme S = (L,�) by merging the levels (Step 3)
and the roll-up relations between levels (Step 4) of the in-
put dimensions. For the latter, we need to guarantee that
the relation we obtain is a partial order. Irreflexivity and
asymmetry follow by the coherence of the matching. To en-
force transitivity, the transitive closure is computed over the
union of the two roll-up relations.

Next step takes into account the special case in which the
relation � we obtain has more than one minimal level. In
this case, in Steps 6 and 7, two new auxiliary bottom lev-
els ⊥′

1
and ⊥′

2
are added below the original bottom levels

⊥1 and ⊥2 of d1 and d2, respectively (clearly, this can be
done without actually modifying the original dimensions).
These levels have as members copies of the basic members
of ⊥1 and ⊥2, suitably renamed so that the intersection of
the two sets of copies is empty. Then, two new roll-up func-
tions ρ⊥

′
1→⊥1 and ρ⊥

′
2→⊥2 mapping each copy to the corre-

sponding member are added to the instances of the dimen-
sions. Finally, the map (⊥′

1
,⊥′

2
) is added to µ (Step 8) and

the scheme S = (L,�) is modified accordingly (Steps 9
and 10). All of this guarantees the uniqueness of the bottom
level for L without generating undesirable inconsistencies.

A matching tableau is then built on the (possibly modi-
fied) dimensions and a d-chase procedure is applied to the
tableau (Step 11). If no contradiction is encountered (which
corresponds to a test for consistency), the total projection of
the resulting tableau over the scheme S generates the output
dimensions (Steps 12 and 13).

Example 4.3 Let us consider again the matching between
dimensions in Figure 3 but assume that the level store does
not map to the level shop. This means that the correspond-
ing concepts are not related. It follows that the union of the
schemes of the two dimensions produces two minimal levels.
Then, the application of Algorithm 2 to this matching intro-
duces two bottom levels below store and shop. The scheme
of the dimension generated by the algorithm is reported in
Figure 7. If the dimensions are populated by the member
of Example 3.3, the output instance contains all the mem-
bers occurring in the chased matching tableau reported in
Example 3.4.

We say that a dimension d embeds another dimension d′

if there exists a DA expression E such that E(d) = d′. By
construction and on the basis of the discussion above, we
can state the following result.

Theorem 4.4 The execution of Algorithm 2 over two di-
mensions d1 and d2 and a matching µ between them returns
a new dimension d embedding both d1 and d2.

Again, the complexity of the algorithm is bounded by the
d-chase procedure that requires polynomial time in the size

211



New Store
Dimension (d)

zone

province

region

province

region

country

store

district

city

state

store and shop

shop

Figure 7. The dimension generated by Algo-
rithm 2 on a variant of the matching in Figure 3
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Figure 8. Weather data mart

of the dimensions involved. Hence, we can make for this
algorithm the same considerations done for Algorithm 1.

5 Data mart integration

In this section we discuss, by means of some examples,
how the techniques described in Section 4 can be used in
data warehouse integration.

Drill-across queries have the goal of combining and cor-
relating data from multiple data marts, and are especially
useful to perform value chain analysis [9]. These queries are
based on joining different data marts over common dimen-
sions [9]. Since join operations combine relations on the
basis of common data, the existence of shared information
between data marts is needed in order to obtain meaningful
results.

The loosely coupled approach supports drill-across
queries between data marts, in that it aims at identifying
the intersection between their dimensions. Actually, the
proposed algorithm also checks for the quality of such in-
tersection; in particular, dimension compatibility (e.g., the

day

month

year

time of day

weather station

city

state

store

city

state

day

month

year

week

Figure 9. A matching between time and loca-
tion dimensions

existence of a “perfect” intersection). As discussed in [5],
this is a necessary condition for obtaining meaningful re-
sults when aggregations must be computed over data marts.

Assume, for instance, that we wish to integrate the Sales
data mart reported in Figure 1 with the data mart storing
weather information reported in Figure 8, in order to cor-
relate sales of products with weather conditions. The in-
tegration between these data sources can be based on the
matchings between the time (t1 and t2) and the location di-
mensions (s1 and ws2) as indicated in Figure 9.

The application of Algorithm 1 to this input checks for
compatibility of dimensions and returns the following pairs
of expressions. The first two expressions select the mem-
bers in common in the time dimensions:

πday,month,year (σdayt1∩dayt2
(t1)),

ψday(σdayt1∩dayt2
(t2)).

where dayt1∩dayt2 denotes the days in common that make
the matching between t1 and t2 perfect. The other pair of
expressions select the members in common in the location
dimensions:

ψcity(σcitys1∩cityws2
(s1)).

ψcity(σcitys1∩cityws2(ws2)).

where citys1 ∩ cityws2 denotes the cities in common that
make the matching between s1 and ws2 perfect.

It turns out that we can join the two data marts to ex-
tract daily and city-based data, but hourly or store-based
data can not be computed. Moreover, if we apply the above
expressions to the underlying dimensions before executing
the drill-across operation we prevent inconsistencies in sub-
sequent aggregations over the result of the join. It follows
that drill-across queries can be defined over the virtual view
shown in Figure 10.

The tightly coupled approach aims at combining data
from different dimensions, intuitively, by computing their
union rather than their intersection. This can be useful when
we need to reconcile and merge two data marts that have
been developed independently.

Consider again the example above. If we apply Al-
gorithm 2 over the time and location dimensions and the
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Figure 11. A materialized view over the
merged dimensions

matchings in Figure 9, we generate two new dimensions
that can be materialized and used for both data marts. We
can then refer to the homogenous scheme reported in Fig-
ure 11 to perform drill-across queries.

Another application of the second approach is when we
wish to extend local dimensions with data from external di-
mensions, but ignoring remote factual data, to extend local
querying capabilities. For instance, to specify further selec-
tions and groupings (as suggested in [14]).

For example, consider again the Sales data mart. It could
be integrated with an external and more sophisticated loca-
tion dimension to select, for instance, sales in cities having
more than 100.000 inhabitants.

6 Conclusion

We have proposed in this paper a number of concepts
and techniques for the integration of heterogeneous multi-
dimensional databases. We have first addressed the prob-
lem from a conceptual point of view, by introducing the de-
sirable properties of coherence, soundness and consistency
that “good” matchings between dimensions should enjoy.

Figure 12. A prototype of the system

We have then presented two practical approaches to the
problem that refer to the different scenarios of loosely and
tightly coupled integration. We have shown that, if possi-
ble, both approaches guarantee the fulfillment of the above
properties. To this end, we have introduced a practical tool,
the chase of dimensions, that can be effectively used in both
approaches to compare the content of the dimensions to in-
tegrate.

To test our approach, we have designed and developed
the first release of an interactive tool for the integration
of multidimensional databases, called DaWaII (for Data
Warehouse IntegratIon), that implements the proposed tech-
niques. Specifically, this tool is able to: (i) access data
marts stored in a variety of systems (DB2, Oracle, SQL
Server, among others); (ii) extract from these systems meta-
data describing cubes and dimensions and translate these
descriptions in MD format; (iii) specify by means of a
graphical interface matchings between autonomous dimen-
sions; (iv) test for coherence, consistency, and soundness
of matchings; (v) generate the intersection between two di-
mensions, according to the loosely integration approach;
and (vi) merge two dimensions, according to the the tightly
integration approach. An hint of the graphical interface pro-
vided by this tool is reported in Figure 12.

We believe that the techniques presented in this paper
can be generalized to much more general contexts in which,
similarly to the scenario of this study, we need to integrate
heterogenous sources and we possess a taxonomy of con-
cepts that describe their content. As a matter of fact, we
note that dimensions have structural and functional simi-
larities with ontologies, which provide descriptions of con-
cepts in a domain and are used to share knowledge. It turns
out that some of the notions and the techniques presented
here can provide a contribution to the problem of integrat-
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ing generic information sources using ontologies. This is
subject of current investigation.
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Abstract

Similarity-based querying of time series data can be
categorized as pattern existence queries and shape match
queries. Pattern existence queries find the time series data
with certain patterns while shape match queries look for the
time series data that have similar movement shapes. Exist-
ing proposals address one of these or the other. In this pa-
per, we propose multi-scale time series histograms that can
be used to answer both types of queries, thus offering users
more flexibility. Multiple histogram levels allow querying
at various precision levels. Most importantly, the distances
of time series histograms at lower scale are lower bounds
of the distances at higher scale, which guarantees that no
false dismissals will be introduced when a multi-step filter-
ing process is used in answering shape match queries. We
further propose to use averages of time series histograms
to reduce the dimensionality and avoid computing the dis-
tances of full time series histograms. The experimental re-
sults show that multi-scale histograms can effectively find
the patterns in time series data and answer shape match
queries, even when the data contain noise, time shifting and
scaling, or amplitude shifting and scaling.

1 Introduction
Similarity-based time series data retrieval has been stud-

ied in the database and knowledge discovery communities
for several years, due to its wide use in various applications,
such as financial data analysis [26], content-based video re-
trieval [17], and musical retrieval [28]. Typically, two types
of queries on time series data are studied: pattern existence
queries [2, 18, 19], and shape match queries [1, 6, 10].

In pattern existence queries, users are interested in the
general pattern of time series data and ignore the specific
details. For example,“Give me all the temperature data of
patients in last 24 hours that have two peaks”.

The example query is used to detect “goalpost fever”,
one of the symptoms of Hodgkin’s disease, in the tempera-
ture time series data that contain peaks exactly twice within
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Figure 1. A pattern existence query on two peaks

24 hours [19]. Figure 1(a) shows an example time series
with two peaks. Using this as query data, a two peaks exis-
tence query should retrieve various time series that contain
two peaks as shown in Figure 1(b). Therefore, for pattern
existence queries, the important thing is the existence of the
specified pattern in time series data, regardless of where the
pattern appears and how it appears.

The retrieval techniques for pattern existence queries
should be invariant to the following:

• Noise. In Figure 2(a), two similar time series R and S
are shown. Point 3, which is likely a noise data point,
will introduce a large difference when Euclidean dis-
tance is computed between two time series, possibly
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Figure 2. The different factors that may affect the similarity between two time series

causing them to be treated as dissimilar.
• Amplitude scaling and shifting. In Figure 2(b), the

two time series R and S are similar in terms of the
pattern that they contain (they both have the “two bot-
tom” pattern), but their amplitudes are different (in
fact, R = aS + b where a and b are scaling factor
and shifting factor, respectively).

• Time shifting. In Figure 2(c), time series R and S
record the same event (e.g. temperature data) but from
different starting times; shifting R to the left on the
time axis can align the shape with S. R and S are
considered dissimilar if they are simply compared by
the respective positions of the data points. However,
it can be argued that R and S are similar because they
contain the same pattern (“two peaks”).

• Time scaling. In Figure 2(d), time series R and S have
different sampling rates. However, both R and S con-
tain “two peaks”.

Several approximation approaches have been proposed
to transform time series data to character strings over a
discrete alphabet and apply string matching techniques to
find the patterns [2, 18, 19]. However, the transformation
process is sensitive to noise. Furthermore, because of the
quantization of the value space for transforming time series
data into strings, data points located near the boundaries of
two quantized subspaces may be assigned to different al-
phabets. As a consequence, they are falsely considered to
be different by string comparison techniques.

For shape match queries, users are interested in retriev-
ing the time series that have similar movement shapes to the
query data, e.g. “Give me all stock data of last month that
is similar to IBM’s stock data of last month”. As shown in
Figure 3, we are looking for the stock data within the bound-
aries that are described by two dashed curves. Most of the
previous work focused on solving these types of queries,
by applying distance functions such as Euclidean distance
[1, 6, 10], DTW [3, 27] and LCSS [4, 22] to compute the
distance between two data sequences.

There exist applications that require answers from both
types of queries. An example is an interactive analysis of
time series data. Users may be initially interested in retriev-
ing all the time series data that have some specific pattern

that can be quickly answered by pattern existence queries.
They can then apply shape match queries to these results to
retrieve those that are similar to a time series that is of in-
terest. However, there are no techniques that have been de-
veloped to answer both pattern existence queries and shape
match queries. Of course, two different techniques used to
answer pattern existence queries and shape match queries
can be applied to these applications together; however, dif-
ferent types of representation (e.g. symbolic representa-
tion and raw representation), distance functions (e.g. string
matching and Euclidean distance), and indexing structures
(e.g. suffix tree and R*-tree) will require storing redundant
information and cause difficulties in improving the retrieval
efficiency.
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Figure 3. A query example on stock time series data

In this paper, based on the observation that data distribu-
tions can capture patterns of time series data, we propose a
multi-scale histogram-based representation to approximate
time series data that is invariant to noise, amplitude shift-
ing and scaling, and time shifting and scaling. The his-
togram representation can answer both pattern existence
queries and shape match queries, while multiple scales offer
users flexibility to search time series data with different pre-
cision levels (scales). The cumulative histogram distance
[20], which is closer to perceptual similarity than L 1-norm,
L2-norm, or weighted Euclidean distance, is used to mea-
sure the similarity between two time series histograms. We
prove that distances of lower scale time series histograms
are lower bounds of higher scale distances, which guar-
antees that using multi-step filtering process in answering
shape match queries will not introduce false dismissals. In
order to reduce the computation cost in computing the dis-
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tances of full time series histograms, we use the distances
between averages of time series histograms as the first step
of the filtering process, since the distances between aver-
ages are lower bounds of distances of time series histograms
at scale 1. We investigate two different approaches in con-
structing histograms: equal size bin and equal area bin. The
experimental results show that our histogram-based repre-
sentation, together with the cumulative histogram distance
measure, can effectively capture the patterns of time series
data as well as the movement shapes of time series data.
Finally, We compare our representation with another multi-
scale representation, namely wavelets, and conclude that
wavelets are not suitable to answer pattern existence queries
and are not robust to time shifting when used to answer
shape match queries.

The rest of the paper is arranged as follows: Section 2
presents, as background, concepts of time series histograms
and two variations of them. We present multi-scale time
series histograms in Section 3. In Section 4, we present ex-
perimental results using multi-scale time series histograms
on finding patterns and answering shape match queries, fol-
lowed, in Section 5, by a comparison of our representation
with wavelet. Related work are addressed in Section 6. We
conclude in Section 7 and indicate some further work.

2 Time Series Histograms
A time series R is defined as a sequence of pairs, each of

which shows the value (ri) that is sampled at a specific time
denoted by a timestamp (ti): R = [(r1, t1), . . . , (rN , tN )]
where N , the number of data points in R, is defined as the
length of R. We refer to this sequence as the raw represen-
tation of the time series data.

Given a set of time series data D = {R1, R2, . . . , RL},
each time series Ri is normalized into its normal form using
its mean (µ) and variance (σ) [8]:

Norm(R) = [(t1,
r1 − µ

σ
), . . . , (tN ,

rN − µ

σ
)] (1)

The similarity measures computed from time series normal
form are invariant to amplitude scaling and shifting.

Time series histograms are developed in the follow-
ing way. Given the maximum (maxD) and minimum
(minD) values of normalized time series data, the range
[minD,maxD] is divided into τ disjoint equal size sub-
regions, called histogram bins. Given a time series R, its
histogram HR can be computed by counting the number of
data points hi (1 ≤ i ≤ τ ) that are located in each histogram
bin i: HR = [h1, . . . , hτ ].

We normalize the time series histogram by dividing the
value of each histogram bin by the total number of data
points in the time series. Since a time series histogram is
computed from the normal form of a time series, the dis-
tance that is computed from two time series histograms are

invariant to amplitude scaling and shifting. Furthermore,
because time series histograms ignore the temporal infor-
mation, they are also robust to time shifting and scaling.
For example, in Figures 2(c) and 2(d), the histogram of nor-
malized R are similar to that of S. Moreover, since time
series histograms show the whole distribution of the data,
and noise only makes up a very small portion, comparisons
based on histograms can remove the disturbance caused by
noise. Therefore, time series histograms are ideal represen-
tations for answering pattern existence queries.

L1-norm or L2-norm [21] can be used to measure the
similarity between two histograms. However, these do not
take the similarity between time series histogram bins into
consideration, which may lead to poor comparison results.
Consider three histograms HR, HS and HT representing
three time series of equal length. Assume that HR and HS

have the same value on consecutive bins and HT has the
same value in a bin which is quite far away from the bins
of HR and HS . L1 and L2-norm distances between any two
of these three histograms are equal. However, for answer-
ing shape match queries, HR is closer to HS than it is to
HT . Even for pattern existence queries, data points which
are located near the boundary of two histogram bins should
be treated differently compared to those points that are far
apart, which is not considered by L1-norm and L2-norm.

A weighted Euclidean distance can be used to com-
pute the distance between two histograms [9]. Given two
time series R and S, the weighted Euclidean distance
(WED) between their time series histograms HR and HS

is:WED(HR,HS) = ZT AZ where Z = (HR−HS), ZT

is the transpose of Z, and A = [aij ] is a similarity matrix
whose element aij = 1−|j−i|/τ (where τ is the number of
bins) denotes similarity between two time series histogram
bins i and j. As aij gets larger, bins i and j become more
similar.

Compared to L1-norm and L2-norm, WED underesti-
mates distances because it tends to estimate the similarity
of data distribution without a pronounced mode [20].

Cumulative histogram distances [20] overcome the
shortcomings of L1-norm, L2-norm and WED, the similar-
ity that is measured by cumulative histogram distance is
closer to the perceptual similarity of histograms. There-
fore, we use this distance function to measure the similar-
ity between two time series histograms. Given a time se-
ries R and its time series histogram HR = [h1, h2, . . . , hτ ],
where τ is the number of bins, the cumulative histogram of
R is:ĤR = [ĥ1, ĥ2, . . . , ĥτ ] where ĥi =

∑
j≤i hj . Given

two cumulative histograms ĤR and ĤS of two time series
R and S, respectively, the cumulative histogram distance
(CHD) is defined as:

CHD(ĤR, ĤS) =
√

ẐT Ẑ (2)

where Ẑ = (ĤR − ĤS).
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The algorithm for answering pattern existence queries
using CHD is then simple. For each Ĥi of Ri, if
CHD(Ĥi, Ĥ) ≤ ε, then Ri is in the result set (ε is a match-
ing threshold). Later, we experimentally compare the effec-
tiveness of WED and CHD in answering pattern existence
queries. In this algorithm, a matching threshold (ε) has to
be set to determine whether the examined time series con-
tains a pattern similar to that of the query time series. In
our experiments, we find a suitable threshold based on the
histogram of the query time series.

So far, we defined a histogram with equal size bins.
However, values of time series data normally are not uni-
formly distributed, leaving a lot of bins empty. In such
cases, computing the distances between two time series his-
tograms that contain many zeros is not helpful to differenti-
ate the corresponding time series data.

It has been claimed [14] that distributions of most time
series data follow normal distribution, which we have also
verified on the data sets that we use in our experiments.
Consequently, instead of segmenting the value space into
τ equal size sub-regions, we segment the value space into
sub-regions (called sub-spaces) that have the same area size
under the normal distribution curve of that data. The bound-
ary of each subspace can be computed as follows. As-
suming that hi,l is the lower bound of subspace i and hi,u

is the upper bound:
∫ maxD

minD
p(x)dx =

∑∫ hi,u

hi,l
p(x)dx,

where p(x) is the normal distribution function, 1 ≤ i ≤ τ ,
h1,l = minD, and hτ,u = maxD. Even though we use the
normal distribution function to create equal area bin his-
togram bins, the idea can be easily extended to other data
distributions.

With equal area bin segmentation, we assign equal prob-
ability to each histogram bin into which data points of time
series fall. For example, for the “cameramouse” data that
we used in our experiment, the average filling ratio of 16
equal area bin histograms is about 98% (the filling ratio is
defined as the number of non-empty bins to the total num-
ber of bins). However, it is only 40% for the 16 bin equal
size bin histograms. In our experiments, we compare the
effectiveness of equal size bin histograms and equal area bin
histograms in terms of classification accuracy.

3 Multi-scale Histograms
The time series histograms, as defined in the previous

section, give a global view of the data distribution of time
series data. However, they do not consider the order of val-
ues in the sequence.

A multi-scale representation of a time series histogram
is designed for better discrimination of time series data
based on their order details to facilitate shape match queries.
Given a time series R of length N , it can be equally divided
into two segments, and each segment can be recursively di-
vided into two, and so on. For each segment, its time series

histogram can be computed and all these histograms form
the multi-scale time series histograms of R. The number of
levels (scales) is controlled by a single parameter, δ, that is
the precision level (i.e. scale) of the histogram. For δ = 1,
the histogram covers the entire time series, as defined in the
previous section. If further precision is required, one can set
δ > 1, which would segment the time series data into 2(δ−1)

equal length subsequences and histograms are computed for
each segment.

With multi-scale time series histograms, the shape match
queries can be answered at several precision levels. It has
to be guaranteed that similar time series at a higher scale
will be also identified as similar at a lower scale. In order to
guarantee this property, the cumulative histogram distance
must be formulated in such a way that the distance at the
lower scale is the lower bound of the distance at the higher
scale. The average of the cumulative histogram distances is
used as the result of comparison at scale δ, which, as proven
below, satisfies this property.
Definition 3.1 Given two time series data R and S, let their
δ ≥ 1 scale histograms be Hi

R,δ and Hi
S,δ , respectively.

where 1 ≤ i ≤ 2δ−1. The CHD at scale δ is:

CHDδ =

∑2δ−1

i=1 CHD(Ĥi
R,δ, Ĥ

i
S,δ)

2δ−1
(3)

where Ĥi
R,δ (Ĥi

S,δ) denotes the cumulative histograms of
ith segment of R (S) at scale δ.

Theorem 3.1 In a δ-level multi-scale time series his-
togram, if CHDl denotes the cumulative histogram dis-
tance between two time series histograms at scale l, then

CHDl−1 ≤ CHDl (4)

where 2 ≤ l ≤ δ.

We only prove the base case, which is CHD1 ≤ CHD2;
the general case can be proven by induction.
Proof. Given two time series data R and S, their
cumulative histograms at scale i (i ≥ 1) are de-
noted as: ĤR,i and ĤS,i, respectively. Then:

CHD1 =
√

(ĤR,1 − ĤS,1)T (ĤR,1 − ĤS,1) and

CHD2 = 1
2

∑2
i=1

√
(Ĥi

R,2 − Ĥi
S,2)T (Ĥi

R,2 − Ĥi
S,2).

Define ‖X‖ =
√

XT X and ‖X − Y ‖ =√
(X − Y )T (X − Y ), where X and Y are τ dimen-

sional vectors. Then, CHD1 = ‖ĤR,1 − ĤS,1‖ and
CHD2 = 1

2

∑2
i=1 ‖Ĥi

S,2 − Ĥi
R,2‖.

‖X + Y ‖ =

√√√√
n∑

i=1

(xi + yi)2

=

√√√√‖X‖2 + ‖Y ‖2 + 2
n∑

i=1

(xiyi)
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Using Cauchy’s inequality, which is

(
n∑

i=1

(xiyi))2 ≤
n∑

i=1

(xi)2
n∑

i=1

(yi)2 = ‖X‖2‖Y ‖2

we get
‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖ (5)

It is known that ĤR,1 = 1
2 (Ĥ1

R,2 + Ĥ2
R,2) and ĤS,1 =

1
2 (Ĥ1

S,2 + Ĥ2
S,2). Thus:

‖ĤR,1 − ĤS,1‖ = ‖1
2

2∑

i=1

(Ĥi
R,2)−

1
2

2∑

i=1

(Ĥi
S,2)‖

≤ 1
2

2∑

i=1

‖Ĥi
R,2 − Ĥi

S,2‖(from 5)

Therefore, CHD1 ≤ CHD2. ¤
As we stated earlier, time series histograms at higher

scales have better discrimination power; however, the com-
putation of CHD at higher scales is more expensive than
those at lower scales. Fortunately, with the lower bound
property of CHD at each scale (Theorem 1), when we need
to answer a shape match query at high scale l, instead of
directly computing the CHD at scale l,we can start com-
puting the CHD for each candidate time series at scale 1,
and then scale 2 and so on [13]. This multi-step filtering
strategy will not introduce false dismissals.

For both pattern existence queries and shape match
queries, directly comparing τ -dimensional time series his-
tograms is computationally expensive, even with the help of
multidimensional access methods such as the R-tree. Since
τ is higher than 12-16 dimensions, the performance of using
an indexing structure will be worse than that of sequential
scan [25]. Therefore, we use the averages of time series
cumulative histograms to avoid comparisons on full cumu-
lative histograms.

Definition 3.2 Given a time series R and its cumulative
histogram at scale level 1, ĤR,1 = [ĥR,1, ĥR,2, . . . , ĥR,τ ],
where τ is the number of histogram bins, the average of
cumulative histogram is:

Ĥavg
R,1 =

∑τ
i=1 ĥR,i

τ
(6)

Definition 3.3 Given two time series R and S, let ĤR,1 and
ĤS,1 be their cumulative histograms at scale level 1. The
distance between averages of cumulative histograms is:

ACHD =
√

τ(Ĥavg
R,1 − Ĥavg

S,1 )2 (7)

The averages of time series cumulative histograms are
one dimensional data, which means that a simple B+-tree

Procedure shape match queries{
/* An example time series Q, its δ levels cumulative histograms

a matching threshold ε, precision level δ*/
(1) for each average of cumulative histograms Ĥavg

i of Ri{
(2) compute ACHD between Ĥavg and Ĥavg

i
(3) if (ACHD ≤ ε) { /* need to check */
(4) insert the time series id i into the result list resultlist0

} /* end-if, line 3 */
} /* end-for, line 1 */

(5) j = 1
(6) do {
(7) for each i in resultlistj−1 {
(8) if (CHDj(Ĥi, Ĥ) ≤ ε){
(9) insert the time series id i into the result list resultlistj

} /* end-if, line 8 */
} /* end-for, line 7 */

(10) j = j + 1
(11) }while (j == δ + 1) or (resultlistj−1 is empty)
(12) if (resultlistj−1 is empty)
(13) return NULL
(14) else return the result list resultlistδ

}Figure 4. The algorithm for answering shape match
queries with multi-scale filtering

can be used to improve the retrieval efficiency. Moreover,
based on the definition of ACHD, the time series data re-
trieved by comparing ACHD are guaranteed to include all
the time series data that should be retrieved by comparing
cumulative histograms of time series data at scale 1. This is
stated in the following theorem.
Theorem 3.2 For any two τ -dimensional time series cumu-
lative histograms ĤR,1 and ĤS,1 at scale 1, ACHD ≤
CHD1.
Proof. Given two histograms of scale 1 ĤR,1 and
ĤS,1,CHD2

1 =
∑τ

i=1(ĥR,i − ĥS,i)2 and ACHD2 =
(
Pτ

i=1 ĥR,i−
Pτ

i=1 ĥS,i)
2

τ

Define X = ĤR,1 − ĤS,1, where xi = ĥR,i − ĥS,i

and 1 ≤ i ≤ τ . Therefore, the only thing that needs
to be proven is:

∑τ
i=1 x2

i ≥ (
Pτ

i=1 xi)
2

τ . According to
Arithmetic-Geometric Mean inequality:

(
∑τ

i=1 xi)2

τ
≤ (

∑τ
i=1(xi)2 +

∑τ−1
i=1

∑τ
i=1(xi)2)

τ

=
τ∑

i=1

(xi)2 ¤

Therefore, instead of directly computing the cumulative his-
togram distances, we can first compute the distance between
the averages of two time series cumulative histograms to
prune false alarms from the database. Averages can be con-
sidered as the first filter when we use multi-step filtering
to answer an shape match query at a higher scale l. The
algorithm for multi-step filtering is given in Figure 4. We
also show experimentally the pruning power of averages of
cumulative histograms.

4 Experiments and Discussion
In this section, we present the results of experiments that

we have conducted to evaluate the efficacy and robustness
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of the histogram-based similarity measure and the matching
algorithm. All programs are written in C and experiments
are run on a Sun-Blade-1000 workstation under Solaris 2.8
with 1GB of memory.

4.1 Efficacy and Robustness of Similarity Mea-
sures

Experiment 1. This experiment is designed to test how
well the cumulative histogram distances perform in finding
patterns in time series data. We first compare our approach
with Shatkay’s algorithm [19] on labelled time series data
sets: Cylinder-Bell-Funnel (CBF). In Shatkay’s algorithm,
first, a best fitting line algorithm is used to detect the move-
ment slope of segments of time series data. Then, the slope
of each line segment is mapped to a symbol according to
the predefined mapping tables and consecutive symbols are
connected together to form a string. Finally, a string match-
ing algorithm is used to find the matches between query
regular expression and the converted strings. Another re-
lated work [18] requires users to specify, in addition to the
pattern, the “unit length” (the length of time series data) in
which the specified pattern may appear. It is quite difficult
for users to know the “unit length” beforehand if they only
want to check for the existence of a pattern. Therefore, we
do not consider this one. The reason for using CBF data
set is that it contains very simple distinct patterns, allowing
a direct comparison of the techniques. The CBF data set
has three distinct classes of times series: cylinder, bell and
funnel. We generate 1000 CBF data sets with 100 examples
for each class. Since the general shape of bell and funnel
are treated as similar (both of them contain a peak), only
cylinder and bell data sets are used to test existence queries.

In order to test robustness of the similarity measures,
we added random Gaussian noise and time warping to both
data sets using a modified version of the program in [23].
The modification includes the addition of non-interpolated
noise and large time warping (20−30% of the series length)
since pattern existence queries only involve the existence of
a given pattern.

We use the first scale time series histograms to search
the patterns in the time series data. We generated another
“pure” CBF data set of size 150 as query data, where each
class contains 50 examples. The histograms are also com-
puted from the query data set. We use the well-known
precision and recall to measure our retrieval results. Pre-
cision measures the proportion of correctly found time se-
ries, while recall measures the proportion of correct time
series that are detected. In this experiment, we need to de-
termine the matching threshold. We tested several values
and found that half the cumulative histogram distance be-
tween the query histogram and an empty histogram gives
the best results. Besides using cumulative histogram dis-
tance, we also run the program with weighted Euclidean

distance to compare their effectiveness.
We run the query 50 times and average the results, as

shown in Table 1, where histogram experiments are parame-
terized by the number of bins. In these experiments, results
are reported as WED/CHD values. Even though Shatkay’s
approach achieves relatively high precision, its recall is very
low; this is the effect of noise. Our histogram-based ap-
proach (both WED and CHD) can achieve relatively high
precision and recall, which confirms that our approach is
suitable for answering pattern existence queries. From Ta-
ble 1, we also find that dividing the value space into too
many sub-regions (histogram bins) does not improve the re-
sults significantly; we can achieve reasonably good results
around 16 bins. As we expect, the results also show that
CHD performs better than WED, this is because WED over-
estimates neighborhood similarity.

Cylinder Bell
precision recall precision recall

Shatkay 81 44 75 31
his(8) 72/80 88/91 63/ 70 71/ 74
his(16) 72/81 90/92 78/ 84 80/ 85
his(32) 75/81 88/90 79/ 85 85/ 87
his(64) 72/80 88/90 79/ 83 85/ 88

Table 1. Comparison on pattern existences queries

Experiment 2. This experiment is designed to check
the effectiveness and robustness of multi-scale histograms
in answering shape match queries. According to a recent
survey on time series data [11], the efficacy of a similarity
measure for shape match queries can be evaluated by classi-
fication results on labelled data sets. We compare the clas-
sification error rates in results produced by CHD to those of
DTW and LCSS by evaluating them on the Control-Chart
(CC) data set. The comparison is done against DTW and
LCSS because these two can also handle time shifting or
noise disturbances. The classification error rate is defined
as a ratio of the number of misclassified time series to the
total number of the time series. There are six different
classes of control charts. Each class contains 100 exam-
ples. We later tested our techniques using more complicated
data sets. We added non-interpolated noise and time warp-
ing (10 − 20% of the series length) to test the robustness
of cumulative histogram distance in answering shape match
queries. For simplicity, we carried out a simple classifica-
tion using 1-Nearest Neighbor with three similarity mea-
sures and checked the classification results using the “leave
one out” verification mechanism.1

We repeat the experiment on all the time series of CC

1The “leave one out” verification mechanism takes one sample data
from a class and finds a nearest neighbor of the data in the entire data set
by applying a predefined distance metric. If the found nearest neighbor
belongs to the same class as the sample data, it is a hit, otherwise, it is a
miss.
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data set. The error rates using DTW and LCSS are 0.12
and 0.16, respectively. It has been claimed that LCSS is
more accurate than DTW [22]. However, our experiments
could not replicate this result. The possible reason for this
discrepancy is the difference in the choice of the matching
threshold value. We report comparable results using the cu-
mulative histogram distances in Table 2. We run the experi-
ment with different number of bins (τ ) and scales (δ) using
CHD on time series histograms with equal size bin.

Comparing the error rates of DTW (0.12), LCSS (0.16)
and those of Table 2, we observe that CHD performs better
than the other two similarity measures in answering shape
match queries. From Table 2, we find an interesting fact
that very high scales (i.e., high values of δ) may lead to
worse classification results. This is because the higher the
scale, the more temporal details will be involved in com-
puting CHD, and this causes time series histograms at that
scale to be more sensitive to time shifting and scaling. An-
other fact demonstrated in Table 2 is that higher number of
bins may not lead to more accurate classification results.
This is because as the number of bins increases, more de-
tailed information will be captured in time series histogram,
including noise. These characteristics of multi-scale time
series histograms exactly fit our needs, since they suggest
that we only need to check the first few scale histograms
with small number of histogram bins. However, the im-
provements over DTW or LCSS as reported in Table 2 are
modest, especially for the first few scale histograms.

number of bins τ

scale δ 8 16 32 64
1 0.62 0.59 0.56 0.53
2 0.22 0.16 0.12 0.13
3 0.14 0.10 0.11 0.11
4 0.20 0.13 0.14 0.15
5 0.24 0.19 0.20 0.20

Table 2. Error rates with equal size bin histograms

To better understand these results, we investigated the
filling ratio of equal size bin histograms. We found that
nearly 50% of the bins are empty! Consequently, CHD be-
tween two time series histograms is not able to distinguish
them properly, since most of the bins are identical! There-
fore, we run the same experiment with equal area bin his-
tograms. Table 3 reports the results.

number of bins τ

scale δ 8 16 32 64
1 0.15 0.11 0.12 0.13
2 0.10 0.08 0.07 0.06
3 0.07 0.05 0.06 0.06
4 0.10 0.08 0.08 0.09
5 0.18 0.15 0.17 0.17

Table 3. Error rates with equal area bin histograms

The results of Tables 2 and 3 demonstrate that the im-
provement when equal area bin is used is nearly 2 times for
CC data! The filling ratio of time series histogram is around
80%. Table 3 also shows that using only the first few scales
(e.g. δ = 3), provides reasonably high accuracy.

Experiment 3. In this experiment, we test the match-
ing accuracy of multi-scale time histograms versus DTW
and LCSS on classifying time series data with more compli-
cated shapes. Classifying these types of time series requires
matching on temporal details of the data. We evaluate CHD,
DTW and LCSS by two labelled trajectory data sets that are
generated from the Australian Sign Language (ASL)2 data
and the “cameramouse” [7] data. Only x positions are used
for both data sets. We first select a “seed” time series from
each of the two data sets and then create two additional data
sets by adding interpolated Gaussian noise and small time
warping (5-10% of the time series length) to these seeds
[23]. The ASL data set from UCI data consists of sam-
ples of Australian Sign Language signs. Various parameters
were recorded as a signer was signing one of 95 words in
ASL. We extracted one recording from each of 10 words3.
The “cameramouse” data set contains 15 trajectories of 5
words (3 for each word) obtained by tracking the finger tip
as people write various words. We use all the trajectories of
each word as the seeds. The data set that is generated from
seeds of “cameramouse” contains 5 classes and 30 exam-
ples of each class, while the one from ASL seeds contains
10 classes and each class has 10 examples. We use the same
classification and verification algorithms as in the second
experiment. Based on the observation of the second experi-
ment, we use time series histogram with equal area bin. The
error rate of using DTW for ASL and “cameramouse” was
0.11 and 0.08, respectively. Comparable values for LCSS
were 0.29 and 0.30. Table 4 reports the error rates of CHD.

Table 4 shows that CHD again achieves better classifi-
cation result. For both data sets, CHD can achieve 0 error
rate. A surprising observation is that even at lower scales
(e.g. δ = 2), CHD can achieve better results than DTW
and LCSS. Through the investigation of the filling ratios
of both histograms, we find that the number of empty bins
only accounts for less than 5% of the total number of bins.
The standard deviations of both data sets are also very high
with respect to their mean values, which indicates that data
points are widely spread in their value space. Compared
with results of the second experiment, we conclude that
CHD on time series data whose data points are widely dis-
tributed in their value space (higher histogram filling ratio)
can achieve better classification accuracy at lower scales.

2http://kdd.ics.uci.edu
3“seed” time series of ASL data: “Norway”, “cold”, “crazy”, “eat”,

“forget”, “happy”, “innocent”, “later”, “lose” and ‘spend”[23].
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ASL DATA Cameramouse DATA
number of bins τ number of bins τ

scale 8 16 32 64 8 16 32 64
1 0.12 0.11 0.12 0.12 0.13 0.13 0.07 0.07
2 0.06 0.05 0.04 0.04 0.04 0.03 0.02 0.02
3 0.06 0.06 0.04 0.04 0.03 0.02 0.02 0.02
4 0.03 0.04 0.04 0 0.04 0.01 0 0.01
5 0.06 0.06 0.04 0.02 0.04 0.04 0.02 0.04

Table 4. Error rates using CHD on time series histograms with equal area bin

4.2 Efficiency of Multi-Step Filtering

Experiment 5. Theorem 1 in Section 3 established that
multi-step filtering using multi-scale time series histograms
will not introduce false alarms. However, the question re-
mains as to how many histogram comparisons are saved us-
ing multi-step filtering? We use a real stock data set that
contains 193 company stocks’ daily closing price from late
1993 to early 1996, each consisting of 513 values [24]. We
use each time series as a “seed” and create a new data set by
adding interpolated Gaussian noise and small time warping
(2-5% of the time series length) to each seed. The new data
set contains 1930 time series (each seed is used to create
10 new time series). We randomly select a time series and
conduct a range query at precision level 4. We compute the
number of comparisons that are needed for searching using
only level 4, using level 1 and then jumping to 4, and us-
ing all 4 levels on different range thresholds. We run the
experiments 100 times and the average results are reported
in Table 5. Step-by-step filtering is clearly the best strategy

level 1 only level 1 and level 4 all 4 levels
ε = 0.5 11580 13498 17190
ε = 0.2 11580 12760 7590
ε = 0.1 11580 6838 3668
ε = 0.05 11580 2356 2072

Table 5. Comparisons on different filtering approaches

to reduce the total number of comparisons for small thresh-
olds. For large thresholds, directly computing the distance
at a higher level is a better choice in terms of the number of
comparisons. However, large thresholds are not very useful
for finding the desirable results, since a larger portion of the
data in the database will be returned.

Experiment 6. The number of comparisons needed for
computing the histogram distance only relates to the CPU
computation cost. However, the I/O cost for sequentially
reading in the data files becomes a bottleneck as the data-
base size grows. If we can filter out the false alarms with-
out reading in the data files, a significant speed-up will be
achieved. For our time series histograms, we store their av-
erages separately from histograms. The distances between
the average cumulative histogram of query data and those of
stored data are first computed to remove the possible false
alarms. Therefore, the pruning power of average cumulative

histograms is quite important. The pruning power (P ) is de-
fined as the fraction of the database that must be examined
before we can guarantee that the nearest match to 1-Nearest
Neighbor query is found [10]. Figure 5 shows the pruning
power of CHD with 16 bins (based on the previous exper-
imental results, CHD can already achieve reasonable good
results when the histogram bin size is 16). Because “cam-
eramouse” and ASL data sets are small, we did not include
them in this experiment. Figure 5 demonstrates that using
the distance of average time series histograms, we can re-
move nearly 40% of the false alarms, which is helpful when
the database size becomes large.

Figure 5. The punning power of averages of histograms

5 Comparison to Wavelets

In this section, we compare our representation with an-
other multi-scale representation, wavelets. Wavelets have
been widely used as a multi-resolution representation for
image retrieval [16]; they have also been used as a di-
mensionality reduction technique in shape match queries
in which Euclidean distance is used as the distance func-
tion [12]. Different from Fourier transform, wavelets can
transform time series data into a multi-scale representa-
tion, where lower frequency bands are represented in lower
scales and higher frequency bands are represented in higher
scales. In this experiment, we used Euclidean distance to
measure the similarity between two Haar wavelet coeffi-
cients (we used Haar wavelet, since it is the most popular
wavelet transformation and has been used for similarity-
based time series retrieval [12]).The same CBF data set used
in the first experiment is used to measure the efficacy using
different number of wavelet coefficients to answer pattern
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existence queries. Table 6 reports the results.

Cylinder Bell
precision recall precision recall

8 49 97 48 96
16 45 61 46 67
32 40 44 37 40
64 31 35 29 33

Table 6. Using wavelet for pattern existences queries

Compared to results that obtained by time series his-
tograms (81/90 and 85/87), wavelets perform significantly
worse in terms of accuracy. In fact, the wavelet transform
transfers the time series data into time-frequency domain,
therefore, it is difficult, using wavelets, to answer pattern
existence queries, since frequency appearance order is en-
coded in the wavelet coefficients. Even using only the first
few coefficients (8), which have very lower time resolution
(scale), we could get high recall but low precision as shown
in Table 6. The high recall was achieved by returning nearly
all the data in the database as results and the lower precision
is due to most of the important frequency bands are not used
to answer queries. However, if we use more (32), both pre-
cision and recall drop. This is because the high frequency
bands have higher time resolution, making them sensitive to
time shifting.

For shape match queries, we compared the efficacy of
wavelets and multi-scale histograms on CC data set. We
did not use the ASL and Cameramouse data sets, because
Euclidean distance requires the two compared wavelet co-
efficients to have the same length, thus the original time se-
ries must have the same length as well. Furthermore, since
the wavelet transform requires the length of the sequences
be a power of 2, we pad the sequences with 0 to make the
length 64. We carried out the same classification test using
different number of wavelet coefficients and the results are
shown in Table 7.

8 16 32 64
error rate 0.43 0.39 0.32 0.21

Table 7. Error rates using wavelet coefficients
Again the results are worse than the results achieved

by using multi-scale histograms (0.06). The lower scale
wavelets can not capture the information about higher fre-
quency band, thus, the error rate with lower scale is higher
than that of higher scale. The higher scale wavelets con-
tain too much detail about the appearance time of frequency
bands, which causes the wavelets to be sensitive to time
shifting. In fact, with Euclidean distance, using all wavelet
coefficients is the same as using raw representation of time
series [12]. Thus, based on these two experiments and
analysis, we conclude that wavelet representation is not ro-
bust to time shifting, making it unsuitable to answer pattern
existence queries and introducing difficulties in answering
shape match queries when data contain time shifting.

6 Related Work
The earliest proposal for similarity-based time series

data retrieval was by Agrawal et. al. [1], which used
Euclidean distance to measure the similarity between time
series data and applied Discrete Fourier Transform (DFT)
to reduce the dimensionality for fast retrieval. Later, this
work was extended to design new similarity measures, other
than Euclidean distance, for measuring the similarity be-
tween two time series data, such as Dynamic Time Warping
(DTW) [3], Longest Common Subsequences (LCSS) [22],
Edit distance with Real Penalty (ERP) [5] etc. All these
techniques can be put into the category of shape match re-
trieval. A few approaches [2, 19, 18] have been proposed for
finding movement patterns in time series data. The moving
direction (the slope between two values) of a user speci-
fied interval [18], consecutive values [2], or a segment (ob-
tained by a segmentation algorithm) [19] was represented
as a distinct alphabet. Thus, these approaches converted the
time series data into strings and could apply string-matching
techniques to find the patterns. Lin et al. [14] have proposed
a symbolic representation for time series data, where data
points at neighborhood subspaces are treated as same and
the distances between them are assigned value 0. However,
this method overestimates the neighborhood similarity.

Compared to all the previous work on similarity-based
time series retrieval, the multi-scale time histogram has the
following advantages:
• Multi-scale time series histograms can be used to an-

swer shape match and pattern existence queries.
• The cumulative histogram distance reduces the bound-

ary effects introduced by value space quantization and
overcomes the shortcomings of overestimating (such
as L1-norm and L2-norm) or underestimating (such as
weighted Euclidean distance) the distance.

• Multi-scale time histograms are invariant to time shift-
ing and scaling, amplitude shifting and scaling. More-
over, they can reduce the noise disturbance.

• Multi-scale time histograms offer users flexibility to
query the time series data on different accuracy level.
Furthermore, lower scale histograms can be used to
prune the false alarms from the database before we
querying at higher scale histograms.

Recently, in spatial database domain, multi-scale his-
tograms have been proposed to summarize rectangle ob-
jects for window queries [15]. In these approaches, the
multi-scales refer to resolutions on value space; however,
the multi-scales in our work refer to resolutions on time
space.

7 Conclusions and Future Work

In this paper, we propose a novel representation of time
series data using multi-scale time series histograms. This
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representation is based on the intuition that the distribution
of time series data can be an important cue for compar-
ing similarity between time series. Multi-scale time series
histograms are capable of answering both pattern existence
queries and shape match queries. Moreover, they are in-
variant to time shifting and scaling, and amplitude shifting
and scaling. A robust similarity measure, cumulative his-
togram distance, is used to measure the similarity between
two time series histograms. Our experiments indicate that
multi-scale time series histograms outperform string rep-
resentations in finding patterns and outperform DTW and
LCSS in answering shape match queries when the time se-
ries data contain noise or time shifting and scaling. The ex-
periments also show that equal area bin histogram is more
suitable for time series data comparison and distances of av-
erages of histograms can effectively prune the false alarms
from the database before computing the distance between
two full histograms.

In future work, we will investigate the possibility of au-
tomatically setting up the scale value for users. We also plan
to extend multi-scale histograms to subsequence matching.
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Abstract

To discover knowledge or retrieve information from a
relational database, a user often needs to find objects re-
lated to certain source objects. There are two main chal-
lenges in building an effective object search system: the
huge amount of objects in the database and the large num-
ber of different relationships betweenobjects. In this paper
we introduce Ross, an efficient and accurate relational
object search system. Ross accepts complex queries that
enable users to specify the relationships among objects.
To measure the relationships of join paths,Ross consid-
ers the different semantics of different joins, and com-
bines both selectivity and lengths of join paths to measure
their strengths. A novel approach is used to find the best
join paths between relations, which converts the database
schema into a graph, so that the shortest paths in the
graph correspond to best join paths in the database.Ross

uses a stream-based system architecture to handle com-
plex queries containing logical operators, which can find
the most related objects upon users’ requests. Compre-
hensive experiments are conducted to show the high scal-
ability and effectiveness of Ross.

1. Introduction

Most of the structured data in the world is stored in
relational databases. To retrieve information and dis-
cover knowledge from a database, a user often needs to
find objects related to certain source objects. For ex-
ample, a new graduate student may want to know pro-
fessors related to a certain research area; an e-business
company may want to find customers related to each
brand of products; and the DC police may want to find
linkages between white chevy vehicles, rifles, and peo-
ple to identify snipers. Although these tasks may be
accomplished by submitting many SQL queries to find
objects related to different source objects, the end users
seldom have sufficient knowledge about database sys-
tems and familiarity with certain databases. It is also
often infeasible to manually analyze all possible rela-
tionships among entities in a database. It is highly de-
sired to automatically find objects that are strongly re-
lated to certain source objects, or find important link-
ages between a relation and certain source objects.

There are two main challenges in object search
in relational databases: scalability and accuracy. A
database usually contains many relations and a huge
number of objects. It is time-consuming to analyze dif-
ferent relationships between different relations and ob-
jects. On the other hand, there are usually many differ-
ent join paths between two relations. To search for re-
lated objects, the system must be able to measure the
strengths of relationships represented by different join
paths, which is a challenging task when no knowledge
about the semantics of such relationships are available.

In recent years much attention has been paid to key-
word query in relational databases [3, 1, 9, 7]. These
systems model the objects in a database as a graph.
Given a query containing a set of keywords, they return
the minimum spanning trees of objects that contain all
query words. Unlike a keyword query system, an ob-
ject search system searches for objects in a target rela-
tion that are linked to a set of source objects through
strong linkages in databases, and should have the fol-
lowing features. First, it should allow the user to specify
the relationship among the source objects. For exam-
ple, a query could be “finding students related to Prof.
Smith and either database or data mining”. In con-
trast, a keyword query system does not even allow the
user to specify the relationship among keywords. For
example, the minimum spanning tree for query “find-
ing students related to Prof. Smith and data mining”
could be “student -Prof.Smith -datamining”, and the sys-
tem will return students related to Prof. Smith, which
are not what the user wants.

The second feature of an object search system is
that, it should have a good measure for the relation-
ships between objects. Most keyword query systems use
lengths of join paths between objects as their distances
[1, 9, 7]. In reality different joins have very different se-
mantic meanings. Thus different join paths, even with
identical lengths, may represent linkages of very differ-
ent strengths. Please refer to the schema in Figure 1.
The join path Student ./ Register ./ TeachCourse ./

Register ./ Student (two students taking same course)
represents a much weaker link than Student ./ Advise ./

Professor ./ Advise ./ Student (two students su-
pervised by same advisor). Another example is that,
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Figure 1: Schema of the CS Dept database

Professor ./ TeachCourse ./ Register ./ Student (pro-
fessor teaches student) represents a weaker link than
Professor ./ Publish ./ Publication ./ Publish ./

Student (professor coauthors paper with student). In
our system we adopt a new measure of relationships
that considers more information about join paths.

In this paper we propose Ross (Relational Object
Search System), an object search system that handles
complex queries and uses a new measure for strengths
of relationships among objects. Ross accepts keyword
queries that contain a target relation and a logical ex-
pression (containing “AND/OR”) of source objects. An
example query is “FIND Student RELATEDTO (‘John
Doe’ OR ‘Mike Smith’) AND Course ‘CS400”’. The query
may also specify one or more relations in the middle of
the join path between the target relation and a source
object. For example, “FINDStudentRELATEDTO ‘John
Doe’VIAPublication” will find students coauthoring pa-
pers with John Doe. Compared to queries containing
sets of keywords, queries in Ross have more expres-
sive power. Ross uses a stream-based system architec-
ture for processing queries, which builds an execution
tree when executing a query. Each node in the tree pro-
vides a stream of result objects and the root node pro-
vides the final results to the user.

To search for related objects, a system must be able
to identify strong linkages among tuples. As shown
above, the number of joins is not a good measure for the
strengths of join paths, and the selectivity of a join path
often indicates the strength of the relationship. A join
path p having small selectivity means that an object
in the first relation of p are joinable with a small num-
ber of objects in the last relation of p, which usually in-
dicates strong relationship between those objects, and
vice versa. The selectivity of strong links, such as pro-
fessor advising students, is usually smaller than that
of weak links, such as professor teaching students. Be-
sides selectivity, the number of joins in a join path also
affects its strength. Ross combines the selectivity and
lengths to measure the strengths of relationships of join
paths. It is shown by experiments that this measure is
more effective than the lengths of join paths.

Because Ross uses selectivity as an important mea-
sure for strengths of relationships, it needs to make
reasonably accurate estimation for selectivity. Selec-
tivity estimation has been studied for many years
[11, 10, 14, 13, 6]. However, Ross faces a very differ-
ent challenge. No join path is provided in the query,
and it needs to find the best path based on selectiv-
ity and length, and return the corresponding objects.
Moreover, in many cases the best path does not match
user’s mind and more results are needed. Therefore,
Ross must be able to provide the top-k best join paths
between any two relations, which cannot be solved by
traditional selectivity estimation approaches.

Ross uses a novel approach for finding best (or most
selective) join paths between relations. It pre-computes
the selectivity of many short join paths, which can be
combined to make accurate estimations on selectivity
of longer paths. The relational schema is converted into
a graph, in which relations are modelled as nodes and
joins as edges. By integrating the pre-computed infor-
mation into the graph, the k shortest paths in the graph
correspond to the k best join paths in the database,
which can be found efficiently as in [12]. In experiments
it is shown that Ross achieves high efficiency and scal-
ability, and can accurately predict for strong relation-
ships between different entities.

The rest of this paper is organized as follows. The
problem definition is described in Section 2. We present
the approach for selectivity estimation in Section 3.
Section 4 describes the approach for finding best join
paths. Section 5 describes the system architecture and
query processing. Section 6 shows the experimental re-
sults. Related work is introduced in Section 7 and the
study is concluded in Section 8.

2. Problem Definitions

2.1. Query Format

Given a target relation Rt and a set of source ob-
jects, Ross searches for objects in Rt that are
most related to the source objects. A query con-
tains the following parts: (1) the target relation Rt,
(2) a set of source objects, and (3) one or more rela-
tions in the middle of join paths between the source
object and Rt (optional). A source object is a tu-
ple that represents an object. To specify a source ob-
ject, the user should provide some keywords for that
object, and the name of the relation (optional). An ex-
ample query is Q = FIND Student RELATEDTO
((‘John Doe’) AND (Course ‘Data mining’ VIA
Registration)) . In this query Student is the tar-
get relation, Course is the source relation, and
Registration is the middle relation. In the database,
each relation is manually labelled with a set of key-
words, so that the user does not need to know the
exact name for the relation. Different source ob-
jects form a logical expression containing {AND, OR}.

228



A query is a simple query if it does not have logical op-
erators; otherwise it is a complex query.

The answer to a query is a list of tuples in Rt,
which are ranked according to their relationship with
the source objects. A complex query can be considered
as the combination of two or more sub-queries. For ex-
ample, the above query Q contains two sub-queries:
Q1 = FIND Student RELATEDTO (‘John Doe’) and Q2

= FIND Student RELATEDTO (Course ‘Data mining’ VIA

Registration). For a simple query Q1, each tuple t

in the answer of Q1 has a score s(t,Q1), which is
the weight of the best path from which t is retrieved.
A smaller score indicates a stronger relationship, and
s(t,Q1) = +∞ if t does not appear in Q1’s answer.

For a complex query, the scores of answer tuples
can be determined by scores of its sub-queries. Sup-
pose Q = Q1 AND Q2. To determine s(t,Q) based
on s(t,Q1) and s(t,Q2), we consider the following sce-
nario. Suppose query Q is associated with smax, a
threshold of score which is given by user. The answer to
Qi (i = 1, 2) is all tuples t with s(t,Qi) ≤ smax. Then
only those tuples t with s(t,Q1) ≤ smax and s(t,Q2) ≤
smax are in the answer of Q. Therefore, s(t,Q) should
be defined as max(s(t,Q1), s(t,Q2)). Similarly, if Q =
Q1 OR Q2, then s(t,Q) = min(s(t,Q1), s(t,Q2)).
Other operators (such as average) can be defined sim-
ilarly, which can be the future work.

2.2. Measure of Relationship

For join path p in a database, there are two features
that are highly related to the semantic strength of re-
lationship represented by p. They are the length and
selectivity of p. Ross combines both of them to mea-
sure the strengths of relationships of join paths, in or-
der to find objects most related to the source objects.

Consider a join path p = R1 ./ · · · ./ Rl. The length
of p, denoted as |p|, is defined as the number of joins
in p. In general, the selectivity of a join path p is the
average number of tuples in Rl that is joinable with a
tuple in R1, defined as follows.

Definition 1 (Selectivity). For a join path p = R1 ./

· · · ./ Rl, its selectivity S(p) is the average number of
tuples in Rl that are joinable to a tuple t in R1 via p.

S(p) is the average selectivity for all tuples in R1.
The numbers of tuples in Rl that are joinable to differ-
ent tuples in R1 might be quite different. For example,
a senior professor may have taught 500 students but
a junior one may have taught only 50. The selectiv-
ity of an individual tuple does not indicate the seman-
tic strength of the relationship between tuples. There-
fore, the average selectivity is used for this purpose.

The selectivity and semantic strength of a join path
are highly correlated. Consider two join paths p1 and
p2 between relations R1 and R2. If S(p1) is much lower
than S(p2), then on average an object o1 in R1 joins

with much fewer objects in R2 via p1, which usu-
ally indicates that o1 has stronger relationship with
those objects. For example, p1 = Student ./ Advise ./

Professor ./ Advise ./ Student (a student shares ad-
visor with another one), p2 = Student ./ Register ./

TeachCourse ./ Register ./ Student (a student takes
same course with another one). The relationship repre-
sented by p1 is usually much stronger, because a pro-
fessor usually advises a small number of students (com-
pared with course registration) and thus they know
each other very well. Selectivity may be misleading in
some cases, especially for long join paths. Ross uses the
weighted average of logarithm of selectivity and lengths
of join paths to estimate their semantic strengths. The
detailed approach are described in Section 4.

3. Selectivity Estimation

A simple approach to estimating selectivity of a
join path p = R1 ./ · · · ./ Rl is to use the product
of selectivity of every join in the path, i.e., S(p) =
∏l−1

i=1
S(Ri ./ Ri+1). This approach is accurate only if

the joins in p are independent. In real life joins are of-
ten related to each other. For example, in join path
Professor ./ TeachCourse ./ Course, although each
professor may teach ten courses in different semesters,
the average number of different courses he teaches is
probably only two or three, because the courses he
teaches in different semesters are often overlapped.
Overlapping is the phenomenon that in a join path

R1 ./ · · · ./ Rl, different intermediate tuples on a cer-
tain relation Ri join with same tuple in another re-
lation Rj (j > i). Overlapping happens in many join
paths. To estimate selectivity of a join path, it is in-
evitable to estimate its degree of overlapping.

Selectivity of join paths can be estimated by many
previous approaches [6, 11]. However, such approaches
can only estimate selectivity of certain join paths, but
cannot help Ross to find most selective join paths from
a database. We use a different approach to estimate se-
lectivity, mainly by pre-computing the degree of over-
lapping for many short join paths, and using them to
estimate the overlapping of longer paths. It is shown
by experiments that this approach achieves high accu-
racy and enables efficient search for selective join paths.

In the entity-relationship model of a database, dif-
ferent joins have different semantics. We consider the
following three types of joins in relational databases.

1. k-f join: A k-f join is a key to foreign-key join.
It does not cause overlapping because different tu-
ples cannot join with the same tuple via a key to
foreign-key join.

2. f-k join: An f-k join is a foreign-key to key join.
Its selectivity is one and it may cause overlapping.

3. indirect join: There is an indirect join R1 ./R2

R3, if R2 is a relation of relationship which con-
nects R1 and R3. An indirect join is a many-to-
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many join and may cause overlapping. It actually
contains a k-f join and an f-k join.

We pre-compute the selectivity of every pair of con-
secutive joins. If there are joins R1 ./ R2 and R2 ./ R3,
then the selectivity S(R1 ./ R2 ./ R3) is pre-computed.
To estimate the selectivity of a join path with more
than two joins, we need to combine the selectivity of
each pair of joins in the path. Suppose the selectiv-
ity of p = R1 ./ R2 ./ R3 ./ R4 is to be estimated.
For simplicity, we assume each join in this path is a
many-to-many join, which is the most general case.
To estimate p’s selectivity S(p), we need to combine
S(R1 ./ R2 ./ R3) and S(R2 ./ R3 ./ R4). Figure 2
shows an example about the relationship between tu-
ples, without and with overlapping considered.
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Figure 2: The effect of overlapping on selectivity

We first define the overlapping factor of a join path
of length three. The overlapping factor of path R1 ./
R2 ./ R3 is defined as

O(R1 ./ R2 ./ R3) =
S(R1 ./ R2) · S(R2 ./ R3)

S(R1 ./ R2 ./ R3)
(1)

In Figure 2, O(R1 ./ R2 ./ R3) is the average number
of times a tuple appears in R3 in Figure 2(a).

To estimate S(p), we need to know how many times
each tuple appears in R4 in Figure 2(a). First, for ev-
ery tuple t in R2, if all identical tuples in R4 that are
joinable to t are merged together, the number of tu-
ples in R4 will shrink to 1

O(R2./R3./R4)
of its original

number. Then, if all identical tuples in R3 are merged
together, then the number of tuples in R3 will shrink
to 1

O(R1./R2./R3)
of its original number, and the num-

ber of tuples in R4 will shrink accordingly. There might
still be repeated tuples on R4, such as tuple 45. How-
ever, only those tuples in R4 that are joined with tu-
ple 11 via different tuples in both R2 and R3 may be
repeated. This kind of overlapping is usually insignifi-
cant, and we can estimate S(p) as

Ŝ(p) =
S(R1 ./ R2) · S(R2 ./ R3) · S(R3 ./ R4)

O(R1 ./ R2 ./ R3) · O(R2 ./ R3 ./ R4)

= S(R1 ./ R2 ./ R3) ·

S(R2 ./ R3 ./ R4)

S(R2 ./ R3)
(2)

In general, for a join path p = R1 ./ · · · ./ Rl ,
the overlapping factor on p is defined as the overlap-
ping on p that is not due to the overlapping on any
subpath of p. It is the average number of ways a tu-
ple t1 in R1 joins to a tuple tl in Rl through different
tuples on every relation from R2 to Rl−1.

Given p = R1 ./ · · · ./ Rl, suppose only the selectiv-
ity of every subpath with length no greater than k has
been pre-computed. Then the overlapping factors on
subpaths with length no greater than k are known to
us. For a subpath p′ with length greater than k, O(p′)
cannot be directly based on given information. Fortu-
nately, the overlapping of long paths are usually quite
weak. The overlapping is usually caused by the seman-
tic bonds between different intermediate tuples in a re-
lation Ri (1 < i < l).1 If two tuples ti1 and ti2 in Ri

(i ≥ 4) are joined from the tuple t1 in R1 via different
tuples in every relation Rj (1 < j < i), then the seman-
tic bonds between ti1 and ti2 are usually pretty weak.
Consequently, the overlapping factors for long paths
are usually much smaller than those of short paths.

In general, if we have pre-computed the selectivity
of every join path of length no greater than k, we esti-
mate the selectivity of path p as

Ŝ(p) = S(R1 ./ · · · ./ Rk)

l−k+1∏

i=2

S(Ri ./ · · · ./ Ri+k−1)

S(Ri ./ · · · ./ Ri+k−2)

It can be seen that there is a trade-off between the
pre-computation cost and accuracy of selectivity es-
timation. Suppose we pre-compute the selectivity of
every k consecutive joins in the database. As k gets
larger, selectivity estimation becomes more accurate,
but more cost are paid in pre-computation and the
graph of schema becomes more complex (as shown in
Section 4). In Section 6 we show experiments on the ac-
curacy of selectivity estimation with different values of
k. Finally, we choose k = 2 because it has reasonably
good accuracy and is inexpensive in time and space.

4. Finding Best Join Paths

Given a user query containing target relation Rt,
and a source object o in relation Rs. To answer this
query, Ross needs to find the best join path p1 from
Rs to Rt and return tuples retrieved from that path. If
p1 is not the path in user’s mind, or more results are
needed, Ross needs to find the next best path p2, and
so on. Therefore, an approach is needed to find top-k
best paths between two relations. Based on our method
of selectivity estimation, we propose a novel approach
that converts a database schema into a graph, so that
the k shortest paths in the graph correspond to the

1 Overlapping may also be caused by the limited number of tu-
ples in a certain relation Ri (different tuples in Ri−1 that are
not related can join with the same tuple inRi by chance). This
kind of overlapping should not be considered because it has
nothing to do with the semantic strengths of join paths.
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best join paths in the database. In this way Ross can
find good join paths and answer queries efficiently.

4.1. Graph Construction

In Ross the strength of a join path is measured by
its selectivity and length. As mentioned before, we pre-
compute the selectivity of every pair of joins (the over-
lapping factor for every join path of length two). The
selectivity of path p = R1 ./ · · · ./ Rl is estimated by

Ŝ(p) =

∏l−1

i=1
S(Ri ./ Ri+1)

∏l−1

i=2
O(Ri−1 ./ Ri ./ Ri+1)

(3)

The logarithm of selectivity is used as an indication for
the distances between objects. If the selectivity of a join
path is less than 1, it is set to 1 because a path cannot
indicate negative distance between objects. The weight
of a path p is defined as the weighted average of the log-
arithm of p’s estimated selectivity and p’s length |p|.

Definition 2 (Weight of a path). The weight of a
join path p is defined as

W (p) = log2 Ŝ(p) + β · |p| (4)

β is a parameter adjustable by users. A path with
smaller weight is considered to have greater strength.
To answer keyword queries, Ross needs to be able to
find the paths with the smallest weights. If β = 0, then
Ross will find most selective join paths; if β is very
large, Ross will find shortest join paths.

Consider a simple database whose schema is shown
in Figure 3. Arrows go from keys to corresponding
foreign-keys, and double directed edges indicate indi-
rect joins. Suppose one wants to find the paths with

R2R1 R3 R4

Figure 3: A simple database schema

the smallest weights from R1 to R4. The simplest way
to convert the schema into a graph is to add a node vi

for each relation Ri, and two edges (vi, vj) and (vj , vi)
for each join Ri ./ Rj . The weight of edge (vi, vj) is set
to log2 S(Ri ./ Rj)+β. However, no overlapping infor-
mation is integrated into this graph.

To utilize the pre-computed selectivity of short join
paths, we may add new edges to the graph. The modi-
fied graph is shown in Figure 4, in which four edges are
added for the four subpaths of length two. The weights
of added edges are set according to the selectivity of
the subpaths. In this graph, the shortest path from v1

V2V1 V3 V4

Figure 4: The graph with edges for subpaths

to v4 may be either v1 → v2 → v4 or v1 → v3 → v4.

However, only the overlapping on one subpath is con-
sidered, which is not correct according to Eq. (3).

To utilize the overlapping factors on all subpaths,
the graph is constructed in the following way.

1. For each relation Ri, add node vi to the graph.
2. For each join Ri ./ Rj , two edges (vi, vj) and

(vj , vi) are added to the graph. The weight of
(vi, vj) is set as W (vi, vj) = log2 S(Ri ./ Rj) + β.
W (vj , vi) is set in the same way.

3. For each subpath p′ = Ri1 ./ Ri2 ./ Ri3 whose
selectivity is estimated, if O(p′) > 1, then add v′

i2,
an extra node of vi2, to the graph. (If v′

i2 already
exists, add v′′

i2 instead.) Add edges (vi1, v
′

i2) and
(v′

i2, vi3) to the graph. (It is explained below how
to set the weights of these edges.)

4. For each extra node v′

i2 which is created for sub-
path p′ = Ri1 ./ Ri2 ./ Ri3, if there is an extra
node v′

i3 that is created for subpath Ri2 ./ Ri3 ./

Rx, then add an edge from v′

i2 to v′

i3.

An example graph is shown in Figure 5. For simplicity,
only edges added from left to right are shown, because
other edges are not helpful in finding the most selective
paths from R1 to R4. The weights of the added edges
are set according to Theorem 1.

V2V1 V3 V4

V2’ V3’

Figure 5: The augmented graph

Theorem 1 For a path p = R1 ./ · · · ./ Rl,

W (p) =

l−1∑

i=1

W (Ri ./ Ri+1)−

l−1∑

i=2

log
2
O(Ri−1 ./ Ri ./ Ri+1)

In details, the weights of edges are set as follows.

1. For each extra node v′

i2 that is added for subpath
p′ = Ri1 ./ Ri2 ./ Ri3, W (vi1, v

′

i2) = W (vi1, vi2),
and W (v′

i2, vi3) = W (vi2, vi3) ¡ log2 [O(p′)].

2. If edge (v′

i2, vi3) exists (v′

i2 is an extra node for
vi2), then for each edge (v′

i2, v
′

i3) (v′

i3 is an extra
node of vi3), set W (v′

i2, v
′

i3) = W (v′

i2, vi3).

In the graph in Figure 5, the edge weights are set as
follows. W (v1, v

′

2) = W (v1, v2), W (v
′

2, v3) = W (v2, v3) −

log
2
(O(R1 ./ R2 ./ R3)), W (v2, v

′

3) = W (v2, v3),

W (v′3, v4) = W (v3, v4) − log
2
(O(R2 ./ R3 ./ R4)),

W (v′2, v
′

3) = W (v′2, v3) . Assume O(R1 ./ R2 ./ R3) > 1

and O(R2 ./ R3 ./ R4) > 1. Then the shortest path
from v1 to v4 is v1 → v′2 → v′3 → R4, whose weight is ex-
actly W (R1 ./ R2 ./ R3 ./ R4). There might be edges
with negative weights in the graph. Later in corol-
lary 2 it is shown that the algorithm will not be
affected by negative edges.

231



Definition 3 (Path correspondence). Sup-
pose a graph G is constructed for database D. A graph
path q = vk1

→ · · · → vkl
corresponds to a join path

p = R1 ./ · · · ./ Rl, if and only if vk1
is the node for

R1, vkl
is the node for Rl, and vki

is the node or ex-
tra node for Ri (1 < i < l).

Theorem 2 Suppose a graph G is constructed based on
database D. If there is a join path p in D with W (p) =
w, then there is path q in G with weightW (q) = w, and
q corresponds to p. Also, q is the shortest path in G that
corresponds to p.

By theorem 2 it is known that, for each join path p in
the database, there are a set of paths in the graph that
correspond to p. Among this set of paths, the short-
est path q has the same weight with p.

Corollary 1 Suppose a graphG is constructed based on
database D. If there is a path q in G, then there is a join
path p so that q corresponds to p andW (p) ≤ W (q).

We say two paths q1 and q2 in graph G are equivalent
if they correspond to same join path in the database.
q1 and q2 are distinct if they are not equivalent. Based
on theorem 2 and corollary 1, the following theorem
can be proved by induction, which reduces the prob-
lem of finding best join paths in a database into find-
ing shortest paths in a graph.

Theorem 3 Suppose graphG is built based on database
D. The top-k distinct shortest paths in G correspond to
the top-k join paths inD with smallest weights.

Here we analyze the number of extra nodes and
edges added in the graph construction process. Suppose
on average each relation Ri has f1 k-f joins, f2 f-k joins,
and f3 indirect joins. Then the average number of sub-
paths Rj ./ Ri ./ Rk whose selectivity are estimated is
about (f1+f3)(f2+f3). Let g = (f1+f3)(f2+f3). The
average number of extra nodes added for vi is about
g. For each extra node v′

i for vi, if v′

i is added for sub-
path Rj ./ Ri ./ Rk, then two edges (vj , v

′

i) and (v′

i, vk)
are added, and one edge is added from v′

i to any extra
node of vk created for subpath Ri ./ Rk ./ Rx. There-
fore, the number of edges added for all extra nodes of
vi is about g(f2 + f3). If there are n relations in the
database, then there will be about gn extra nodes and
g(f2 + f3)n extra edges added. Usually f1 and f2 are
less than 2, and f3 is less than 1. Then g is less than
9, which keeps the new graph in small size.

By the above approach the database schema can
be converted into a graph, which integrates the pre-
computed selectivity of every join path of length two.
If the selectivity of longer join paths are pre-computed,
the same approach can still be used, by adding more ex-
tra nodes and edges. It can also be proved that the neg-
ative edges will not affect such algorithms.

Corollary 2 Suppose a graphG is constructed based on
database D. Any graph path q that starts at node vi has

positive weight. If a graph path q starts at node vi, there
cannot be a negative circle on q.

4.2. Find Shortest Paths in Graphs

The problem of finding shortest paths in graphs has
been studied for decades [16, 12]. Ross chooses a re-
cent and efficient algorithm [12] that finds the k short-
est paths in O(k ·n+k ·m) time and O(k ·n+m) space,
for a graph containing n nodes and m edges. Suppose
the current best path p = (s, n1, . . . , nr−1, t). The algo-
rithm is based on the observation that the best alter-
native path is either based on the shortest path from
source s to node x for any x pointing to destination t, or
based on the best alternative path to (s, n1, . . . , nr−1).

When searching for shortest graph paths, different
paths in G might correspond to same join path in D.
Thus to find the k best join paths, usually more than
k graph paths need to be found. Let k′ be the number
of graph paths found. In our experiments it is shown
that k′ is usually only several times larger than k, even
for databases with complex schemas. In general, Ross

uses an effective and efficient approach to find the most
selective join paths in databases, which enables it to
answer keyword queries accurately.

5. System Architecture

The overall procedure of Ross is shown in Figure
6. The user submits a query to, which is converted to
an object query by the inverted index. Then the object
query is executed by the execution engine and the re-
sult objects are returned to the user.

Keyword Query Object Query
Inverted Index

Execution Engine
ResultsUser

Figure 6: The query processing procedure

5.1. Backend Database

A backend database for Ross is a relational
database. An inverted index is created for the val-
ues in the database. Based on the index, Ross can find
the relations and attributes in which each source ob-
ject appears. For example, {‘John’,‘Doe’} may
be found in Professor.name, Advise.professor, Teach-

Course.instructor, WorkIn.professor, and Publish.author .
Ross builds an object query for a user query. It

finds out the target relation, and each source object.
Then it builds a tree structure according to the log-
ical expression. The object query for FIND Student

RELATEDTO ((‘John Doe’) AND (Course ‘Data mining’

VIA Registration)) is shown in Figure 7.
One keyword (or set of keywords) in the query may

correspond to multiple source objects in the database.
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Course.name
Data Mining Register

VIA OR

AND

Student

Professor.name TeachCourse.instructor
John DoeJohn Doe

Target relation

Source object

Source object Source object

Figure 7: An example object query

Those source objects are connected by ‘OR’ operator
in the object query.

5.2. Query Execution

For each node in the tree of query, Ross creates
an Executor, which outputs a stream of result tuples
for the corresponding tree branch. A SimpleExecutor is
created for each leaf node (source object), and a Com-
plexExecutor is created for each non-leaf node with a
logical operator. The input to a SimpleExecutor is a
target relation, a source object, and a set of middle re-
lations. The input to a ComplexExecutor is the result
tuples from multiple SimpleExecutors. Each executor
provides only one function, GetNextTuple(), which re-
turns the next best tuple in the answer of this execu-
tor. In this way it provides a stream of result tuples,
ordered by their scores (low to high).

A SimpleExecutor first finds the shortest path be-
tween the target relation and source relation, and puts
the tuples retrieved from this path into a queue. When
asked for the next best tuple, it extracts a tuple from
the queue. If the queue is empty, it finds the next short-
est path and puts the tuples from that path into the
queue. If one or more middle relations are specified
for the source relation, then only paths containing all
middle relations are considered. This does not increase
the running time significantly, because of the high effi-
ciency of the shortest-paths algorithm.

For a ComplexExecutor, when the function Get-
NextTuple() is called, it gets tuples from its child ex-
ecutors, and returns the next best tuple. A Complex-
Executor of ‘OR’ returns the next tuple with the small-
est score from any of its children. A ComplexExecutor
of ‘AND’ returns the next tuple whose maximum score
on all its children is smallest. An example of query pro-
cessing is shown in Figure 8. The tuples above each ex-
ecutor represents the tuples it returns.

Each tuple is mapped to a 64-bit integer via a hash
function, so that the communication between different
executors is very small. An executor may not return a
tuple twice. So each executor maintains a buffer con-
taining all tuples (integers) that have been returned.

The algorithm of GetNextTuple() for an Complex-
Executor of ‘OR’ is very simple. An executor E keeps
the next best tuple from every child executor, which

Course.name
Data Mining Register

VIA OR

AND

Professor.name TeachCourse.instructor
John DoeJohn Doe

SimpleExecutorSimpleExecutor

SimpleExecutor

ComplexExecutor

ComplexExecutor

[Tom, 3.0] [Cathy, 2.0]

[Tom, 3.0]
[Cathy, 2.0][Tom, 2.0]

[Tom, 3.0]

User

Figure 8: An example of query processing

has not been returned by E, and selects the tuple with
the smallest score to return.

The algorithm for an ComplexExecutor of ‘AND’ is
more complex. An executor E needs to maintain the
set of tuples retrieved from each child executor. When
asked for the next best tuple, it looks at the next best
tuple t from all children. Suppose t is from child ex-
ecutor E1. If t is contained in the set of retrieved tu-
ples of each child, then t is returned. Otherwise t is
put into the set of tuples of E1, and E looks at the
next best tuple from any child, and so on. When a tu-
ple tj from Ej is considered as a candidate to return,
all tuples with smaller scores have been put into Ti’s
(1 ≤ i ≤ k). Thus any tuple t that appears in all Ti’s
and has smaller score than tj has been returned. There-
fore, tj is the next best tuple that E should return.

6. Experimental Results

We perform comprehensive experiments to show
the efficiency and effectiveness of our approach. Three
databases are used in experiments. The first is CS Dept
database whose schema is shown in Figure 1. It is col-
lected from the website of Dept. of CS at UIUC. Rela-
tion Registration is randomly generated and all other
relations contain real data. The second database is
Northwind database from Microsoft, whose schema is
shown in Figure 9. The third is TPC-H benchmark
database [15], which can be generated in different sizes.
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Figure 9: Northwind database

Experiments are performed on a Pentium 4 PC with
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1GB RAM, running Windows 2000. Microsoft SQL
server 7.0 is used as the backend database. The pa-
rameters are set as follows. The base weight of a join
β = 0.5. The maximum weight of join paths is 10.0,
and paths with greater weights are not considered.

6.1. Selectivity Estimation

As in Section 3, Ross pre-computes the selectivity
of every join path of length k. When estimating the
selectivity of a join path p, the selectivity of all pre-
computed subpaths are combined. The following ex-
periments show the accuracy of selectivity estimation
for different values of k. 20 join paths are randomly
generated for a database, each containing l joins. For
each path p with real selectivity S(p), we use differ-
ent values of k (k = 1, 2, 3) to estimate p’s selectiv-

ity Ŝ(p). The estimation error is defined as err(p) =

| log2(Ŝ(p)/S(p))|. The average error is shown in Fig-
ure 10, with l = 2, 3, 4, 5. It can be seen that the estima-
tion accuracy of k = 3 is not much better than k = 2.
Considering computational cost, we choose k = 2 in
Ross, which has fairly high accuracy.
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Figure 10: Selectivity estimation on CS Dept database

6.2. Scalability

In the following experiment database schemas are
randomly generated to test Ross’s scalability w.r.t. the
size of schema. To generate a database schema with n

relations, we first generate the n relations, then ran-
domly add foreign-keys to each relation. The expected
number of foreign-keys in each relation is 2. The ex-
pected selectivity of each k-f join is 4. The overlapping
factor for each pair of joins is 2. All of them are ran-
domly variables obeying exponential distribution.

We test Ross’s scalability w.r.t. number of relations
in databases. 10 database schemas are randomly gen-
erated for each n (n ∈ {10, 20, 50, 100, 200}). For each
schema, 10 pairs of source and destination are ran-
domly selected, and the 100 shortest distinct paths are
found between each pair. The average running time and
the total number of paths (not necessarily distinct) are
shown in Figure 11 (a). One can see that Ross is highly
scalable in finding the best join paths.

To test its scalability w.r.t. the number of tu-
ples, we use TPC-H databases with size from 1MB to
100MB (raw data). We generate 20 keyword queries
by randomly choosing the source and target rela-
tions, and find a meaningful path between them. Ex-
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Figure 11: Scalability of Ross

ample queries include ‘‘FIND Supplier RELATEDTO

(Nation ’CANADA’)’’ and ‘‘FIND Customer RELATEDTO

(Product ’MEDIUM ANODIZED NICKEL’ VIA Order)’’.
Figure 11 (b) shows the average total running time
and running time of Ross excluding the query pro-
cessing time of backend database. One can see that
Ross is highly scalable w.r.t. the database size.

6.3. Relationship Prediction

To test the performance of Ross on object search,
we use it to predict for the strong relationships in the
databases. Some join path in a database represents the
only very strong relationship between two relations,
such as professors advising students. We use this re-
lationship as the target relationship. We remove the
relationship from the database, and use Ross to pre-
dict it from other relationships. For example, we re-
move the Advise relation, and then search for students
(or professors) most related to each professor (or stu-
dent). Because students advised by a professor are the
students most related to him, an effective object search
system should be able to identify those students from
information in other relations.

A target relationship must be the strongest relation-
ship between two relations, and there must be other in-
formation involving the two relations that are related
to the target relationship. We find the advising rela-
tionship is the only qualified target relationship in CS
Dept database.

To compare prediction accuracy, we build another
system Koss that is identical to Ross except using
lengths of join paths to measure their goodness. Koss

answers queries with shortest join paths, which is very
similar to previous keyword query systems on relational
databases (e.g. DISCOVER [9] and BANKS [3]).

We first remove the Advise relation. Then for each
professor p, Ross and Koss are used to find the 100
students most related to p. Suppose p advises a set of
students S. The raw score of a ranked list of students
L = s1, . . . , s100 is defined as

s̄(L) =
∑

si∈S,1≤i≤100

1

i

The ratio between s̄(L) and the optimal score
∑

|S|

i=1

1

i

is used as the score of L, which means s(L) = s̄(L)∑|S|

i=1

1

i

.

The accuracy of predicting students advised by each
professor, and advisor of each student, are shown in Ta-
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ble 1.2 It can be seen that Ross can effectively identify
important linkages and related objects in databases,
and its measure for strengths of join paths is more ef-
fective than simple measures such as join path length.

Student advised by each prof Advisor of student
Ross 0.669 0.856
Koss 0.491 0.821

Table 1: AccuracyRoss andKoss in relationship prediction

6.4. Answering Keyword Queries

In this experiment we test Ross’s performances in
object search based on user queries. Both Ross and
Koss are tested on the CS Dept database and North-
wind database. For each database, 20 typical queries
are written, which include both simple queries and
complex queries on different relations. For each query,
we provide the standard answer, which are one or more
groups of tuples in the target relation, ranked accord-
ing to their relationship to the source objects. For ex-
ample, courses related to a student are courses taken
by him; publications related to a professor via students
are publications written by the students of the profes-
sor. The answers to these queries can be defined by one
SQL query. The standard answers for some queries may
contain tuples retrieved from multiple SQL queries, and
need to be ranked. For example, the students related to
database area are the students in database group, fol-
lowed by students who take database courses.

To guarantee that the standard answers to differ-
ent queries are provided in an objective and consis-
tent way, some principles are used for ordering differ-
ent relationships according to their semantic strengths.
The principles are based on common senses about the
tightness of relationships (e.g. strength of relationship
between two persons is measured by how likely they
know each other). Take CS Dept database as an ex-
ample. Relationships between a person and a research
area/problem are ranked as work in group > publish pa-

per > taking course. Relationships between persons are
ranked as advise > coauthor > same group > taking course.

The standard answer to a query usually contains a
ranked list of several groups of tuples, and a measure
is needed to evaluate the similarity between the an-
swer of Ross and the standard answer. Two answers
should be considered identical if and only if they gen-
erate same groups of tuples, and give same ranks for
the groups. Suppose the standard answer to is a list
of tuples t1, . . . tn, which are divided into l + 1 groups
{t1, . . . , tk1

}, {tk1+1, . . . , tk2
}, . . ., {tkl+1, . . . , tn}. We

assign a group score (gs) for a group {tkj+1, . . . , tkj+1
},

which is the reciprocal of the highest rank of tuples

2 One important reason that two systems achieve similar accu-
racy in predicting advisors is that, 63% of students who have
advisors are in research groups with only one professor.

in this group (gs(ti) = 1/(kj + 1) if kj < i ≤ kj+1).
gs(t) = +∞ if t is not in the standard answer.

Given a query Q, Ross or Koss gives an answer A,
which is a ranked list of tuples t′1, . . . , t

′

m. The score of
a tuple t′i is defined as the the reciprocal of t′i’s rank
(1/i), or the group score of t′i, whichever is lower. The
score of the answer A is defined as the sum of each tu-
ple’s score, as following

s(A) =

m∑

i=1

min

(
1

i
, gs(t′i)

)

(5)

The optimal score is ŝ(A) =
∑n

i=1

1

i
, which can be

only achieved when tuples from different groups are
ranked correctly. The accuracy of answer A is defined
as the ratio between A’s score and the optimal score
(s(A)/ŝ(A)).

The 20 queries for CS Dept database is shown as fol-
lows. We use “target – (’source’)” to represent the
query “FIND target RELATEDTO (’source’)”. We
use names like “John Doe” to represent profes-
sors and names like “Tom” to represent students.
The two values after each query represent the accu-
racy of Ross and Koss.
Student – (‘John Doe’) [1,0.58]; Student – ((‘Mike Smith’ via Pub-

lication) AND (area ‘network’)) [1,0.64]; Student – (area

‘database’) [0.95,1]; Student – ((‘John Doe’) AND (area

‘database’)) [0.97,0.27]; Student – (‘David’) [0.88,0.77]; Profes-

sor – (‘Tom’) [1,0.71]; Professor – (‘David’ VIA advise) [1,1];

Professor – (‘Ben’ VIA course) [1,1]; Professor – (area ‘arti-

ficial intelligence’) [1,1]; Professor – ((‘Cathy’) AND (‘Jeff’))

[1,1]; Professor – (‘CS300’) [1,1]; Professor – (‘frequent pat-

tern’) [1,1]; Course – (‘Cathy’) [1,1]; Course – (‘John Doe’ VIA

Student) [1,0.89]; Course – (((‘Ben’) OR (‘David’)) AND (area

‘database’)) [1,1]; Course – (Group ‘algorithm’) [1,0.61]; Publi-

cation – (‘Steve Peterson’) [1,1]; Publication – (area ‘database’

VIA student) [1,1]; Publication – ((‘John Doe’) AND (‘Tim Rob-

ber’)) [1,1]; Publication – (‘Peter Miller’ VIA student) [1,0.41]

The 20 queries for Northwind database are Em-

ployee – (’Great Lakes Food Market’) [1,1]; Employee – (’France’

VIA Customer) [1,1]; Employee – (Product ’Ipoh Coffee’) [1,1];

Employee – ((’Japan’) and (’Poland’)) [0.64,0.64]; Employee –

(Employee ’Nancy Davolio’) [1,0.85]; Customer – (’Condiment’)

[1,1]; Customer – (Supplier ’Tokyo Traders’) [1,1]; Customer –

(Customer ’The Big Cheese’) [0.97,0.94]; Product – (Employee

’Anne Dodsworth’) [1,1]; Product – ((’Around the Horn’) and

(’Seafood’)) [1,1]; Product – (Product ’Filo Mix’) [1,0.88]; Prod-

uct – (’Spain’) [1,1]; Product – (Customer ’Island Trading’) [1,1];

Product – (((’Condiment’) OR (’Confection’)) AND (’London’))

[1,1]; Supplier – (Customer ’Wilman Kala’) [1,1]; Supplier – (Sup-

plier ’Specialty Biscuits’ VIACategory) [1,1]; Supplier – (’Berlin’)

[1,1]; Supplier – ((’DairyProduct’) and (Customer ’OldWorldDel-

icatessen’)) [1,0.89]; Order – (’Seafood’) [1,1]; Order – ((Country

’UK’) AND (Product ’Steeleye Stout’)) [1,0.31]

The performances of Ross and Koss are shown in
Table 2. One can see that Ross achieves good accuracy
and efficiency on both databases.
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CS Dept Northwind
Approach Accuracy Runtime Accuracy Runtime
Ross 0.990 0.54 sec 0.980 0.26 sec
Koss 0.844 0.34 sec 0.925 4.12 sec

Table 2: Performances of Ross andKoss

7. Related Work and Discussions
There have many studies on searching for differ-

ent types of information (documents, XML, relational
data, etc). Document search has been studied for
decades in information retrieval, in which each doc-
ument is considered separately. This cannot be applied
on relational data, in which objects are connected to-
gether via different types of joins.

In recent years much attention has been paid to
keyword-based search in relational databases. In [4, 3],
a database is considered as a graph with objects as
nodes and relationships as edges. The system in [4] re-
trieves objects from a target relation that are related to
a set of source objects. In [3] a heuristical approach is
proposed to find small trees that contain all keywords
in the query. In [1, 9, 7] approaches are proposed to
work on the schema graphs of databases, which are
much smaller than the tuple graphs. They generate
candidate join trees according to user query, then con-
vert the join trees into SQL queries and retrieve re-
sults from backend databases. Similar approaches for
XML are proposed in [2, 5, 8].

Although the above approaches provide good in-
terfaces for keyword search in relational databases,
they are not appropriate for searching for related ob-
jects. They use the lengths of join paths to measure
the strength of relationship, which may lead to un-
satisfactory results in many cases. For example, the
link of coauthoring papers (Professor ./ Publish ./

Publication ./ Publish ./ Student) is considered to be
weaker than the link of teaching student (Professor ./

TeachCourse ./ Register ./ Student). Another problem
is that, the above approaches aim at finding minimum
spanning trees of objects containing all keywords, with-
out specifying the relationship among the objects. This
may lead to results that do not feed the user’s need.

Since we use selectivity to measure strengths of join
paths, selectivity estimation becomes a major chal-
lenge. There have been thorough studies for selectiv-
ity estimation for decades [11, 10, 14, 13, 6]. How-
ever, these approaches work on given join paths and
cannot be used to search for most selective paths
in databases. Ross pre-computes selectivity of many
short join paths, and combines them to estimate selec-
tivity of longer paths. It converts the database schema
into a graph, so that the shortest paths in graph cor-
respond to the most selective join paths.

8. Conclusions

Object search in relational databases is an impor-
tant task in knowledge discovery and informational re-

trieval from databases. In this paper we present the
design and implementation of Ross, a relational ob-
ject search system that handles complex queries. Ross

adopts a new query format that enables the user to
specify the relationship between the target objects and
source objects. It combines both selectivity and lengths
of join paths to measure the strengths of their relation-
ships, which is more accurate than previous keyword
query systems because different semantics of different
joins are considered. We propose a novel approach for
converting the database schema into a graph, so that
the shortest paths in the graph correspond to best join
paths in the database. A new stream-based system ar-
chitecture is used to find the most related objects upon
user’s needs. We conduct comprehensive experiments
to show the efficiency and effectiveness of Ross.
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Abstract 
Recent advancements in sensor technology have made it 
possible to collect enormous amounts of data in real time. 
However, because of the sheer volume of data most of it 
will never be inspected by an algorithm, much less a 
human being. One way to mitigate this problem is to 
perform some type of anomaly (novelty / interestingness/ 
surprisingness) detection and flag unusual patterns for 
further inspection by humans or more CPU intensive 
algorithms. Most current solutions are “custom made” 
for particular domains, such as ECG monitoring, valve 
pressure monitoring, etc. This customization requires 
extensive effort by domain expert. Furthermore, hand-
crafted systems tend to be very brittle to concept drift. 
In this demonstration, we will show an online anomaly 
detection system that does not need to be customized for 
individual domains, yet performs with exceptionally high 
precision/recall. The system is based on the recently 
introduced idea of time series bitmaps. To demonstrate 
the universality of our system, we will allow testing on 
independently annotated datasets from domains as 
diverse as ECGs, Space Shuttle telemetry monitoring, 
video surveillance, and respiratory data. In addition, we 
invite attendees to test our system with any dataset 
available on the web. 
 
1. Introduction  
 

Recent advancements in sensor technology have made 
it possible to collect enormous amounts of data in real 
time. However, because of the sheer volume of data most 
of it is never inspected by an algorithm, much less a 
human being. One way to mitigate this problem is to 
perform some type of anomaly (novelty / interestingness/ 
surprisingness) detection and to flag unusual patterns for 
future inspection by humans or more CPU intensive 
algorithms. Most current solutions are “custom made” for 
particular domains, such as ECG monitoring, valve 
pressure monitoring, etc. This customization requires 
extensive effort by domain experts. Furthermore hand-
crafted systems tend to be very brittle to concept drift. 

In this demonstration, we will show an online anomaly 
detection system that does not need to be customized for 
individual domains, yet performs with exceptionally high 
precision/recall. The system is based on the recently 
introduced idea of time series bitmaps [11]. It allows 

users to efficiently navigate through a time series of 
arbitrary length and identify portions that require further 
investigation. Figure 1 illustrates the graphical interface 
of our system1. 

 

Figure 1. A snapshot of the anomaly detection 
tool. 

To demonstrate the universality of our system, we will 
allow testing on independently annotated datasets from 
domains as diverse as ECGs, Space Shuttle telemetry 
monitoring, video surveillance, and respiratory data. In 
addition, we invite attendees to test our system with any 
dataset available on the web. 

2. Background and Related Work 
 

In this section, we give brief reviews of chaos games 
and symbolic representations of time series, which are at 
the heart of our anomaly detection technique.   

2.1   Chaos Game Representations 
Our visualization technique is partly inspired by an 

algorithm to draw fractals called the Chaos game [1]. The 
method can produce a representation of DNA sequences, 
in which both local and global patterns are displayed.  

The basic idea is to map frequency counts of DNA 
substrings of length L into a 2L by 2L matrix as shown in 
Figure 2, then color-code these frequency counts. From 
our point of view, the crucial observation is that the CGR 
                                                           
1 We encourage the interested reader to visit [5] to view full 
color examples of all figures in this work. 
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representation of a sequence allows the investigation of 
the patterns in sequences, giving the human eye a 
possibility to recognize hidden structures. 

 

Figure 2. The quad-tree representation of a 
sequence over the alphabet {A,C,G,T} at 
different levels of resolution. 

We can get a hint of the potential utility of the 
approach if, for example, we take the first 5,000 symbols 
of the mitochondrial DNA sequences of four familiar 
species and use them to create their own file icons. Figure 
3 below illustrates this. Note that Pan troglodytes is the 
familiar Chimpanzee, and Loxodonta africana and 
Elephas maximus are the African and Indian Elephants, 
respectively. Even if we did not know these particular 
species, we would have no problem recognizing that there 
are two pairs of highly related species being considered. 

 

Figure 3. The bitmap representation of the 
gene sequences of four species.  

With respect to the non-genetic sequences, Joel Jeffrey 
noted, “The CGR algorithm produces a CGR for any 
sequence of letters” [4]. However, it is only defined for 
discrete sequences, and most time series are real valued.   

The results in Figure 3 encouraged us to try a similar 
technique on real valued time series data and investigate 
the utility of such a representation on the data mining task 
of anomaly detection. Since CGR involves treating a data 
input as an abstract string of symbols, a discretization 
method is necessary to transform continuous time series 
data into discrete domain. For this purpose, we used the 

Symbolic Aggregate approXimation (SAX) [8], which we 
review below.  

2.2   Symbolic Time Series Representations 
While there are at least 200 techniques in the literature 

for converting real valued time series into discrete 
symbols, the SAX technique of Lin et. al. [8] is unique 
and ideally suited for data mining. SAX is the only 
symbolic representation that allows the lower bounding of 
the distances in the original space.  

The SAX representation is created by taking a real 
valued signal and dividing it into equal sized sections. 
The mean value of each section is then calculated. By 
substituting each section with its mean, a reduced 
dimensionality piecewise constant approximation of the 
data is obtained. This representation is then discretized in 
such a manner as to produce a word with approximately 
equi-probable symbols. Figure 4 shows a short time series 
being converted into the SAX word baabccbc. 

 

Figure 4. A real valued time series can be 
converted to the SAX word baabccbc. 

It has been pointed out that when processing very long 
time series, it is not necessarily a good idea to convert the 
entire time series into a single SAX word [11]. Therefore, 
for long time series, we slide a shorter window, which is 
called feature window, across it and obtain a set of shorter 
SAX words.  

Note that the user must choose both the length of the 
sliding feature window N, and the number n of equal sized 
sections in which to divide N (as we will see, there is no 
choice to be made for alphabet size). A good choice for N 
should reflect the natural scale at which the events occur 
in the time series. For example, for ECGs, this is about 
the length of one or two heartbeats. A good value for n 
depends on the complexity of the signal.  Intuitively, one 
would like to achieve a good compromise between 
fidelity of approximation and dimensionality reduction. 
As we shall see, the proposed technique is not too 
sensitive to parameter choices. 

3. Time Series Anomaly Detection 
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3.1 Time Series Bitmaps 
At this point, we have seen that the Chaos game 

bitmaps can be used to visualize discrete sequences and 
that the SAX representation is a discrete time series 
representation that has demonstrated great utility for data 
mining. It is natural to consider combining these ideas. 

The Chaos game bitmaps are defined for sequences 
with an alphabet size of four. SAX can produce strings on 
any alphabet sizes. As it turns out, many authors have 
reported a cardinality of four as an excellent choice for 
diverse datasets on assorted problems [2][3][6][7][8][9].  

We need to define an initial ordering for the four SAX 
symbols a, b, c, and d. We use simple alphabetical 
ordering as shown in Figure 5. 

After converting the original raw time series into the 
SAX representation, we can count the frequencies of SAX 
“subwords” of length L, where L is the desired level of 
recursion. Level 1 frequencies are simply the raw counts 
of the four symbols. For level 2, we count pairs of 
subwords of size 2 (aa, ab, ac, etc.). Note that we only 
count subwords taken from individual SAX words. For 
example, in the SAX representation in Figure 5 middle 
right, the last symbol of the first line is a, and the first 
symbol of the second word is b. However, we do not 
count this as an occurrence of ab. 

 

Figure 5. The generation of time series 
bitmaps. 

Once the raw counts of all subwords of the desired 
length have been obtained and recorded in the 
corresponding pixel of the grid, we normalize the 
frequencies by dividing it by the largest value. The pixel 

values P thus range from 0 to 1. The final step is to map 
these values to colors. In the example above, we mapped 
to grayscale, with 0 = white, 1 = black. However, it is 
generally recognized that grayscale is not perceptually 
uniform [10]. A color space is said to be perceptually 
uniform if small changes to a pixel value are 
approximately equally perceptible across the range of that 
value. For all images in this paper, we encode the pixels 
values to be [P, 1-P, 0] in the RGB color space.  

For bitmaps with same size, we define the distance 
between them as the summation of the square of the 
distance between each pair of pixels. More formally, for 
two n×n bitmaps BA and BB, the distance between them 

is defined as ∑∑
= =

−=
n

i

n

j
ijij BBBABBBAdist

1 1

2)(),( . 

3.2 Anomaly Detection 
We create two concatenated windows and slide them 

together across the sequence. The latter one is called lead 
window, showing how far to look ahead for anomalous 
patterns. A reasonable value would be two or three times 
the length of the feature window. The former one is called 
lag window, whose size represents how much memory of 
the past to remember. Usually, it should be at least as long 
as the lead window. We convert each window into the 
SAX representation, count the frequencies of SAX 
“subwords” at the desired level, and get the corresponding 
bitmaps. The distance between the two bitmaps is 
measured and reported as an anomaly score at each time 
instance, and the bitmaps are drawn to visualize the 
similarities and differences between the two windows.  

There are two ways to use the tool, unsupervised (one 
time series) and supervised (two time series). For 
unsupervised use, the user must specify the size of the lag 
window. For supervised use, the user must specify a time 
series file that he/she believes contains normal behavior 
for the system. For example, this could be 10 minutes of 
ECGs that are known to be normal, or a trace from a 
successful space mission.  In this case, the entire training 
time series can be imagined as the lag window.  

At each “step” of the sliding window we can 
incrementally ingress a new data point, and egress an old 
data point in constant time (updating only two pixels of 
each bitmap). Hence, the time complexity is linear in the 
length of the time series. 

4. Experimental Evaluation 
 

To demonstrate the universality of our system, we 
tested on independently annotated datasets from domains 
as diverse as ECGs, Space Shuttle telemetry monitoring, 
video surveillance, and respiratory data. Here we show 
only a subset of the experimental results due to space 
limitations. Our approach is also effective on time series 
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clustering and classification [11], but we focus on its 
utility for anomaly detection here. We urge the interested 
reader to consult [5] for large-scale color reproductions 
and additional details. 

Figure 6 illustrates a subsection of an ECG data. A 
cardiologist annotated two premature ventricular 
contractions at approximately the 0.4 and 1.1 mark, 
respectively, and a supraventricular escape beat at about 
the 1.0 mark. Our approach easily detects all the three 
anomalies. 

 

Figure 6. Top) A subsection of an ECG 
dataset. Middle) The abnormal score shows 
three strong peaks for the anomalous 
heartbeats. Bottom) The bitmaps before and 
after the third peak. 

Figure 7 shows a very complex and noisy ECG. But 
according to a cardiologist, there is only one abnormal 
heartbeat at approximately the 0.23 mark. Our tool easily 
finds it. 

 

 

Figure 7. Top) A subsection of an ECG 
dataset. Middle) The abnormal score shows a 
strong peak for the anomalous heartbeat. 
Bottom) The bitmaps before and after the 
strong peak. 

5.  Demonstration Plan 
 

Our demonstration will consist of the following three 
parts. 

• First, we will present some real-world applications in 
which our technique can be applied. These examples 
will provide the audience with insights into the task 
of time series anomaly detection. 

• Second, by using real-world datasets from diverse 
domains, we will show the experimental evaluation 
of our system. 

• Finally, we will invite audience to play the tool 
interactively themselves. The audience will be 
encouraged to test their own datasets. 

 
Reproducible Results Statement: In the interests of competitive scientific inquiry, 
all datasets used in this work are available at the following URL [5]. This research 
was partly funded by the National Science Foundation under grant IIS-0237918. 
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Abstract
Several studies have demonstrated the effectiveness of Haar

wavelets in reducing large amounts of data down to compactwa-
velet synopsesthat can be used to obtain fast, accurate approx-
imate query answers. While Haar wavelets were originally de-
signed for minimizing the overall root-mean-squared (i.e.,L2-
norm) error in the data approximation, the recently-proposed idea
of probabilistic wavelet synopsesalso enables their use in mini-
mizing other error metrics, such as the relative error in individual
data-value reconstruction, which is arguably the most important
for approximate query processing. Known construction algorithms
for probabilistic wavelet synopses employ probabilistic schemes
for coefficient thresholding that are based on optimal Dynamic-
Programming (DP) formulations over the error-tree structure for
Haar coefficients. Unfortunately, these (exact) schemes can scale
quite poorly for large data-domain and synopsis sizes. To address
this shortcoming, in this paper, we introduce a novel, fastapprox-
imation schemefor building probabilistic wavelet synopses over
large data sets. Our algorithm’s running time is near-linear in the
size of the data-domain (even for very large synopsis sizes) and
proportional to1/ε, whereε is the desired approximation guar-
antee. The key technical idea in our approximation scheme is to
make exact DP formulations for probabilistic thresholdingmuch
“sparser”, while ensuring a maximum relative degradation ofε on
the quality of the approximate synopsis, i.e., the desired approxi-
mation error metric. Extensive experimental results over synthetic
and real-life data clearly demonstrate the benefits of our proposed
techniques.

1. Introduction
Approximate query processing over compact, pre-

computed data synopses has attracted a lot of interest
recently as a viable solution for dealing with com-
plex queries over massive amounts of data in interac-
tive decision-support and data-exploration environments.
For several of these application scenarios, exact answers
are not required, and users may in fact prefer fast, approx-
imate answers to their queries. Examples include the ini-
tial, exploratory drill-down queries in ad-hoc data mining
systems, where the goal is to quickly identify the “inter-
esting” regions of the underlying database; or, aggregation

queries in decision-support systems where the full preci-
sion of the exact answer is not needed and the first few
digits of precision suffice (e.g., the leading digits of a to-
tal in the millions or the nearest percentile of a percent-
age) [1, 2, 6, 12].

Background and Earlier Results. Haar waveletsare a
mathematical tool for the hierarchical decomposition of
functions with several successful applications in signal and
image processing [13, 18]. A number of recent studies has
also demonstrated the effectiveness of the Haar wavelet de-
composition as a data-reduction tool for database problems,
including selectivity estimation [14] and approximate query
processing over massive relational tables [2, 19] and data
streams [9, 15]. Briefly, the key idea is to apply the decom-
position process over an input data set along with a thresh-
olding procedure in order to obtain a compact data synopsis
comprising of a selected small set ofHaar wavelet coeffi-
cients. The results of the recent research studies of Matias,
Vitter and Wang [14, 19], Chakrabarti et al. [2, 3], and oth-
ers [5, 17] have demonstrated that fast and accurate approx-
imate query processing engines can be designed to operate
solely over such compactwavelet synopses.

Until very recently, a major criticism of wavelet-based
approximate query processing techniques has been the fact
that unlike, e.g., random samples, conventional wavelet syn-
opses (such as those used in all the above-cited studies)
cannot provide useful guarantees on the quality of approx-
imate answers. The problem here is that coefficients for
such conventional synopses are typically chosen in a greedy
fashion in order to optimize the overall root-mean-squared
(i.e., L2-norm) error in the data approximation. However,
as pointed out by Garofalakis and Gibbons [7], conven-
tional,L2-optimized wavelet synopses can result in approx-
imate answers of widely-varying quality (even within the
same data set) and approximation errors that are heavily
biased towards certain regions of the underlying data do-
main. Their proposed solution, termedprobabilistic wave-
let synopses[7], employs the idea ofrandomized coeffi-
cient roundingin conjunction withDynamic-Programming-
basedthresholding schemes specifically tuned for optimiz-
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ing themaximum relative errorin the approximate recon-
struction of individual data values. By optimizing for rela-
tive error (with a sanity bound), which is arguably the most
important metric for approximate query answers, proba-
bilistic wavelet synopses offer drastic reductions in the
approximation error over conventional deterministic tech-
niques and, furthermore, enable unbiased data reconstruc-
tion with meaningful, non-trivialerror guaranteesfor re-
constructed values [7].1

Our Contributions. The Dynamic-Programming (DP) al-
gorithms of [7] for constructing probabilistic wavelet syn-
opses are based on anoptimal, continuous DP formulation
over the error-tree structure for Haar coefficients, in con-
junction with the idea ofquantizingthe possible choices for
synopsis-space allocation using an integer parameterq > 1
(in other words, fractional space is allotted to coefficients in
multiples of1/q). Unfortunately, the problem with these ex-
act (modulo the quantization) DP techniques is that they can
scale poorly for large data-domain and synopsis sizes – with
a domain size ofN and synopsis storage ofB, the worst-
case running time of the optimized algorithm presented in
[7] (which uses binary-search to optimize the DP search)
is O(Nq2B log(qB)), which becomesO(N2q2 log(Nq))
for large synopsis sizesB = Θ(N). (Given that today’s per-
sonal computers and workstations typically come equipped
with Gigabytes of main memory, it is quite realistic to ex-
pect large synopsis sizes when dealing with massive data
sets.) Our own experience with the DP schemes in [7] has
demonstrated that the times required for building a proba-
bilistic wavelet synopsis can increase very rapidly for large
domain sizesN and synopsis sizesB; this certainly raises
some concerns with respect to the applicability of proba-
bilistic wavelet techniques on massive, real-life data sets.
Note that large domain sizes in the range of105–107 are
not at all uncommon, e.g., for massive time-series data sets
where one or more readings/measurements are continuously
recorded on every time-tick.

To address these concerns, we propose a novel, fastap-
proximation schemefor building probabilistic wavelet syn-
opses over large data sets. Given a quantization parameterq
and a desired approximation factorε, our algorithm can be
used to build a probabilistic synopsis ofany sizeB ≤ N in
worst-case time ofO(Nq log q min{log N log R/ε,Bq})
(whereR is roughly proportional to the maximum absolute
Haar-coefficient value in the decomposition), while guaran-
teeing that the quality of the final solution is within a fac-
tor of (1 + ε) of that obtained by the (exact) techniques
of Garofalakis and Gibbons [7] for the same problem in-

1 In more recent work, Garofalakis and Kumar [8] have proposed opti-
maldeterministicwavelet-thresholding schemes for relative error met-
rics; still, their optimal algorithms are significantly more expensive
computationally than the probabilistic schemes in [7], and do not di-
rectly extend to multi-dimensional data.

stance. (Note that the running time of our algorithm actu-
ally represents an improvement over the techniques in [7]
even when computing the exact, optimal solution.) In a nut-
shell, the key technical idea in our proposed approxima-
tion scheme is to make the original DP formulations in [7]
much “sparser”, while ensuring a maximum relative degra-
dation of (1 + ε) on the quality of the approximate solu-
tion, i.e., the desired maximum error metric. This is accom-
plished by restricting the DP search to a carefully-chosen,
logarithmically-small subset of“breakpoints” that cover
the entire range of possible space allotments within the re-
quired error guarantee. Our results clearly validate our ap-
proach, demonstrating that our algorithm (1) exhibits sig-
nificantly smaller running times, often bymore than one or
even two orders of magnitude, than the exact DP solution;
and (2) typically produces significantly tighter approxima-
tions than the specified(1 + ε) (worst-case) guarantee.

Roadmap.The remainder of this paper is organized as fol-
lows. Section 2 gives background material on wavelets, as
well as conventional and probabilistic wavelet synopses. In
Section 3, we discuss our approximation scheme for con-
structing probabilistic wavelet synopses in detail. Section 4
describes the results of our empirical study and, finally, Sec-
tion 5 gives some concluding remarks.

2. Preliminaries
The Haar Wavelet Transform. Wavelets are a useful math-
ematical tool for hierarchically decomposing functions in
ways that are both efficient and theoretically sound. Broadly
speaking, the wavelet decomposition of a function consists
of a coarse overall approximation along with detail coeffi-
cients that influence the function at various scales [18]. Sup-
pose that we are given the one-dimensional data vectorA
containing theN = 8 data valuesA = [2, 2, 0, 2, 3, 5, 4, 4].
The Haar wavelet transform ofA can be computed as fol-
lows. We first average the values together pairwise to get a
new “lower-resolution” representation of the data with the
following average values[2, 1, 4, 4]. In other words, the av-
erage of the first two values (that is,2 and2) is 2, that of
the next two values (that is,0 and2) is 1, and so on. Obvi-
ously, some information has been lost in this averaging pro-
cess. To be able to restore the original values of the data ar-
ray, we need to store somedetail coefficients, that capture
the missing information. In Haar wavelets, these detail coef-
ficients are simply the differences of the (second of the) av-
eraged values from the computed pairwise average. Thus,
in our simple example, for the first pair of averaged val-
ues, the detail coefficient is0 since2 − 2 = 0, for the sec-
ond we need to store−1 since1 − 2 = −1. Note that no
information has been lost in this process – it is fairly sim-
ple to reconstruct the eight values of the original data ar-
ray from the lower-resolution array containing the four av-
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erages and the four detail coefficients. Recursively apply-
ing the above pairwise averaging and differencing process
on the lower-resolution array containing the averages, we
get the following full decomposition:

Resolution Averages Detail Coefficients
3 [2, 2, 0, 2, 3, 5, 4, 4] —
2 [2, 1, 4, 4] [0, -1, -1, 0]
1 [3/2, 4] [1/2, 0]
0 [11/4] [-5/4]

The wavelet transform(also known as thewavelet de-
composition) of A is the single coefficient representing the
overall average of the data values followed by the detail co-
efficients in the order of increasing resolution. Thus, the
one-dimensional Haar wavelet transform ofA is given by
WA = [11/4,−5/4, 1/2, 0, 0,−1,−1, 0]. Each entry inWA

is called awavelet coefficient. The main advantage of using
WA instead of the original data vectorA is that for vectors
containing similar values most of the detail coefficients tend
to have very small values. Thus, eliminating such small co-
efficients from the wavelet transform (i.e., treating them as
zeros) introduces only small errors when reconstructing the
original data, resulting in a very effective form of lossy data
compression [18]. Furthermore, the Haar wavelet decom-
position can also be extended tomulti-dimensionaldata ar-
rays through natural generalizations of the one-dimensional
decomposition process described above. Multi-dimensional
Haar wavelets have been used in a wide variety of appli-
cations, including approximate query answering over com-
plex decision-support data sets [2, 19].

Error Tree and Conventional Wavelet Synopses.A help-
ful tool for exploring the properties of the Haar wavelet de-
composition is theerror tree structure [14]. The error tree
is a hierarchical structure built based on the wavelet trans-
form process. Figure 1 depicts the error tree for our exam-
ple data vectorA. Each internal nodeci (i = 0, . . . , 7) is
associated with a wavelet coefficient value, and each leaf
di (i = 0, . . . , 7) is associated with a value in the origi-
nal data array; in both cases, the indexi denotes the posi-
tions in the data array or error tree. For example,c0 corre-
sponds to the overall average ofA. The resolution levelsl
for the coefficients (corresponding to levels in the tree) are
also depicted. We use the terms “node” and “coefficient” in-
terchangeably in what follows.

Given a nodeu in an error treeT , let path (u) denote
the set of all proper ancestors ofu in T (i.e., the nodes
on the path fromu to the root ofT , including the root
but not u) with non-zero coefficients. A key property of
the Haar wavelet decomposition is that the reconstruction
of any data valuedi depends only on the values of co-
efficients onpath (di); more specifically, we havedi =∑

cj∈path (di)
δij · cj , whereδij = +1 if di is in the left

child subtree ofcj or j = 0, andδij = −1 otherwise. For
example, in Figure 1,d4 = c0 − c1 + c6 = 11

4 − (− 5
4 )+

(−1) = 3.

l = 1

l = 2

l = 3

l = 0

1/2

d5

0−1c6 c7−1c50
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c2 0c3
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Figure 1. Error tree for example array A (N = 8).

Given a limited amount of storage for building awave-
let synopsisof the input data arrayA, a thresholding pro-
cedure retains a certain numberB � N of the coeffi-
cients as a highly-compressed approximate representation
of the original data (the remaining coefficients are implic-
itly set to0). Conventional coefficient thresholding is a de-
terministic process that seeks to minimize the overall root-
mean-squared error (L2 error norm) of the data approxima-
tion [18] by retaining theB largest wavelet coefficients in
absolute normalized value[18]. L2 coefficient thresholding
has also been the method of choice for the bulk of existing
work on Haar-wavelets applications in the data-reduction
and approximate query processing domains [2, 14, 15, 19].

Probabilistic Wavelet Synopses.Unfortunately, wavelet
synopses optimized for overallL2 error using the above-
described process may not always be the best choice for ap-
proximate query processing systems. As observed in a re-
cent study by Garofalakis and Gibbons [7], such conven-
tional wavelet synopses suffer from several important prob-
lems, including the introduction of severe bias in the data
reconstruction and wide variance in the quality of the data
approximation, as well as the lack of non-trivial guarantees
for individual approximate answers. To address these short-
comings, their work introducesprobabilistic wavelet syn-
opses, a novel approach for constructing data summaries
from wavelet-transform arrays. In a nutshell, their key idea
is to apply a probabilistic thresholding process based on
randomized rounding[16], that randomly rounds coeffi-
cients either up to a larger rounding value or down to zero,
so that the value of each coefficient is correcton expecta-
tion. More formally, each non-zero wavelet coefficientci is
associated with arounding valueλi and a correspondingre-
tention probabilityyi = ci

λi
such that0 < yi ≤ 1, and the

value of coefficientci in the synopsis becomes a random
variableCi ∈ {0, λi}, where,

Ci =
{

λi with probability yi

0 with probability 1− yi.

In other words, a probabilistic wavelet synopsis essen-
tially “rounds” each non-zero wavelet coefficientci inde-
pendentlyto eitherλi or zero by flipping a biased coin with
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M
∗
[i, βi]=


min
yi∈(0,min{1,βi}];
bL∈[0,βi−yi]

{
max

{
Var(i,yi)
Norm(2i)

+ M∗[2i, bL] ,

Var(i,yi)
Norm(2i+1)

+ M∗[2i + 1, βi − yi − bL]

}}
if i<N , ci 6=0,

andβi > 0

minbL∈[0,βi] { max{ M∗[2i, bL] , M∗[2i + 1, βi − bL] } } if i < N and
ci = 0

0 if i ≥ N

∞ otherwise

(1)

success probabilityyi. Note that the above rounding pro-
cess isunbiased; that is, the expected value of each rounded
coefficient is E[Ci] = λi · yi+ 0 · (1− yi) = ci, i.e., the ac-
tual coefficient value, while its variance is

Var(i, yi) = Var(Ci) = (λi − ci) · ci =
1− yi

yi
· c2

i (2)

and the expected size of the synopsis is simply
E[|synopsis|] =

∑
i|ci 6=0 yi =

∑
i|ci 6=0

ci

λi
. Thus, since

each data value can be reconstructed as a simple lin-
ear combination of wavelet coefficients, and by linearity
of expectation, it is easy to see that probabilistic wa-
velet synopses guarantee unbiased approximations of
individual data values as well as range-aggregate query an-
swers [7].

Garofalakis and Gibbons [7] propose several different al-
gorithms for building probabilistic wavelet synopses. The
key, of course, is to select the coefficient rounding values
{λi} such that some desired error metric for the data ap-
proximation is minimized while not exceeding a prescribed
space limitB for the synopsis (i.e., E[|synopsis|] ≤ B).
Their winning strategies are based on formulating appropri-
ateDynamic-Programming (DP)recurrences over the Haar
error-tree that explicitly minimize either (a) the maximum
normalized standard error (MinRelVar), or (b) the maximum
normalized bias (MinRelBias), for each reconstructed value
in the data domain. As explained in [7], the rationale for
these probabilistic error metrics is that they are directly re-
lated to themaximum relative error(with an appropriate
sanity boundS)2 in the approximation of individual data
values based on the synopsis; that is, both theMinRelVar
and MinRelBias schemes try to (probabilistically) control

the quantitymaxi{ |d̂i−di|
max{|di|,S}}, whered̂i denotes the data

value reconstructed based on the wavelet synopsis. Note,
of course, that̂di is again arandom variable, defined as the
±1 summation of all (independent) coefficient random vari-
ables onpath (di). Bounding the maximum relative error in
the approximation also allows for meaningfulerror guaran-
teesto be provided on reconstructed data values [7].

As an example, Equation (1) depicts the DP recurrence in
[7] for minimizing the maximum squared Normalized Stan-

2 The role of the sanity bound is to ensure that relative-error numbers
are not unduly dominated by small data values [11, 19].

dard Error (NSE2) in the data reconstruction, defined as

max
i

NSE2(d̂i) = max
i

Var(d̂i)
max{d2

i , S2}
,

where Var(d̂i) =
∑

cj∈path (di)
Var(j, yj). M∗[i, βi] here

denotes the minimum value of the maximumsquaredNSE

(i.e.,NSE2) among all data values in the subtree of the error-
tree rooted at coefficientci assuming a space budget ofβi,
and Norm(i) = max{dmin(i)2, S2}, wheredmin(i) is the
minimum absolute data value underci’s subtree, is a nor-
malization term for that subtree. (Indices2i and2i + 1 in
the recurrence correspond to the left and right child (re-
spectively) ofci in the error-tree structure (Figure 1).) In-
tuitively, the DP recurrence in Equation (1) states that, for
a given space budgetβi at ci, the optimal fractional-storage
allotments{yi} and the corresponding maximumNSE2 are
fixed by minimizing the larger of the costs for paths viaci’s
two child subtrees (including the root in all paths), where
the cost for a path via a subtree is the sum of: (1) the vari-
ance penalty incurred atci itself, assuming a setting ofyi,
divided by the normalization term for that subtree, and (2)
the optimal cost for the subtree, assuming the given space
budget. This minimization, of course, is over all possible
values ofyi and, given a setting ofyi, over all possible al-
lotments of the remainingβi−yi space “units” amongst the
two child subtrees ofci. Of course, ifci = 0 then no space
budget needs to be allocated to nodei, which results in the
simpler recurrence in the second clause of Equation (1). Fi-
nally, data-value nodes (characterized by indicesi ≥ N ,
see Figure 1) cost no space and incur no cost, and the “oth-
erwise” clause handles the case where we have a non-zero
coefficient but zero budget (ci 6= 0 andβi = 0).

As demonstrated in [7], the DP recurrence in Equa-
tion (1) characterizes the optimal solution to the maxi-
mum NSE2 minimization problem for the case ofcontinu-
ous fractional-storage allotmentsyi ∈ (0, 1] (modulo cer-
tain technical conditions that may require small “perturba-
tions” of zero coefficients [7]). A similar DP recurrence
can also be given for the maximum normalized bias met-
ric. Their MinRelVar andMinRelBias algorithms then pro-
ceed byquantizing the solution space; that is, they as-
sume the storage allotment variablesyi and bL in Equa-
tion (1) to take values from a discrete set of choices cor-
responding to integer multiples of1/q, whereq > 1 is
an input integer parameter to the algorithms. (For instance,
yi ∈ {0, 1

q , 2
q , . . . , 1} – larger values ofq imply results
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closer to the optimal, continuous solution.) Furthermore,
both MinRelVar and MinRelBias cap the variance of a co-
efficientc at c2, thus allowing for zero-space allotments to
unimportant coefficients (this also implies that non-zero al-
lotments of size≤ 1

2 are useless, as they result in larger vari-
ance (Equation (2)) while utilizing more space).The running
time of their (quantized)MinRelVar and MinRelBias algo-
rithms isO(Nq2B log(qB)) with an overall space require-
ment ofO(NqB) (and an in-memory working-set size of
O(qB log N)); furthermore, their techniques also naturally
extend to multi-dimensional data and wavelets, with a rea-
sonable increase in time and space complexity [7]. Exper-
imental results over synthetic and real-life data in [7] have
demonstrated the superiority ofMinRelVar andMinRelBias
probabilistic synopses as an approximate query answering
tool over conventional wavelet synopses. In our discussion,
we useM∗

q [i, βi] to denote the result of the quantized (ex-
act) algorithms of [7] (e.g., maximumNSE2 for MinRel-
Var) for the error subtree rooted at coefficientci assuming a
space budget ofβi.

3. Our Approximation Scheme
In this section, we present our efficient approximation

scheme, termedε-ApproxRV, for constructing probabilistic
wavelet synopses over large data sets. Ourε-ApproxRV is
a guaranteed(1 + ε) approximation algorithm for theMin-
RelVar scheme of Garofalakis and Gibbons [7]; that is, it
focuses on minimizing the maximumNSE2 in the data re-
construction. Our techniques can easily be extended to han-
dle other error metrics, such as the maximum normalized
bias employed byMinRelBias [7]. Our presentation here fo-
cuses primarily on the case of one-dimensional Haar wave-
lets – the details of the extension to multiple dimensions can
be found in the full paper[4].

3.1. The One-Dimensionalε-ApproxRV Algorithm
Consider the error-tree structure for a one-dimensional

Haar wavelet decomposition, and letR denote themaximum
absolute normalized valueof any coefficient in the tree, de-
fined as

R = max
i

|ci|
max{dmin(i), S}

,

where, as previously,dmin(i) denotes the minimum abso-
lute data value in the subtree of nodei. (Typically, e.g., for
frequency-count vectors, the denominator in the above ex-
pression is> 1, which implies thatR is in the order of the
maximum absolute coefficient value.) Ourε-ApproxRV al-
gorithm runs in O(Nq log q min{ log N log R

ε , Bq}) time
and computes an approximate solution for any synop-
sis space budgetB ≤ N . Note that, for large synopsis
sizes (B = Θ(N)), the corresponding time complex-
ity of the exactMinRelVar algorithm is significantly higher:
O(N2q2 log(Nq)) [7]. Of course, ourε-ApproxRV algo-

rithm is actually faster than theMinRelVar algorithm even
for very small synopsis sizes (B = o(log N)) and when
the optimal solution is sought. Again, the key idea in our
ε-ApproxRV algorithm is to speed up the DP search by mak-
ing it much “sparser”3 – in a nutshell, our approximate
“sparse” DP algorithm will only search over a few pos-
sible space allotments for each error subtree, which are
carefully chosen to guarantee a maximum deviation of
(1 + ε) from the optimal solution. Ourε-ApproxRV algo-
rithm proceeds in a bottom-up fashion over the input error
tree – to simplify the exposition in this section, we as-
sume that levels in the error tree are numbered bottom-up,
with leaf-node coefficients at level0 and the root (over-
all average) at levellog N − 1.

The Sparse DP Approximation Scheme.Fix a quantiza-
tion parameterq, and letMq [v, b] denote the approximate
maximum squaredNSE (NSE2) computed byε-ApproxRV
for any data value in the error subtree rooted at nodev. As
earlier,M∗

q [v, b] is the corresponding optimalNSE2 value
computed byMinRelVar. Note that, for any nodev, the
M∗

q [v, b] values are clearlymonotonically decreasingin b;
that is,M∗

q [v, x] ≤ M∗
q [v, y] for x > y [7].

For the base case, consider a leaf-node coefficientv (at
level0) – clearly, in this case

M∗
q [v, b] =

Var(cv,min{1, b})
min{Norm(2v), Norm(2v + 1)}

i.e., the maximum normalized variance of the correspond-
ing random variable with a success probability ofb (b ∈
{0, 1

q , 2
q , . . . , 1} – anyb ≥ 1 obviously results in zero nor-

malized variance). It is easy to see that all possible val-
ues forM∗

q [v, b], for any value ofb, can be computed in
time O(q), whereq is the designated quantization param-
eter. Out of theseO(q) variance values and possible allot-
ments tocv, ourε-ApproxRV algorithm picks a subset of al-
lotmentsb1 > . . . > bh such that: (1) for each allotment
x ∈ [bi, bi−1) we haveM∗

q [v, bi] ≤ (1 + ε)M∗
q [v, x]; and,

(2) b1 throughbh cover the entire possible range of space al-
lotments tocv, i.e.,b1 = 1 andbh = 0. This can obviously
be done inO(q) time by simply going over allM∗

q val-
ues and selectingbi+1 as the first allotment≤ bi such that
M∗

q [v, bi+1] > (1 + ε)M∗
q [v, bi]. Since the maximum nor-

malized variance for a coefficient valuecv is at most (see

Section 2) c2
v

min{Norm(2v),Norm(2v+1)} ≤ R2, is easy to see
that the numberh of allotment “breakpoints” selected in this
fashion is at mostO(log1+ε R2) = O( log R

log(1+ε) ) ≈O( log R
ε )

(for small values ofε < 1). The approximate error values

3 Guha et al. [10] also discuss sparse DP algorithms in an entirely differ-
ent context, namely building approximateV -optimal histograms over
linear, time-series data; in contrast, our solution focuses on Haar wa-
velets and works over the hierarchical error-tree structure of the wave-
let decomposition.
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determined by ourε-ApproxRV algorithm for coefficientcv

are defined only by theseh breakpointsb1, . . . , bh – specifi-

cally, Mq [v, bi] = M∗
q [v, bi] = Var(cv,bi)

min{Norm(2v),Norm(2v+1)}
for i = 1, . . . , h, and for any other possible allotment
x ∈ [bi, bi−1), we defineMq [v, x] = Mq [v, bi]. Thus, it
is easy to see that, by construction, the approximation er-
ror of our ε-ApproxRV algorithm is bounded by a factor of
(1 + ε) at leaf coefficients (at level0); in other words, all
dropped allotments are “covered” by a logarithmic number
of breakpoints to within a (1 +ε) factor.

Now, proceeding inductively, consider an internal error-
tree nodev at level j, with children u and w (at level
j − 1), and assume that the subtree rooted atu (w) has de-
termined a collection oflu (resp.,lw) error-function break-
points a1 > . . . > alu (resp.,b1 > . . . > blw ), and
corresponding approximateNSE2 valuesMq [], that cover
the range of allotments to each subtree and such that, for
eachx ∈ [ai, ai−1) (i = 2, . . . , lu), we haveMq [u, ai] ≤
(1+ ε)jM∗

q [u, x] (and similarly forw). Ourε-ApproxRV al-
gorithm computes the allotment breakpoints and approxi-
mate error valuesMq [] at the parent nodev by iterating
over all possible space allotments to nodev and the break-
points determined by theu andw subtrees (rather than all
possible allotments to child subtrees), and retaining the min-
imum Mq values for each total allotment. The following
lemma shows that, for each fixed space allotment to the co-
efficient at nodev, it actually suffices to look at onlylu + lw
combinations(ai, bk) for the subtree allotments rather than
all possiblelu · lw combinations.

Lemma 1: When minimizing the maximum (approximate)
NSE2 error at nodev, for any fixed space allotment to node
v, it suffices to consider onlylu + lw combinations of allot-
ments(ai, bk) to the child subtrees rooted atu, w.

Proof: Assume a fixed space allotment to the coefficient at
nodev, and letleftV ar (rightV ar) denote the variance
of nodev (for the given allotment) divided by the normal-
ization factor of its left (resp., right) subtree. LetLu de-
note the sorted list of approximateNSE2 valuesM ′

q [u, ai] =
Mq [u, ai] + leftV ar, i.e.,Mq [u, a1] + leftV ar < . . . <
Mq [u, alu ] + leftV ar, with Lw defined similarly using
therightV ar quantity and theMq [w, bk] entries. LetL =
merge(Lu, Lw), i.e.,M ′

q [y1] ≤ . . . ≤ M ′
q [ylu+lw ], where

yi ∈ {(u, ak) : k = 1, . . . , lu} ∪ {(w, bk) : k = 1, . . . , lw}.
Now assume thatai space is allocated to theu-subtree of
v. Then, it is easy to see that, when considering the allot-
ment to thew-subtree, out of all theb-values that lie to the
left of ai in L we really only need to consider the right-
most b-value, saybk – the reason of course is that lower
values ofM ′

q [w, b] (i.e., allotmentsb > bk) result in con-
figurations that use more total space without improving the
error atv (since that is dominated by theu-subtree). These
configurations are clearly useless in our error-minimization

procedure. For theb-values to the right ofai in L, a sim-
ilar argument again applies: when a valuebk is assumed,
only the closesta-value to its left inL needs to be consid-
ered.

Thus, our approximate error-minimization procedure at
v only needs to consider, for each fixed space allotment
s = 0, 1/q, . . . , 1 to nodev, lu + lw breakpoint combi-
nations(ai, bk) for theu andw subtrees, which can be de-
termined easily inO(lu + lw) time based on the proof of
Lemma 1. LetS(s) denote the list of the obtainedlu + lw
(ai, bk) combinations for each space allotments to node
v. The sorted list of approximate error values at nodev
can be computed inO(q(lu + lw) log q) time by merg-
ing these lists using a heap structure or, alternatively, pair-
wise merging them inlog q steps. Thus, an initial list of
O(q(lu + lw)) breakpoints for thev subtree is determined
based on the “useful” space-allocation configurations found
through the above lemma – clearly, configurations that give
the same (or, larger)NSE2 values for the same (or, larger)
amount of total space are useless and should be discarded.
In other words, we define the initial set of space-allotment
breakpoints for thev subtree asC = {c = ai + bk + s :
Mq [v, ai + bk + s] ≤ Mq [v, a + b + t] for all a + b + t ≤
ai+bk+s}. (Useless configurations and configurations with
space larger thanB can easily be discarded in the merging
pass for theO(q) sub-lists described above.) It is easy to
verify that, based on our inductive assumption, this set of
breakpointsC covers the entire range of possible allotments
for thev subtree; furthermore, the following lemma shows
that it also preserves the approximation properties guaran-
teed by the individual subtrees.

Lemma 2: Let s1 > . . . > sh denote the sorted list of
space-allotment breakpointsC for thev subtree, computed
as described above, and letx ∈ [si, si−1) for any i. Then,
Mq [v, si] ≤ (1 + ε)jM∗

q [v, x], wherej denotes the level of
nodev.

Proof: Assume that the optimal error valueM∗
q [v, x] is ob-

tained through the allotment configuration(yu, yw, s), that
is:

M∗
q [v, x] = max


Var(cv,s)

Norm(u)
+ M∗

q [u, yu]
Var(cv,s)

Norm(w)
+ M∗

q [w, yw]

where, of course,x ≥ yu + yw + s. Since the break-
points for theu and w subtrees cover all possible allot-
ments, letyu ∈ [ai, ai−1) andyw ∈ [bk, bk−1). By our in-
ductive hypothesis, it is easy to see that the configuration
(ai, bk, s) (which is obviously examined by theε-ApproxRV
algorithm) will giveMq [v, ai +bk +s] ≤ (1+ ε)jM∗

q [v, x]
and, clearly,ai + bk + s ≤ si ≤ x. SinceMq [v, si] ≤
Mq [v, ai + bk + s], the result follows.
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A potential problem with our approximation scheme, as
described so far, is that the list of space-allotment break-
points C would appear to grow exponentially as the DP
moves up the error-tree levels. (So, starting withr break-
points at the leaf nodes, we getO(qj2jr) breakpoints at
level j of the tree.) However, not allsi’s in C are neces-
sary – we can actually “trim”C to a small number of break-
points, while incurring an additional(1+ ε) worst-case fac-
tor degradation on our approximation error. We perform this
trimming process at every node of the error tree (except for
the final, root node). More specifically, assume a chain of
computed breakpointssi−k > si−k+1 > . . . > si such
that, for eachl = i − k, . . . , i − 1 we haveMq [v, si] ≤
(1 + ε)Mq [v, sl]. Then, clearly,Mq [v, si] can “cover” all
the points that are covered bysi−k, . . . , si−1 at an addi-
tional(1+ε) degradation, since, for anyl = i−k, . . . , i−1:

Mq [v, si] ≤ (1 + ε)Mq [v, sl]
≤ (1 + ε)j+1M∗

q [v, x] ∀x ∈ [sl, sl−1).

Thus, in this situation, the allotment pointssi−k, . . . , si−1

can be eliminated andsi can cover their ranges to within a
(1 + ε)j+1 factor. Now, note that the maximum value of the
overallNSE2 value at levelj (and, thus, the range of values
for theMq [] array) is certainly upper-bounded by(j+1)R2.
This means that the total number of breakpoints obtained in
the manner described above is at mostlog1+ε((j+1)R2) ≈
O( log(j+1)+log R

ε ), which is an upper bound for the size of
our breakpoint-list constructed at levelj of the error tree.
Thus, with an overall computational effort of:
log N−1∑

j=0

O(
N

2j+1

q log q(log(j + 1) + log R)

ε
)

≤ O(
Nq log q log R

ε

log N−1∑
j=0

1

2j+1
) + O(

Nq log q
ε

log N−1∑
j=0

j + 1

2j+1
)

= O(
Nq log q log R

ε
),

we get a (collection of) approximate solutions at the root
node of the error tree that are guaranteed to cover the op-
timal MinRelVar solutions to within a(1 + ε)log N fac-
tor. Then, it is easy to see that, settingε′ = ε/ log N ,
we get a guaranteed(1 + ε) approximation in time
O(Nq log q log N log R

ε ). Note that, to find the approxi-
mate solution for any specific choice of the allotment
spaceB, we simply start out at the root and re-trace
the steps of the algorithm for the largest root break-
point si that is≤ B; to do that, we just need to keep track
of the (ai, bk, s) configuration that generated each of the
breakpoints at each error tree node and proceed recur-
sively down the tree. It is easy to verify that the overall
space required by theε-ApproxRV algorithm is

log N−1∑
j=0

O(
N

2j+1

log(j + 1) + log R

ε′
) = O(

N log N log R

ε
),

while the working set size (maximum amount of
memory-resident data) is onlyO(q(log log N+log R)

ε′ )
= O(q log N(log log N+log R)

ε ). To see this, note that
ε-ApproxRV works in a bottom-up fashion and, when com-
puting the breakpoint-list for a given nodev, we only
need access to: (1) thelu + lw breakpoints of its child
nodes in the error tree; and, (2) theO(q(lu + lw)) ini-
tial breakpoints for nodev that are computed just before the
trimming process. Thus, the maximum working set will oc-
cur in the top-level of the error tree (levellog N -1), where
lu + lw = O( log R+log log N

ε′ ). Finally, note that, given a
space budgetB, we cannot have more thanqB differ-
ent breakpoints at any error-tree node; in other words,
the size of the breakpoint list at any level-j node is
at most O(min{ log(j+1)+log R

ε , qB}). This easily im-
plies that the overall space required by ourε-ApproxRV
algorithm can never exceed the space requirements ofMin-
RelVar (i.e., O(NqB)). Similarly, the list of (at most
qB) breakpoints at each node can be computed in time
O(q × (qB) log q)=O(Bq2 log q); thus, the over-
all running time complexity is also upper-bounded by
O(NBq2 log q), giving an improvement overMinRel-
Var, even for very small values ofB. The following the-
orem summarizes the results of our analysis for the
one-dimensionalε-ApproxRV algorithm.

Theorem 3: Theε-ApproxRV algorithm correctly computes
a list of breakpoints at the root node such that, for any space
budgetB ≤ N and approximation factorε, the estimated
maximumNSE2 value is within a factor of(1 + ε) from the
optimal MinRelVar solution. The overallε-ApproxRV com-
putation requiresO(Nq log q min{ log N log R

ε , Bq}) time

andO(N min{ log N log R
ε , qB}) space, with a working set

size ofO(q min{log N log log N+log R
ε , B}).

It is important to note that the above (worst-case)
running-time and space complexities of ourε-ApproxRV al-
gorithm are based on a pathological case where all the pro-
duced coefficients have an absolute normalized value
of R. However, in most real-life data sets the wave-
let decomposition process produces few coefficients of
large magnitude, while the remaining coefficient val-
ues are significantly smaller. This, in turn, implies that,
for most error-tree nodes, the maximum value of the over-
all NSE2 value at levelj will be significantly smaller than
(j + 1)R2. This results not only in reduced space require-
ments for ε-ApproxRV (smaller breakpoint-lists stored at
each node), but also in reduced running times (smaller
breakpoint-lists scanned and merged). Our experimen-
tal results in Section 4 clearly validate our claims, with
ε-ApproxRV demonstrating consistent and very signifi-
cant gains over the exactMinRelVar scheme for a wide
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range of input parameters and data sets.

Optimizations and Extensions.For very large data sets,
it is possible that the breakpoint-lists produced by ourε-
ApproxRV algorithm may not fit in main memory, result-
ing in substantial I/O during the algorithm’s execution.
In the full paper[4], we propose a simple optimization
to address this concern. Briefly, the key idea is to com-
pute the breakpoint-lists for error-tree nodes in one pass
using a postorder traversal, with a working set size of

O(min{ (log N)2(log R+log log N)
ε , qB log N}).

The full paper[4] also discusses in detail the ex-
tension of our ε-ApproxRV algorithm for multi-
dimensional data sets. For the case ofD-dimensional
data, the running time of ε-ApproxRV becomes

O(min{Nzq4D log Mmax(log q+D)(D+log R+log log Mmax)
ε ,

Nzq2D×(qB + D2D)}), whereNz denotes the number of
nodes in the error tree that contain at least one non-zero co-
efficient, andMmax is the maximum domain size among
all dimensions. The corresponding space requirements are

O(min{ 4DNz log Mmax(D+log R+log log Mmax)
ε , qNzB}).

Note, of course, that in most real-life scenarios employ-
ing wavelet-based data reduction, the number of dimen-
sionsD is typically a small constant (e.g.,2–5) [2, 6, 7].

4. Experimental Study

In this section, we present an extensive experimental
study of our proposedε-ApproxRV algorithm for construct-
ing probabilistic wavelet synopses over large data sets. The
objective of this study is to evaluate both the scalability and
the obtained accuracy of our proposedε-ApproxRV algo-
rithm when compared to the dynamic programming algo-
rithm MinRelVar of [7] for a large variety of real-life and
synthetic data sets. For the later DP solution, we used the
significantly faster version of the algorithm that was very
recently proposed in [7]. The main findings of our study for
theε-ApproxRV algorithm include:

• Near Optimal Results.The ε-ApproxRV algorithm con-
sistently provides near-optimal solutions. Moreover, the ac-
tual deviation of theε-ApproxRV solution from the optimal
one is typically significantly smaller (usually by a factor
larger than 5) than the specifiedε value.

• Significantly Faster Solution.Ourε-ApproxRV algorithm
provides a fast and scalable solution for constructing proba-
bilistic synopses over large data sets. Compared to theMin-
RelVar algorithm of [7], the running time of theε-ApproxRV
algorithm is often more than an order of magnitude (and
in some times more than two orders of magnitude) smaller,
while at the same time providing highly-accurate answers.
In fact, theε-ApproxRV algorithm is significantly faster even
for cases when the optimal solution is required (ε = 0).

4.1. Testbed and Methodology
Techniques and Parameter Settings.Our experimental
study compares theε-ApproxRV andMinRelVar algorithms
for constructing probabilistic wavelet synopses. Both algo-
rithms utilize the quantization parameterq, which is as-
signed a value of 10, as suggested in [7], in our exper-
iments. Larger values of this quantization parameter im-
proved the running time performance of theε-ApproxRV al-
gorithm when compared to theMinRelVar algorithm, as ex-
pected by the running time complexities of the two algo-
rithms. Finally, the sanity bound of each data set is set to its
5%-quantile data value.

Data Sets.We experiment with several one-dimensional
synthetic and real-life data set. Due to space con-
straints we only present here the results for the real-life
data sets (the performance of the algorithms in the syn-
thetic data sets is qualitatively similar). TheWeather
data set contains meteorological measurements obtained
by a station at the university of Washington (www-k12.-

atmos.washington.edu/k12/grayskies ). This is a
one-dimensional data set for which we extracted the fol-
lowing 6 measured quantities: wind speed, wind peak, solar
irradiance, relative humidity, air temperature and dew-
point temperature, and present here the results for the
wind speed (AirSpeed) and the air temperature (AirTemp),
which represent a noisy and a smooth signal, correspond-
ingly. The Phone data set includes the total number
of long distance calls per minute originating from sev-
eral states in USA. We here present the results for the
states of New York (NY) and Indiana (IN), with NY hav-
ing large numbers of calls per minute and IN being a
state with significantly fewer calls. The presented re-
sults for each real-life data set are also indicative of the re-
sults for the other measured quantities in these data
sets.

Approximation Error Metrics. To compare the accuracy
of the studied algorithms we focus on the maximum rela-
tive error of the approximation, since it can provide guar-
anteed error-bounds for the reconstruction of any individ-
ual data value. Since the objective function that both stud-
ied algorithms try to minimize is the maximumNSE2 of any
data value, for a more direct and clear comparison we pre-
sent the results for this metric and for both algorithms. The
results for the maximum relative error are qualitatively sim-
ilar to the presented ones.

4.2. Experimental Results
Sensitivity to ε. We now evaluate the accuracy and running
time of theε-ApproxRV algorithm in comparison to theMin-
RelVar algorithm, using the real-life data sets. In Figures 2
and 3 we plot the running times for the two algorithms and
for the two data sets, correspondingly, as we vary the value
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of ε from 0 to 0.3. We set the domain size for all data sets to
65536, and the synopsis space to 5% of the input size. The
ε-ApproxRV algorithm is consistently faster than theMinRel-
Var algorithm in both real-life data sets, often by more than
an order of magnitude, and is considerably faster even when
the optimal solution is required (ε = 0). Unlike theMinRel-
Var algorithm which may perform multiple lookups of each
computed entry,4 the ε-ApproxRV algorithm processes all
node entries in a single pass, therefore resulting in signifi-
cantly faster running times. We also observe in these figures
that, with the increase ofε, the running time ofε-ApproxRV
decreases, as the algorithm effectively prunes a larger num-
ber of breakpoints.

The correspondingNSE2 values for both algorithms are
presented in Figures 4 and 5. In order for the reader to be
able to observe the difference in the accuracy of the two
algorithms, in each figure we plot the ratio of the maxi-
mumNSE2 values produced by theε-ApproxRV algorithm to
the corresponding results of theMinRelVar algorithm. The
ε-ApproxRV algorithm, as expected, always provides solu-
tions that are within the specified error factorε from the
optimal solution. It is interesting to note though that in all
cases the produced solution is significantly closer to the op-
timal one (by more than a factor of 5), than the specifiedε
value. This is not surprising, asε represents a worst-case er-
ror bound.

Sensitivity to the Domain Size.We now evaluate the accu-
racy and running time of theε-ApproxRV algorithm in com-
parison to theMinRelVar algorithm, using the real-life data
sets, when we vary the domain size of the data sets from
128 to 65536, and plot the resulting running times for the
two algorithms in Figures 6 and 7. The synopsis space is
set to 5% of the input size, while the value ofε is set to
0.10. Again, theε-ApproxRV algorithm significantly outper-
forms theMinRelVar algorithm, with the savings in running
time increasing rapidly as the domain size increases. For
large domain sizes, theε-ApproxRV algorithm is up to 23.8
times faster than theMinRelVar algorithm.

In Figures 8 and 9 we plot the corresponding ratios of
the maximumNSE2 values obtained by the two algorithms.
Again, the ε-ApproxRV algorithm always produced solu-
tions that are significantly closer to the optimal solution
(less than 1.7% and 1.4% difference, correspondingly, for
the two data sets), than the specified error factorε.

Sensitivity to the Synopsis Space.In Figures 10 and 11
we present the running times for both algorithms and for
the real-life data sets, as the synopsis space is varied from
1% to 30% of the size of the input. The domain size is set to
65536, while the value ofε is set to 0.10. The running time

4 In theMinRelVar algorithm, the optimal solution of allocating space
B to any nodev may be probed for any space allotment≥ B to v’s
parent node in the error tree.

of the MinRelVar algorithm increases rapidly with the in-
crease in the used synopsis space, while the corresponding
running time of theε-ApproxRV algorithm remains practi-
cally unaffected. For large synopsis spaces, theε-ApproxRV
algorithm is more than two orders of magnitude faster than
the MinRelVar algorithm. However, the solutions obtained
from theε-ApproxRV algorithm are again very close to the
optimal ones (less than 1.7% and 1.5% difference for the
two data sets), as we can see in Figures 12 and 13.

5. Conclusions
We have proposed a novel, fast approximation scheme

for constructing probabilistic wavelet synopses over
large data sets. Our proposed techniques employ a much
“sparser” version of previously proposed Dynamic-
Programming (DP) solutions, which restricts its search to a
carefully chosen, logarithmically-small subset of“break-
points” that cover the entire range of possible space allot-
ments, while always ensuring a maximum relative degra-
dation of (1 + ε) in the quality of the obtained solution.
Our experimental evaluation has demonstrated that our ap-
proximation algorithm typically provides significantly
tighter solutions than the maximum(1 + ε) error fac-
tor, while at the same time providing running times that
are up to two orders of magnitude smaller than known ex-
act DP solutions.
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Abstract

With the growing demand on cluster analysis for cate-
gorical data, a handful of categorical clustering algorithms
have been developed. Surprisingly, to our knowledge, none
has satisfactorily addressed the important problem for cate-
gorical clustering – how can we determine the bestK num-
ber of clusters for a categorical dataset? Since categori-
cal data does not have the inherent distance function as the
similarity measure, traditional cluster validation techniques
based on the geometry shape and density distribution can-
not be applied to answer this question. In this paper, we
investigate the entropy property of the categorical data and
propose aBkPlot method for determining a set of candi-
date “bestKs”. This method is implemented with a hierar-
chical clustering algorithmACE. The experimental results
show that our approach can effectively identify the signifi-
cant clustering structures.

1 Introduction

Data clustering is an important method in data analysis.
Clustering algorithms use the similarity measure to group
the most similar items into clusters [23]. Clustering tech-
niques for categorical data are very different from those
for numerical data in terms of the definition of similarity
measure. Most numerical clustering techniques use dis-
tance functions, for example, Euclidean distance, to define
the similarity measure, while there is no inherent distance
meaning between categorical values.

Traditionally, categorical data clustering is merged into
numerical clustering through the data preprocessing stage
[23], where numerical features are extracted/constructed
from the categorical data, or the conceptual similarity be-
tween data records is defined based on the domain knowl-
edge. However, meaningful numerical features or concep-
tual similarity are usually difficult to extract at the early
stage of data analysis because we have little knowledge
about the data. It has been widely recognized that clus-
tering directly on the raw categorical data is important for
many applications. Examples include environmental data
analysis [29], market basket data analysis [1], DNA or pro-
tein sequence analysis [8], and network intrusion analysis

[5]. Therefore, there are increasing interests in clustering
categorical data recently [21, 19, 17, 18, 6, 15, 3, 25].

Cluster Validation Different clustering algorithms
hardly generate the same clustering result for the same
dataset, and we need the cluster validation methods to eval-
uate the quality of the clustering results [27, 22, 20]. For-
mally, there are two main issues in cluster validation: 1)
how to evaluate the quality of different partition schemes
generated by different clustering algorithms for certain
dataset, given the fixedK number of clusters; 2) how to de-
termine the best number of clusters (the “bestK”), which
indicates the inherent significant clustering structures of the
dataset.

For numerical data, the clustering structure is usually
validated by the geometry and density distribution of the
clusters. When a distance function is given for the numeri-
cal data, it is natural to introduce the density-based methods
[16, 4] into clustering. As a result, the distance functions
and density concepts play the unique roles in validating the
numerical clustering result. Various statistical cluster vali-
dation methods and visualization-based validation methods
have been proposed for numerical data [22, 20, 12], all of
which are based on the geometry and density property. The
intuition behind the geometry and density distribution jus-
tifies the effectiveness of these cluster validation methods.
A good example commonly seen in clustering literature is
evaluating the clustering result of 2D experimental datasets
by visualizing it – the clustering result is validated by check-
ing how well the clustering result matches the geometry and
density distribution of points through the cluster visualiza-
tion.

While lack of the distance meaning for the categori-
cal data, the techniques used in cluster validation for nu-
merical data are not applicable for categorical data. With-
out reasonable numerical feature extraction/construction for
a given categorical dataset, the general distance functions
are usually inapplicable and unintuitive. As a result, no
geometry/density-based validation method is appropriate in
validating the clustering result for categorical data.

Entropy Based Similarity Instead of using distance
function to measure the similarity between any pair of data
records, similarity measures based on the “purity” of a set of
records seem more intuitive for categorical data. As a well-
defined and accepted concept, entropy [14] can be used to
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formally measure the purity of partition. Originally from
information theory, entropy has been applied in both pat-
tern discovery [10] and numerical clustering [13]. Due to
the lack of intuitive distance definition for categorical val-
ues, recently, there have been efforts in applying the entropy
criterion in clustering categorical data [6, 25]. The initial
results show that entropy criterion can be very effective in
clustering categorical data. Li et al [25] also proved that the
entropy criterion can be formally derived from the frame-
work of probabilistic clustering models, which further sup-
ports that the entropy criterion is a meaningful and reliable
similarity measure for categorical data.

In entropy-based categorical clustering, the quality of
clustering result is naturally evaluated by the entropy cri-
terion [6, 25], namely, theexpected entropyfor a partition.
However, the other cluster validation problem – determin-
ing the “best K”, has not been sufficiently addressed yet. In
this paper, we present a novel method based on entropy to
address this problem.

Our Approach We first develop an entropy-based cat-
egorical clustering algorithm “ACE”(Agglomerative Cate-
gorical clustering with Entropy criterion). The algorithm
works in a bottom-up manner. Beginning with each indi-
vidual record as a cluster, it merges the most similar pair
of clusters in each step, where the similarity is evaluated
with the incremental entropy. An agglomerative hierarchi-
cal clustering algorithm typically generates a clustering tree
that contains the different clustering structures that have dif-
ferentK. We use these clustering structures to analyze the
bestK problem.

Based on the intuition behind the merging operation in
ACE algorithm, we investigate the relation between the
pairs of neighboring partition schemes (havingK clusters
andK + 1 clusters, respectively). We use “Entropy Char-
acteristic Graph(ECG) ” to sketch the entropy property of
the clustering structures, and use “Best-K Plot(BkPlot)”,
which is built on ECG, to identify the candidates of the best
K. The initial experimental result shows that the proposed
validation method, concretely, using the BkPlots generated
by ACE to identify the bestKs, works effectively in finding
the significantK(s) for categorical data clustering.

The rest of the paper is organized as follows. Section 2
sets down the notations and gives the definition of the tradi-
tional entropy-based clustering criterion. Section 3 presents
the agglomerative hierarchical clustering algorithm ACE.
Section 4 investigates the relation between the neighboring
partitioning schemes with the entropy criterion, and pro-
poses the validation method for identifying the bestKs. We
present the experimental result in section 5 and review the
related categorical clustering work in section 6. Finally, we
conclude our work in section 7.

2 Notations and Definitions

We first give the notations used in this paper and then
introduce the traditional entropy-based clustering criterion.

Several basic properties about the entropy criterion will be
presented later.

Consider that a datasetS with N records andd columns,
is a sample set of the discrete random vectorX =
(x1, x2, . . . , xd). For each componentxj , 1 6 j 6 d, xj

takes a value from the domainAj . Aj is conceptually dif-
ferent fromAk(k 6= j). There are a finite number of distinct
categorical values in domainAj and we denote the number
of distinct values as|Aj |. Let p(xj = v), v ∈ Aj , repre-
sent the probability ofxj = v, we have the classical entropy
definition [14] as follows.

H(X) = −
d∑

j=1

∑

v∈Aj

p(xj = v) log2 p(xj = v)

WhenH(X) is estimated with the sample setS, we de-
fine the estimated entropy aŝH(X) = H(X|S), i.e.

Ĥ(X) = −
d∑

j=1

∑

v∈Aj

p(xj = v|S) log2 p(xj = v|S)

Suppose the datasetS is partitioned intoK clusters. Let
CK = {C1, . . . , CK} represent a partition, whereCk is a
cluster andnk represent the number of records inCk. The
classical entropy-based clustering criterion tries to find the
optimal partition,CK , which maximizes the following en-
tropy criterion [9, 11, 25].

O(CK) =
1
d

(
Ĥ(X)− 1

n

K∑

k=1

nkĤ(Ck)

)

Since Ĥ(X) is fixed for a given datasetS, max-
imizing O(CK) is equivalent to minimize the item
1
n

∑K
k=1 nkĤ(Ck), which is named as the “expected en-

tropy” of partition CK . Let us notate it as̄H(CK). For
convenience, we also namenkĤ(Ck) as the “weighted en-
tropy” of clusterCk.

Li et al [25] showed that the minimization of expected-
entropy is equivalent to many important concepts in in-
formation theory, clustering, and classification, such as
Kullback-Leibler Measure, Maximum Likelihood [24],
Minimum Description Length [26], and dissimilarity coef-
ficients [7]. Entropy criterion is especially good for cate-
gorical clustering due to the lack of intuitive definition of
distance for categorical values. While entropy criterion can
also be applied to numerical data [13], it is not the best
choice since it cannot describe the cluster shapes and other
numerical clustering features of the dataset.

3 ACE:Agglomerative Categorical clustering
with Entropy criterion

In this section, we define the proposed similarity mea-
sure,incremental entropy, for any two clusters. With incre-
mental entropy, we design the algorithm ACE. ACE and its
working mechanism is the tool used to explore the signifi-
cant clustering structures in the next section.
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3.1 Incremental Entropy

In this section, we investigate the mergence of any two
clusters to explore the similarity between the two clus-
ters. Intuitively, merging the two clusters that are similar
in the inherent structure will not increase the disorderliness
(expected-entropy) of the partition, while merging dissimi-
lar ones will inevitably bring larger disorderliness. We ob-
served that this increase of expected entropy has some cor-
relation with the similarity between clusters. Therefore, it is
necessary to formally explore the entropy property of merg-
ing clusters. LetCp ∪ Cq represent the mergence of two
clustersCp andCq in some partition scheme, andCp and
Cq havenp andnq members, respectively. By the defini-
tion of expected entropy, the difference betweenĤ(K) and
Ĥ(K + 1) is only the difference between the weighted en-
tropies,(np + nq)Ĥ(Cp ∪ Cq) andnpĤ(Cp) + nqĤ(Cq).
We have the following relation for the weighted entropies.

Proposition 1. (np + nq)Ĥ(Cp ∪ Cq) > npĤ(Cp) +
nqĤ(Cq)

PROOF. The about relation can be expanded as follows.

−
d∑

j=1

∑

v∈Aj

(np + nq)p(xj = v|Cp ∪ Cq) ·

log2 p(xj = v|Cp ∪ Cq) >

−
d∑

j=1

∑

v∈Aj

npp(xj = v|Cp) log2 p(xj = v|Cp)−

−
d∑

j=1

∑

v∈Aj

nqp(xj = v|Cq) log2 p(xj = v|Cq) (1)

It is equivalent to check if the following relation is satis-
fied for each valuev in eachdomain(Aj).

npp(xj = v|Cp) log2 p(xj = v|Cp) +
nqp(xj = v|Cq) log2 p(xj = v|Cq)
> (np + nq)p(xj = v|Cp ∪ Cq) ·

log2 p(xj = v|Cp ∪ Cq) (2)

Without loss of generality, supposeCp havingx items
and Cq having y items in valuev at j-th attribute. The
formula 2 can be transformed tox log2

x
np

+ y log2
y
nq

>
(x+ y) log2

x+y
np+nq

. Sincex, y, np, nq are positive integers,
let x = s · y andnp = r · nq, (s, r > 0), and then we can
eliminatelog2 to get a simpler form: rs

(1+r)s+1 6 ss

(1+s)1+s .

It is easy to prove that ss

(1+s)1+s is the maximum value of the

functionf(r) = rs

(1+r)s+1 (r, s > 0). Therefore, formula (2)
is true, thus (1) is true and Proposition 1 is proved.

Let Im(Cp, Cq) = (np +nq)Ĥ(Cp∪Cq)− (npĤ(Cp)+
nqĤ(Cq)) be the “incremental entropy” by merging the
clustersCp and Cq. Note thatIm(Cp, Cq) = 0 most

ds1 ds2
1 1 0 1 1 1 0 1
1 1 0 1 0 0 1 1
0 0 1 1
0 0 1 1

Table 1. Identical structure

likely suggests that the two clusters have theidentical struc-
ture− for every categorical valuevi in every attributexj ,
1 6 i 6 |Aj |, 1 6 j 6 d, we havep(xj = vi|Cp) =
p(xj = vi|Cq). A simple example in table 1 demonstrates
the identical structure.

Incremental entropy brings the important heuristic about
the dissimilarity between any two clusters, i.e., when
the two clusters are similar in structure, merging them
will not bring large disorderliness into the partition, thus,
Im(Cp, Cq) will be small; when the two clusters are very
different, merging them will bring great disorderliness,
thus,Im(Cp, Cq) will be large. Therefore, incremental en-
tropy intuitively serves as the similarity measure between
any two clusters.

3.2 ACE Algorithm

While the traditional hierarchical algorithms for numeri-
cal clustering needs to explicitly define the inter-cluster sim-
ilarity with “single-link”, “multi-link” or “complete-link”
methods [22]. Incremental entropy is a natural inter-cluster
similarity measure, ready for constructing a hierarchical
clustering algorithm. Having incremental entropy as the
measure of inter-cluster similarity, we developed the fol-
lowing entropy-based agglomerative hierarchical clustering
algorithm− (ACE).

ACE algorithm is a bottom-up process to construct a
clustering tree. It begins with the scenario where each
record is a cluster. Then, an iterative process is followed
− in each step, the algorithm finds a pair of clustersCp and
Cq that are the most similar, i.e.Im(Cp, Cq) is minimum

among all possible pair of clusters. We useI
(K)
m to denote

the Im value in forming theK-cluster partition from the
K+1-cluster partition.

Maintaining the minimum incremental entropy in each
step is the most costly part. In order to efficiently implement
the ACE algorithm, we maintain three main data structures:
summary tablefor conveniently counting the occurrences of
values,Im-table for bookkeepingIm(Cp, Cq) of any pair
of clustersCp andCq, and aIm heapfor maintaining the
minimumIm value in each step.

Summary table is used to maintain the fast calculation of
cluster entropyĤ(Ck) and each cluster has one summary
table (Figure 1). Since computing cluster entropy is based
on counting the occurrences of categorical values in each
column, we need the summary table to keep the counters
for each cluster. If the average column cardinality ism, a
summary table keepsdm counters. Such a summary table
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Cluster i-1 Cluster i Clusteri+1

Attribute 1

Attribute 2
......

Cat 1Cat 2Cat 3 ...

Summary Table

...

323# of
categories

Figure 1. Summary table and physical struc-
ture

enables fast merging operation – when merging two clus-
ters, the two summary tables are added up to form a new
summary table for the new cluster.

We useIm-table to keep track of the incremental entropy
between any pair of clusters, which is then used to maintain
the minimum-Im in each round of merging. TheIm-table
is a symmetric table (thus, only a half of entries are used in
practice), where the cell(i, j) keeps the value ofIm(Ci, Cj)
Figure 2.

Im heap is used to keep track of the globally mini-
mum incremental entropy. We define the most similar clus-
ter of clusteru asu.similar = arg minv{Im(u, v), v 6=
u}. Let u.Im represent the corresponding incremen-
tal entropy of mergingu and u.similar, we define<
u, u.Im, u.similar > as thefeature vectorof clusteru. The
feature vectors are inserted into the heap, sorted byu.Im,
for fast locating the most similar pair of clusters.

Algorithm 1 shows the sketch of the main procedure.
When mergingu and u.similar happens, their summary
tables are added up to form the new summary table. Con-
sider u as the main cluster, i.e.,u.similar is merged to
clusteru, we need to find the newu.similar and insert the
new feature vector< u, u.Im, u.similar > into the heap.
Then, there comes the important procedure for updating the
bookkeeping information after merging operation. Letv de-
note the oldu.similar. The bookkeeping information for
v is discarded and any entries inIm-table related tou or
v should be updated. For any clusterw, if the w.similar
is changed due to the update ofIm-table, its location at the
heap needs to be updated too. The detailed update algorithm
is described in Algorithm 2 and demonstrated by Figure 2.

3.3 Complexity of ACE

Updating theIm-table is the most costly part, con-
sisting several incremental-entropy calculations. Each
incremental-entropy calculation involves the summation of
the two summary tables and computing the weighted en-
tropy with the new summary table. The cost of comput-
ing weighted entropy isO(dm), when an auxiliary array in
length ofN is used to buffer thelog2 values as the following

1         i                    j                  N

1
i

        j                      N

X

X X X

X:  the removed
items in merging(i, j)

X

X

X

U U U U

U : The updated
items in merging(i, j)

   : the merged
item (i, j)

   : Im valuesU

U

U

Figure 2. Operation schedule after a merging
operation

Algorithm 1 ACE.main()
Ts[] ← initialize summary tables
TIm ← initialize Im table
h ← heap
for Each recordu do

h.push(< u, u.Im, u.similar >)
end for
while not empty(h) do

< u, u.Im, u.similar >← h.top()
Ts[u] ← Ts[u] + Ts[u.similar]
update< u, u.Im, u.similar >
h.push(< u, u.Im, u.similar >)
updatingafter merging() //Algorithm 2

end while

equation shows.

npĤ(Cp)

= −
d∑

j=1

∑
vjk∈Aj

cjk=freq(vjk)|Cp

cjk(log2 cjk − log2 np)

The cost is dominated by updatingIm-table after each
merging, which will totally needO(N2) incremental-
entropy calculations in the worst case. Therefore, the over-
all time complexity isO(dmN2). The summary tables re-
quire O(dmN) space, both thelog2 buffer and the heap
costsO(N) space, andIm-table costsO(N2) space.

Algorithm 2 ACE.updatingafter merging()
Ci ← master cluster,Cj ← merged cluster
releaseTs[Cj ]
invalidateIm table entries(Cj , ∗)
updateIm table entries(∗, Ci) and(∗, Cj)
for Each valid clusteru, if u.similar == Ci or Cj do

update< u, u.Im, u.similar >;
relocate< u, u.Im, u.similar > in h

end for
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4 Exploring the Significant Clustering Struc-
tures

Traditionally, statistical validity indices based on geome-
try and density distribution are applied in clustering numer-
ical data [20]. A typical index curve consists of the statisti-
cal index values for differentK number of clusters. TheKs
at the peaks, valleys, or distinguished “knees” on the index
curve, are regarded as the candidates of the optimal number
of clusters (the bestK). Are there such index curves in-
dicating the significant clustering structures for categorical
data as well? The first thought might be investigating the
curve of the expected entropy of the optimal partition ofK
clusters, notated as̄Hopt(CK).

Our result shows that the curve of optimal expected-
entropies is usually a smoothly decreasing curve without
any distinguished peaks, valley, or knees (Figure 3). How-
ever, we find some special meaning behind the neighbor-
ing partition schemes (withK andK + 1 clusters respec-
tively). The differential of expected-entropy curve, which
we name as “Entropy Characteristic Graph (ECG)” (Figure
4), has some substantial meaning indicating the significant
clustering structures. An ECG shows that the similar par-
tition schemes with differentK are at the same “plateau”.
From plateau to plateau there are the critical points implying
the significant change of clustering structure, which could
be the candidates for the bestKs. These critical points are
highlighted in the second-order differential of ECG, named
“Best-K Plot (BkPlot)”.

4.1 Property of Optimal Partition Schemes

In this section, we first give the Proposition 2 describ-
ing the relationship between the optimal expected-entropies
with varying K, which is then used to introduce the “En-
tropy Characteristic Graph” and “BkPlot”.

Since the significant clustering structures are the globally
optimal selections, we begin with the investigation of opti-
mal partitions with varyingK. We describe the property of
the optimal expected entropies as follows.

First of all,H̄opt(CK) is bounded. It was proved in [25]
thatH̄(CK) is bounded by the maximum valuêH(X). We
also haveH̄(CK) > 0 as the entropy definition implies.
The zero entropy ofH̄(Ck) is reached atk = N , when
each vector is a cluster.

Second, for any different number of clusters,K andL,
K < L, we introduce the following property.

Proposition 2. H̄opt(CK) > H̄opt(CL), whenK < L

PROOF. Let someL-cluster partitionCL
0 be formed

by splitting the clusters in the optimalK-cluster parti-
tion. With Proposition 1, we havēHopt(CK) > H̄(CL

0 )
> H̄opt(CL)

Proposition 2 shows that the optimal expected-entropy
decreases with the increasing ofK, which meets the in-
tuition very well. It is hard to describe the curve with a

formal function with varyingK. However, as our exper-
imental result shows, it is often a negative logarithm-like
curve (Figure 3). The expected-entropy curve seems not
help us to clearly identify the significant clustering struc-
tures. However, there is some important implication behind
the expected-entropy curve when we consider thesimilarity
between the neighboring partitions, where the neighboring
partitions refer to theK-cluster partition andK + 1-cluster
partition.

4.2 Understanding the Similarity of Neighboring
Partition Schemes

There are two aspects to capture the similarity of neigh-
boring partition schemes. One is the increasing rate of en-
tropy, defined asI(K) = H̄opt(CK+1)−H̄opt(CK), which
indicates how much the clustering structure is changed. The
other aspect is the difference betweenI(K) andI(K + 1),
which indicates whether the consecutive changes to the
clustering structure are similar. Since it is hard to de-
scribe the relation between the optimal partitions, we use
the merging of clusters described in ACE algorithm to intu-
itively illustrate the two aspects of similarity. In the consec-
utive partition schemes generated by ACE, the increasing
rate is equivalent to incremental entropy:I(K) = 1

NdI
(K)
m .

First, we consider the meaning of small increasing rate
of entropy. As we discussed, merging identical clusters in-
troduces zero increasing rate, which implies that the merg-
ing does not introduce any impurity to the clusters and the
clustering structure is not changed. Similarly, small in-
creasing rate implies small impurity, for which we consider
the clustering structure is not significantly changed; and
large increasing rates should introduce considerable impu-
rity into the partitions and thus the clustering structure can
be changed significantly. For large increasing rates, we need
to further investigate therelative changesto determine if a
globally significant clustering structure emerges, which is
described as follows.

ConsiderI(K) as the amount of impurity introduced
fromK+1-cluster scheme toK-cluster scheme. IfI(K) ≈
I(K + 1), i.e. K-cluster scheme introduces similar amount
of impurity asK+1-cluster scheme does, we define that
the clustering structure is notrelativelychanged fromK+1-
cluster scheme toK-cluster scheme. An conceptual demon-
stration of “similar mergence” in Figure 6 can help to un-
derstand the similarity of clustering structure atI(K) ≈
I(K + 1). Here, we use icons to conceptually represent the
categorical clusters. The shape and the size of an icon repre-
sent the structure and size of the cluster, respectively. Clus-
ters in the identical or similar structure are preferred to be
merged as the ”identical structure” in section 3.1 shows, re-
gardless of the cluster size. The four clusters (C1 ∼ C4) in
Figure 6 are very similar. They are selected in two consecu-
tive merging operations. Thus, the changes to the resulting
clustering structures are similar and not quite distinguish-
able from each other.
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Figure 6. I(K) ≈ I(K +1), but I(K−1) > I(K)
significantly

However, the third merging operation, which merges
C3 ∪ C4 and C5, might change the clustering structure
greatly, and thusI(K − 1) can increase dramatically. This
indicates that the second merging operation has resulted in
a representative clustering structure for cluster analysis.

In practice, if a dataset has significant clustering struc-
tures, we can find a series of neighboring “stable” schemes,
which have similar increasing rate of entropy, and we may
also find thecritical points where a series of “stable”
schemes become “less stable”− the increasing rate changes
dramatically (Figure 4). Each of such critical points indi-
cates some significant change in clustering structure and
distinguishes a set of “stable” schemes from another set.
All of the critical points should be the candidates for the
bestKs and could be interesting to cluster analysis.

We name theI(K) plot asEntropy Characteristic Graph
(ECG). If a dataset has significant clustering structures, its
ECG should be a curve with some distinguished “knees”.
An ECG curve showing no distinguished knees implies
that the clustering structure is smoothly changed whenK
changes fromN to 1, and thus clustering structures at all
Ks have the same importance− in other words, there is no
significant clustering structure.

The common way to mathematically identify such crit-
ical knees on a curve is to find the peaks/valleys at the
second-order differential of the curve. Since an ECG con-
sists of a set of discrete points, we define the second-order
differential of ECG asδ2I(K) : δI(K) = I(K)−I(K+1)

andδ2I(K) = δI(K−1)−δI(K) to makeK aligned with
the critical points. We can clearly identify the bestKs at the
δ2I(K) plot, and thus name it as the “Best-k Plot (BkPlot)”
(Figure 5).

4.3 Entropy Characteristic Graph Generated by
ACE

ECGs generated by ACE have a special property. We use
I
(K)
m to denote theIm value in formingK-cluster partition

from K + 1-cluster partition. SinceI(K) = 1
NdI

(K)
m , it

is equivalent to investigate the property ofI
(K)
m . We will

prove thatI(K)
m > I

(K+1)
m , so that the critical points always

happen at the peaks of BkPlot.

Proposition 3. I
(K)
m > I

(K+1)
m

PROOF. Let Im(Co, Cp, Cq) denote the incremental en-
tropy in merging any three clusters. It is trivial to prove that
the sequence of the three clusters does not matter in calcu-
lating theIm and

Im(Co, Cp, Cq) > Im(C(1), C(2)) (3)

whereC(1) andC(2) are any two of the three clusters.
We maintain the ascending list ofIm for each merging

operation in ACE algorithm. Suppose that the two clusters
Cp andCq are selected to merge and thus form theK + 1-

cluster scheme. We haveI(K+1)
m = Im(Cp, Cq). After the

merge operation, the incremental entropy between the pairs
of any clusterCo, o 6= p, q, and the new clusterCp ∪ Cq,
should be updated toIm(Co, Cp, Cq). SinceIm(Cp, Cq) is
the minimum value at the stageK + 1 and the relation (3)
shows the updates toIm table only increase the values, the
selectedIm value for stageK will definitely be greater or
equal to that of stageK + 1, i.e. I(K)

m > I
(K+1)
m .

The BkPlots of such ECGs (I(K) > I(K + 1)) always
exhibit the criticalKs at peaks. This could reduce the num-
ber of possible noisyKs and help the users to clearly iden-
tify the bestK. We will demonstrate that the BkPlots gen-
erated by ACE are the most robust and efficient ones, com-
pared to those generated by other algorithms.
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5 Experimental Results

The goal of the experiments is twofold. 1)We want to
show that BkPlot can be used to find the criticalKs. 2) We
want to show that the BkPlots generated by ACE are the
most robust and efficient, compared to those generated by
the other two popular entropy-based clustering algorithms:
Monte-Carlo method (MC) [25] and Coolcat [6].

5.1 Datasets

We construct two types of synthetic datasets with the
following way, so that the clustering structure can be in-
tuitively identified and manually labeled before running the
experiments. The first type of datasets has a one-layer clus-
tering structure (Figure 7) with 30 attributes and 1000 rows.
It has three clusters in the same size (about 333 rows for
each). Each cluster has random categorical values selected
from {‘0’,‘1’,‘2’,‘3’,‘4’, ‘5’ } in a distinct set of attributes,
while the rest attributes are set to ‘0’. The second type of
datasets has a two-layer clustering structure also with 30
attributes and 1000 rows. The top layer has four clusters,
two of which have sub-clusters as Figure 8 shows. Both
types have the clearly defined clustering structure, and each
record in a generated dataset distinctly belongs to one clus-
ter. We generate ten datasets for each type of structure,
named DS1-i and DS2-i, 1 6 i 6 10, respectively.

We also use three “real” datasets, “Soybean-small”,
“Congressional votes” and “Zoo” in the experiments. All
of the three are from UCI KDD Archive1. Soybean-small
data is a dataset used to classify the soybean diseases. The
dataset has 47 records and each record has 35 attributes de-
scribing the features of the plant. There are four classes in
the dataset.Congressional votesis also a Boolean dataset
containing US Congressional Voting Records for the year
1984. The dataset has 435 records. Each record has a Con-
gressman’s votes on 16 issues (i.e. 16 attributes). We use
the 16 attributes to classify the Congressman to “Democrat”
or “Republican”.Zoo datacontains the feature description
of the animals in a zoo. There are 101 animal instances,

1http://www.ics.uci.edu/∼mlearn/MLRepository.html

classified to 7 categories. Each record has 17 attributes de-
scribing different features of animal, such as hair and the
number of legs, most of which are boolean.

5.2 Compared Algorithms

Literally, any categorical clustering algorithm that em-
ploys the same entropy minimization criterion can possibly
generate a valid BkPlot. However, the quality of the BkPlots
can be easily influenced by the algorithms. We briefly in-
troduce another two algorithms, Monte-Carlo algorithm and
Coolcat algorithm in this section. Both use expected en-
tropy to evaluate the quality of partition and try to minimize
the expected entropy in order to achieve an approximately
optimal partition.

Monte-Carlo Method [25] is a top-down partitioning
algorithm. With a fixedK, it begins with all records in
one cluster and follows an iterative process. In each itera-
tion, the algorithm randomly picks one record from one of
the K clusters and puts it into another randomly selected
cluster. If the change of assignment does not reduce the ex-
pected entropy, the record is put back to the original cluster.
Theoretically, given a sufficiently larges, the algorithm will
eventually terminate at an optimal or near-optimal solution.
In the experiments, we sets = 5000 for running MC on the
synthetic datasets.

Coolcat [6] algorithm begins with selectingK records,
which maximize theK-record entropy, from a sample of the
dataset as the initialK clusters. It sequentially processes the
rest records and assigns each to one of theK cluster. In each
step, the algorithm finds the best fitted one of theK clusters
for the new record – adding the new record to the cluster
will result in minimum increase of expected entropy. The
data records are processed in batches. Because the order
of processing points has a significant impact on the quality
of final clusters, there is a “re-clustering” procedure at the
end of each batch. This procedure picksm percentage of
the worst fitted records in the batch and re-assigns them to
theK clusters in order to maintain relatively low expected
entropy.

We run the algorithm on each dataset with a large sample
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size (50% of the datasets) andm = 20%, which is suffi-
cient for improvement through re-clustering [6]. In order to
reduce the effect of ordering, we run Coolcat 20 times for
each datasets. Each run processes the data in a randomly
generated sequence and we select the result having the low-
est expected entropy.

5.3 Performance Measures

We use four measures to evaluate the quality of BkPlots
generated by different algorithms.

• Coverage Rate.We evaluate the robustness of BkPlot
with “Coverage Rate (CR)”, i.e., the percentage of
inherent significantKs are indicated by the BkPlot.
There could be more than one significant clustering
structures for a particular dataset. For example, four-
cluster and six-cluster structures can be all significant
for DS2. A robust BkPlot should always include all of
the significantKs.

• False Discovery Rate.There could be someKs, which
are actually not critical but suggested by some BkPlots.
In order to efficiently find the most significant ones, we
prefer a BkPlot to have less false indicators as possible.
We use “False Discovery Rate(FDR)” to represent the
percentage of the noisy indicators in the BkPlot.

• Expected Entropy.Since the BkPlot is indirectly re-
lated to expected entropy through ECG, it is also rea-
sonable to check the quality of expected entropy for
the partitions generated by different algorithms at the
particularKs. The quality of expected entropy can
be evaluated by two parts [24]: the deviation to the
optimal expected entropy, and the variance of the es-
timated expected entropy. If an algorithm generates
BkPlots with the lowest expected entropy as well as the
minimum variance among the three algorithms, we can
firmly conclude that this is the best one on the three.

• Purity. For the real datasets, there is no documented
clustering structure, but the class definition is given.
The purity of a cluster [30],P (Ck), measures the ex-
tent to which the cluster contains data points primarily
from a single class. The purity of clustering result is
the weighted sum of the purity of individual cluster,
given byPurity =

∑K
k=1

nk

n P (Ck)

5.4 Discussion

The BkPlots generated by ACE algorithm for DS1 (Fig-
ure 10 clearly indicate ‘3’ is the only significantK. The
datasets having the same clustering structure should have
almost the identical BkPlots. The identical BkPlots on ten
different DS1-i, 0 6 i 6 10, shows that ACE is a robust
algorithm for generating BkPlot.

The peaks of BkPlots for DS2-i (Figure 13) include the
two inherent significantKs – ‘4’ and ‘6’, but ‘2’ is also

given as the third significantK. However, we notice that
the peak values at ‘K=4’ or ‘K=6’ for different DS2 datasets
are almost same, while those at ‘K=2’ have more variation.
This solicits us to consider a more reliable method to esti-
mate the most significantK for a considerably large dataset.
We can uniformly generate a bunch of sample sets, which
should have the identical clustering structure with the orig-
inal dataset. The most stable peaks in the BkPlots of the
sample sets correspond to the most significantKs.

The BkPlots generated by Monte-Carlo algorithm for
DS1 (Figure 11) also clearly identify that ‘3’ is the bestK
with very small variation. However, the BkPlots for DS2
show large variation onKs. In order to clearly observe the
difference, we only show five BkPlots for DS2-i, 1 6 i 6 5,
respectively. Overall, theKs distribute from ‘2’ to ‘10’ for
different DS2-i. Some BkPlots include the significantKs
- ’4’ and ’6’, while others miss one or both, which implies
that MC algorithm might not be robust enough for datasets
having complicated clustering structure. The reason is MC
algorithm becomes more likely to trap in local minima with
the increasing complexity of clustering structure and the in-
creasing number of clusters, since the corresponding search
space increases exponentially.

Coolcat algorithm is the least robust one for generating
BkPlots. It brings large variation for both datasets (Figure
12 and 15). Coolcat algorithm is originally designed for fast
processing of categorical data while the quality of result is
not well guaranteed. Therefore, it is not suitable for gener-
ating robust BkPlots for precisely analyzing the clustering
structure.

We summarize the result with the discussed measures,
Coverage Rate (CR), False Discovery Rate (FDR), and ex-
pected entropy (EE) in Table 2 and 3. The higher the cover-
age rate, the more robust the BkPlot is. The lower the false
discovery rate the more efficient the BkPlot is. The num-
bers are the average over the 10 datasets. For both types
of dataset, ACE shows the minimum expected entropy and
minimum standard deviation, as well as the highest CR and
lowest FDR. Therefore, the BkPlots generated by ACE are
the most robust and efficient ones.

CR FDR EE
ACE 100% 0% 0.732± 0.001
MC 100% 0% 0.733± 0.001

Coolcat 60% 85% 1.101± 0.026

Table 2. Summary for DS1- i
CR FDR EEK = 4 EEK = 6

ACE 100% 33% 0.562± 0.002 0.501± 0.001
MC 80% 53% 0.565± 0.009 0.521± 0.008

Coolcat 60% 70% 0.852± 0.023 0.761± 0.021

Table 3. Summary for DS2- i

We run experiments on real datasets with ACE only and
the results match the domain knowledge very well. We are
not clear about the bestK for the inherent clustering struc-
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DS1-i BkPlot, i=1..10, generated by ACE
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Figure 10. ACE for DS1

DS1-i BkPlot, i=1..10, generated by MC
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Figure 11. MC for DS1

DS1-i BkPlot, i=1..5, generated by Coolcat
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Figure 12. Coolcat for DS1

DS2-i BkPlot, i=1..10, generated by ACE
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Figure 13. ACE for DS2

DS2-i BkPlot, i=1..5, generated by MC
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Figure 14. MC for DS2

DS2-i BkPlot, i=1..5, generated by Coolcat
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Figure 15. Coolcat for DS2

dataset N d # class BestKs Purity
soybean-small 47 35 4 {2,4,7} 100%

votes 435 16 2 {2} 83%
zoo 101 17 7 {2,4,7} 93.1%

Table 4. ACE result for real datasets

ture, but we can use the documented number of classes as
the reference number. Interestingly, the BkPlots of ACE
shows that these numbers are all included in the bestKs,
which implies that the inherent structure is consistent with
the domain knowledge. In fact, the additional bestKs can
be investigated further to explore more hidden knowledge.
For example, ‘K=2’ and ‘K=4’ for zoo dataset might be
other meaningful categorizations for the animals. The high
purity also shows that the entropy-based categorical cluster-
ing can generate results highly consistent with the domain
knowledge, which have been supported by other literatures
[6, 25]. The result encourages us to believe that BkPlots
with ACE can actually work effectively for the real datasets.

6 Related Work

While many numerical clustering algorithms [22, 23]
have been published, only a handful of categorical cluster-
ing algorithms appear in literature. Although it is unnatural
to define a distance function between categorical data or to
use the statistical center (the mean) of a group of categori-
cal items, there are some algorithms, for example, K-Modes
[21] algorithm and ROCK [19] algorithm, trying to fit the
traditional clustering methods into categorical data. How-

ever, since the numerical similarity/distance function may
not describe the categorical properties properly and intu-
itively, it leaves little confidence to the clustering result.

Gibson et al. introduced STIRR [18], an iterative algo-
rithm based on non-linear dynamical systems. STIRR rep-
resents each attribute value as a weighted vertex in a graph.
Starting with the initial conditions, the system is iterated
until a “fixed point” is reached. When the fixed point is
reached, the weights in one or more of the “basins” isolate
two groups of attribute values on each attribute. Due to the
complexity and unintuitive mechanism, the users may hesi-
tate to use it.

CACTUS [17] adopts the linkage idea from ROCK and
names it “strong connection”. However, the similarity is
calculated by the “support”. A cluster is defined as a region
of attributes that are pair-wise strongly connected.Similarly,
the concept of “support” or linkage is still indirect in defin-
ing the similarity of categorical data, and unnecessarily
makes the clustering process complicated.

Cheng et al. [13] applied the entropy concept in nu-
merical subspace clustering, and Coolcat [6] introduced
the entropy concept into categorical clustering. We have
briefly introduced Coolcat in section 5. Some closely re-
lated work also borrows concepts from information theory,
including Co-clustering [15], Information Bottleneck [28]
and LIMBO [3].

C. Aggarwal [1] demonstrated that localized associations
are very meaningful to market basket analysis. To find the
localized associations, they introduced a categorical cluster-
ing algorithm CLASD to partition the basket data. A new
similarity measure is defined for any pair of transactions.
CLASD is still a kind of traditional clustering algorithm –

261



the special part is only the definition of similarity function
for categorical data. Thus, it has the similar problem as we
described.

Most of the recent research in categorical clustering is
focused on clustering algorithms. Surprisingly, there is little
research concerning about the cluster validation problems
for categorical datasets.

7 Conclusion

Most of the recent research about categorical clustering
has only contributed to categorical clustering algorithms. In
this paper, we proposed an entropy-based cluster validation
method for identifying the bestKs for categorical data clus-
tering. Our method suggests to find the bestKs by observ-
ing the “Entropy Characteristic Graph (ECG)”, which de-
scribes the entropy property of partitions with varyingK
and is significant in characterizing the clustering structure
of categorical data. The “Best-K plot (BkPlot)” is used to
find the significant points conveniently from the Entropy
Characteristic Graph. In order to find the robust BkPlot,
we also develop an entropy-based agglomerative algorithm
ACE. Our experiments show that, ACE can generate the
most robust BkPlots for various experimental datasets, com-
pared to the other two typical entropy-based algorithms.
Meanwhile, ACE can also find high quality clustering re-
sults in terms of the entropy criterion. Therefore, BkPlot
validation method with ACE algorithm can serve as an ef-
fective tool for analyzing the significant clustering struc-
tures in categorical datasets.
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Abstract

We address the problem of evaluating table queries from a
summary database formed by a collection of pre-computed
tables on certain measure variables. We assume that every
table query asks for the distribution of a measure variable
of interest, and that the summary database contains tables
on the variable of interest as well as on other measure vari-
ables. If the requested distribution is none of the base ta-
bles and cannot be exactly derivable from none of them,
then the answer to the query will be the result of an es-
timation procedure, which may bring up another measure
variable that is correlated to the measure variable of in-
terest. We give an estimation procedure that combines the
“divide-and-conquer” principle with tree computations.

1. Introduction

A recent querying paradigm, called On-Line Analytical
Processing (OLAP) [6], often involves complex queries
over very large multidimensional relations or datacubes
with category (or dimensional) and measure (or summary)
attributes. Obtaining the exact answer to an OLAP query
can be prohibitively expensive in terms of time and/or stor-
age space in data warehouse environment. In order to re-
duce the computational effort, a promising approach is to
store some aggregate data (as “ materialized views”) in a
summary database, which is used to answer OLAP queries.

In this paper, we consider the problem of evaluating table
queries from a summary database formed by a collection of
pre-computed tables on certain measure variables. We sup-
pose that each table query asks for the distribution of a mea-
sure variable of interest, called the target variable (e.g., Per-
sonnel 2001), by a set of category attributes (e.g., gender,
state,. . . ), and that the summary database contains tables on
the target variable as well as on other measure variables. If
the table requested by a query is none of the base tables and

cannot be exactly derived from them [13] [5], then the query
can be answered in an approximate (and, hopefully, accu-
rate) way using some information-theoretic estimation cri-
terion which, on demand of the user, may bring up an addi-
tional measure variable (e.g., Personnel 2000, Total-Income
2001), called the auxiliary variable. We can use as estima-
tion criterion the principle of minimum cross-entropy or the
principle of maximum entropy [17], depending on whether
or not the target and auxiliary variables can be viewed as
terms of a time series (see the following example). Both are
based on the proportionality principle and have been suc-
cessfully applied to the small-area estimation [9] and to the
analysis of inter-industry transactions with input-output ma-
trices [1] [10][18].

Example 1 A summary database contains four tables: two
on the measure variable Personnel 2001, one table on the
measure variable Total-Income 2001, and one table on the
measure variable Personnel 2000. The two tables on Per-
sonnel 2001 report the distributions p1(g, a) and p2(d, a) of
employees in 2001 by gender and age-class, and by depart-
ment and age-class, respectively. The table on Total-Income
2001 reports the distribution t(g, l) of total income in 2001
by gender and level. The table on Personnel 2000 reports
the distribution q(g, d, a, l) of employees in 2000 by gen-
der, department, age-class and level.
Suppose that a user asks for the distribution of employees
in 2001 by age-class and level. Then, the query system
advices the user that he will receive an estimate of the re-
quested table and that he may tune the answer to some aux-
iliary variable. We now discuss three typical cases:

Case 1: the user selects no auxiliary variable. Let p̂(g, d, a)
be the maximum entropy extension of p1(g, a) and p2(d, a).
Then, the query will be answered by issuing the marginal on

a and l of the distribution
p̂(g, d, a)

L
, where L is the number

of possible levels.
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Case 2: the user selects Total-Income 2001 as auxiliary vari-
able. Let p̂(g, d, a) be as above and let t(g) be the marginal
on g of t(g, l). Then, the query will be answered by issuing

the marginal on a and l of the distribution
p̂(g, d, a)t(g, l)

t(g)
.

Case 3: the user selects Personnel 2000 as auxiliary vari-
able. Let p̃(g, d, a) be the minimum cross-entropy ex-
tension of p1(g, a) and p2(d, a) relative to the marginal
q(g, d, a) of the distribution q(g, d, a, l). Then, the query
will be answered by issuing the marginal on a and l of the

distribution
p̃(g, d, a)q(g, d, a, l)

q(g, d, a)
.

In this paper we show how to solve the problem of an-
swering a table query using only tables stored in a sum-
mary database, referred to as the Table-Query Problem. The
proposed procedure is inspired by the “divide-and-conquer”
principle and generalizes that given in [17], which applies
only to the query that asks for the distribution of the target
variable by all the category attributes of the target tables and
the auxiliary table.

The paper is structured as follows. In the next section,
we state the two Proportional Estimation Models PEM1
and PEM2 and the Table-Query Problem. In Sections 3
and 4, we solve the Table-Query Problem under the models
PEM1 and PEM2, respectively. Finally, Section 5 con-
cludes.

2. The Table-Query Problem

Henceforth, we assume that all measure variables are of
nonnegative-real type and of additive nature. Let X be
a set of (category) attributes. The domain of X, written
dom(X), is the set of all semantically possible tuples on X;
by size(X) we denote the cardinality of dom(X). Let p(x)
be a nonnegative real-valued function defined on dom(X);
the support of p(x) is the relation with scheme X containing
all tuples x with p(x) 6= 0. The pair T = 〈X, p(x)〉 defines
a (summary) table, of which X is the scheme and p(x) the
distribution. Without loss of generality, we always assume
that the data reported in every table are normalized to one.
Let Y be a subset of X; the marginal of T with respect to
Y is the table T (Y ) = 〈Y, p(y)〉 where p(y) is the marginal
of the distribution p(x), that is, p(y) =

∑
x p(x) the sum-

mation being extended over all tuples x in dom(X) whose
restrictions to Y coincide with y. Note that the support of
p(y) is the (relation-theoretic) projection onto Y of the sup-
port of p(x). We also admit the case Y is empty; then, p(y)
is the unity. Let T = {T1, ..., Tn} be a set of tables, where
Ti has scheme Xi, for all i. The set X given by the union
of the schemes Xi of the tables Ti and their collection H
will be referred to as the base set and the scheme of T , re-

spectively. The table set T is consistent if there exists at
least one table T with scheme X such that the marginal of
T with respect to Xi coincides with Ti, for all i. Such a
table is called a universal table of T .

Suppose we are given a table query and that the user
has selected a certain auxiliary variable. Let us assume
that the summary database contains the set of tables T =
{T1, ..., Tn} on the target variable, where Ti has scheme Xi,
and the table 〈Y, q(y)〉 on the auxiliary variable. Consider
the following two Proportional Estimation Models where
p(x, y) denotes the distribution of an unknown table with
scheme X ∪ Y .

PEM 1
Marginal constraints: p(xi) = pi(xi), i = 1, . . . , n
Proportionality criterion: Let Z = X ∩ Y . There exist
real-valued functions g1(x1), . . . , gn(xn) such that the

factorization p(x, y) = g1(x1) · · · gn(xn)
q(y)
q(z)

holds

for every tuple (x, y) in the support of p(x, y).

PEM 2
Marginal constraints: p(xi) = pi(xi), i = 1, . . . , n
Proportionality criterion: There exist real-valued func-
tions g1(x1), . . . , gn(xn) such that the factorization
p(x, y) = g1(x1) · · · gn(xn)q(y) holds for every tuple
(x, y) in the support of p(x, y).

Using the results proven in our previous paper [17], one has
that: PEM1 has a unique solution, we denote by p̂(x, y),
and PEM2 has a solution if and only if there exists a uni-
versal table T = 〈X, p(x)〉 of T such that the support of the
marginal of p(x) with respect to Z = X ∩Y is contained in
the support of the marginal of q(y) with respect to Z, and
if this is the case then PEM2 has a unique solution, we de-
note by p̃(x, y). At this point, we can state the Table-Query
Problem we want to solve:

Given a nonempty subset U of X ∪ Y , find the mar-
ginal with respect to U of p̂(x, y) or p̃(x, y) depending on
whether PEM1 or PEM2 is in use. In [17] the Table-Query
Problem was solved for the special case that U = X ∪ Y .
We now state some useful formulas for solving the Table-
Query Problem in the general case. By summing out the
variables in Y − Z in the functional expressions of p̂(x, y)
and p̃(x, y), we obtain

p̂(x) = g1(x1) . . . gn(xn) (1)

for every tuple x in the support of p̂(x), and

p̃(x) = g1(x1) . . . gn(xn)q(z) (2)
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for every tuple x in the support of p̃(x). Formulas (1) and
(2) lead to the following expressions for the solutions to
PEM1 and PEM2:

p̂(x, y) = p̂(x)
q(y)
q(z)

p̃(x, y) = p̃(x)
q(y)
q(z)

(3)

Using formulas (3), we can easily find the expressions for
p̂(u) and p̃(u). Let X ′ = (X−Y )∩U , Y ′ = (Y −X)∩U ,
Z ′ = Z ∩ U and Z ′′ = Z − U . Then, U = X ′ ∪ Y ′ ∪ Z ′

and we have:

p̂(u) =
∑

z′′
p̂(x′, z′, z′′)q(y′, z′, z′′)

q(z′, z′′)
(i)

p̃(u) =
∑

z′′
p̃(x′, z′, z′′)q(y′, z′, z′′)

q(z′, z′′)
(ii)

(4)

Example 2 Suppose that a user asks for the table on a
certain measure variable with scheme abdhk. Let T =
{T1, . . . , T12} be the set of the base tables on the target vari-
able (see Figure 1).

a cb d e

f g h i j

T

TTT

T

T

TT

T T T T

1 2 3

4 5 6

7 8 9 10

11

12

Figure 1. The table set T on the target variable

Note that the scheme H =
{ab, af, bc, cd, ch, de, dj, ej, fg, gh, hi, ij} of T does
not contain the attribute k. Suppose that the user selects an
auxiliary variable for which there exists a base table with
scheme bcgkl and distribution q. Then, 4(i) and 4(ii) read:

p̂(a, b, d, h, k) =
∑

c, g
p̂(a, b, c, d, g, h)q(b, c, g, k)

q(b, c, g)

p̃(a, b, d, h, k) =
∑

c, g
p̃(a, b, c, d, g, h)q(b, c, g, k)

q(b, c, g)

Suppose that we are able to compute the distributions
p̂(x′, z′, z′′) and p̃(x′, z′, z′′). Then, the procedure below
yields p̂(u) and p̃(u).

MARGINAL

(1) Find the distribution p̂(x′, z′, z′′) (respectively, and
p̃(x′, z′, z′′)).
(2) Marginalize q(y) with respect to Y ′ ∪ Z and Z.
(3) Compute p̂(u) (respectively, p̃(u)) using 4(i) (re-
spectively, 4(ii)).

The execution of Steps 2 and 3 of MARGINAL is a matter of
routine; so, we focus on Step 1. Let V = X ′∪Z. Of course,
the distributions p̂(v) and p̃(v) are also the marginals with
respect to V of p̂(x) and p̃(x), respectively. Therefore, Step
1 requires solving the following problem:

Find the marginal with respect to V of p̂(x) (or of p̃(x)).
A brute-force approach to solving this problem consists in
first finding p̂(x) (or p̃(x)) and, then, marginalizing it. We
now show how to compute p̂(x) and p̃(x). First of all, ob-
serve that they are the distributions of two universal tables
of T , we denote by T̂ and T̃ , both of which, by formulas
(1) and (2), have the following form:

f1(x1) . . . fn(xn)π(x) (5)

for some real-valued functions f1(x1), . . . , fn(xn) and
for some distribution π(x) over X . Explicitly, π(x) =

1
size(X)

for p̂(x), and π(x) =
q(z)

size(X − Z)
for p̃(x).

Now, it is well-known [3] [7] that, if p(x) is the distribu-
tion of a universal table of T having the form (5), then p(x)
can be computed using the iterative procedure, called Itera-
tive Proportional Fitting Procedure (IPFP) [8], which starts
with the zero approximation p[0](x) = π(x) and determines
the higher-order approximations to p(x) according to the
following computation scheme:

first iteration cycle p[1](x) . . . p[n](x)
second iteration cycle p[n+1](x) . . . p[2n](x)
. . . . . . . . . . . .
h-th iteration cycle p[hn+1](x) . . . p[hn+n](x)
. . . . . . . . . . . .

where the approximation p[hn+i](x) in the (h + 1)-th itera-
tion cycle, 1 ≤ i ≤ n, is obtained by fitting the approxima-
tion p[hn+i−1](x) to the distribution pi(xi) of the base table
Ti:

p[hn+i](x) =
pi(xi)

p[hn+i−1](xi)
p[hn+i−1](x).

From an information-theoretic point of view, the distrib-
ution p(x) minimizes the cross-entropy relative to π(x) (see
Section A of the Appendix for information-theoretic defin-
itions). So, the distribution of the universal table T̂ mini-

mizes the cross-entropy relative to the distribution
1

size(X)
or, equivalently, maximizes the entropy (see Section A of
the Appendix), and the distribution of the universal table
T̃ minimizes the cross-entropy relative to the distribution

q(z)
size(X − Z)

. Accordingly, T̂ will be referred to as the
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maximum entropy universal table [11] [12] (the ME uni-
versal table, for short) of T , and T̃ as the minimum cross-

entropy universal table relative to
q(z)

size(X − Z)
(the q-

mCE universal table, for short) of T . Efficient procedures
for computing the distributions of T̂ and T̃ can be found in
[11] [12] [2] and in [17], respectively. Once p̂(x) (or p̃(x))
have been computed, its marginal with respect to V can be
easily obtained. However, as is shown in Sections 3 and 4,
in most cases both p̂(v) and p̃(v) can be computed without
passing through the computation of p̂(x) and p̃(x).

3 Marginalizing T̂ with respect to V

An efficient procedure for computing the distribution p̂(v)
from T rests on the notion of “collapsibility” [14] we now
recall. Let H = {X1, . . . , Xn} be the scheme of T and X
its base set; the projection of T onto a subset W of X is the
table set T (W ) = {T1(X1∩W ), . . . , Tn(Xn∩W )}, where
redundant tables are omitted. The ME universal table T̂ of
T is collapsible onto W if the marginal of T̂ with respect to
W coincides with the ME universal table of the projection
of T onto W . So, if W is a (possibly improper) superset
of V that the ME universal table of T is collapsible onto,
then p̂(v) can be obtained by first computing the ME uni-
versal table T̂ (W ) of T (W ) and, then, marginalizing the
distribution of T̂ (W ) with respect to V . The best choice
for W will fall upon a minimal superset of V that the ME
universal table of T is collapsible onto. Such a superset of
V is unique and is called the closed hull of V in H [14];
furthermore, it coincides with the “canonical closure” [15]
[16] of H when H is viewed as a hypergraph (see Section B
of the Appendix for hypergraph-theoretic definitions). The
procedure for finding the closed hull of V in H is based on
the notion of the compaction of H [15] [16], which is the
finest of the acyclic covers K such that the ME universal
table of T is collapsible onto each edge of K. It has a num-
ber of nice properties, two of which read: (a) the separators
of H and of the compaction of H are the same; (b) if H is
acyclic, then (and only then) the compaction of H coincides
with H. Let K be the compaction of H. For each edge C
of K, we call the table set T (C) a component of T .

Example 2 (continued). The compaction of H is K =
{abcfgh, cdhij, dej}. The components of the table set of
Figure 1 are shown in Figure 2.

Given H, the compaction K = {C1, . . . , Cm} of H and
the set V , the closed hull of V in H, say W , can be de-
termined using the following algorithm [15], whose Step
1 performs the selective reduction of K with sacred set V
[19]:

a cb

f g h

T

TT

T

T T

1 2

4 5

7 8

c d

h i j

T

T T

T T

3

5 6

9 10

d e

j

T

T
T6

11

12

Figure 2. The components of the table set T

CLOSED HULL

(1) Repeatedly apply the following two operations until
neither can be longer applied:

(i) Delete a vertex of K if it is not in V and belongs to
exactly one edge;
(ii) Delete an edge of K if it is contained in another
edge.

(2) Let K′ = {C ′j1 , . . . , C ′jk
} be the resulting hyper-

graph, where C ′jh
is the “residual part” of the edge Cjh

of K. For each h, 1 ≤ h ≤ k, set Eh to C ′jh
if C ′jh

is
contained in some edge Xi of H, and to Cjh

otherwise.
(3) Set W to the empty set. For each h, 1 ≤ h ≤ k, set
W := W ∪ Eh

It should be noted that the sets E1,. . . , Ek of Step 2 of
CLOSED HULL are exactly the edges of the subhypergraph
K(W ) of K induced by W and that K(W ) is an acyclic hy-
pergraph. Moreover, since by property (b) the compaction
of K is K itself, the set W is the closed hull of itself not
only in H but also in K. Finally, if H is acyclic, then
H = K and K(W ) = H(W ). After determining the closed
hull W of V in H, the distribution p̂(w) can be obtained
without passing through the computation of p̂(x) simply by
applying the IPFP to T (W ) with zero approximation the

distribution
1

size(W )
.

Example 2 (continued). With V = abcdgh, the selective
reduction of K with sacred set V (see Step 1 of CLOSED
HULL) is the hypergraph K′ = {abcgh, cdh}, where abcgh
and cdh are the residual parts of the edges abcfgh and
cdhij of K, respectively. Since neither abcgh nor cdh is
contained in any edge of H, the result of Step 3 of CLOSED
HULL is W = abcdfghij, which hence is the closed hull
of V . So, p̂(w) can be obtained as the ME universal table
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of the projection of T onto W (see Figure 3), that is, by
applying the IPFP to T (W ) with zero approximation the

distribution
1

size(abcdfghij)
.

a cb d

f g h i j

T

TTT

T T

T T T T

1 2 3

4 5 6

7 8 9 10

Figure 3. The projection of T onto W

However, we can furthermore reduce the time and space
costs using the implementation of the IPFP given in [11]
[12] for computing the ME universal table P̂ of any con-
sistent table set P with scheme R, we now recall. The im-
plementation is based on the following two properties of P̂
with respect to any acyclic cover S of R:

(i) P̂ coincides with the ME universal table of the set of the
marginals of P̂ with respect to the edges of S, and

(ii) the ME universal table of the set of the marginals of P̂
with respect to the edges of S has a closed-form expression
which, for any join tree J of S (see Section B of the Appen-
dix), consists of a ratio whose numerator is the product of
the marginals of P̂ with respect to the labels of nodes of J (
i.e., with respect to the edges of S) and whose denominator
is the product of the marginals of P̂ with respect to the la-
bels of arcs of J . Such a closed-form expression of P̂ will
be referred to as the tree formula generated by S.

A first consequence is that, with P = T , R = H and
S = K, where K is the compaction of H, the entries in
the tree formula for T̂ generated by K can be computed lo-
cally. More precisely, since T̂ is collapsible onto each edge
of K, the marginal of T̂ with respect to each edge of K can
be computed as the ME universal table of the correspond-
ing component of T ; moreover, by property (a) of K, the
separators of K are the same as H, so that the marginal of
T̂ with respect to each separator of K can be obtained by
marginalizing some table Ti in T .

Example 2 (continued). Recall that the compaction of H
is K = {abcfgh, cdhij, dej}. The separators of K (and,
hence, of H) are ch and dj. A join tree of K is shown in
Figure 4.

Therefore, the tree formula for T̂ generated by K reads:

p̂(abcfgh)p̂(cdhij)p̂(dej)
p5(ch)p6(dj)

abcfgh dejcdhij

ch dj

Figure 4. The join tree of K

where p̂(abcfgh), p̂(cdhij) and p̂(dej) can be computed as
the distributions of the ME universal tables of the compo-
nents T (abcfgh), T (cdhij) and T (dej) of T (see Figure
2), respectively, that is, by applying the IPFP procedure to
T (abcfgh), T (cdhij) and T (dej) with zero approxima-

tions
1

size(abcfgh)
,

1
size(cdhij)

and
1

size(dej)
, respec-

tively.

We now apply the technique above to compute the ME
universal table of the table set T (W ) with scheme H(W ).
With P = T (W ), R = H(W ) and S = K(W ), the entries
in the tree formula for T̂ (W ) generated by K(W ) can be
computed locally. Explicitly, with the notation of CLOSED
HULL, the marginal of T̂ (W ) with respect to each edge Eh

of K(W ) can be computed as the ME universal table of the
corresponding component T (Eh) of T (W ), and the mar-
ginal of T̂ (W ) with respect to each separator of K(W ) can
be computed as the marginal of some table in T (W ).

Example 2 (continued). Recall that W = abcdfghij. The
compaction of H(W ) is K(W ) = {abcfgh, cdhij}. The
separator of K(W ) is ch. A join tree of K(W ) is shown in
Figure 5.

abcfgh cdhij

ch

Figure 5. The join tree of K(W )

Therefore, the tree formula for T̂ (W ) generated by
K(W ) reads:

p̂(abcfgh)p̂(cdhij)
p5(ch)

where the distributions p̂(abcfgh) and p̂(cdhij) are com-
puted as above.

Finally, once T̂ (W ) has been computed using its tree
formula generated by K(W ), T̂ (V ) can be obtained by
marginalization. However, we can do better. Suppose that

267



we have already found the entries in the tree formula for
T̂ (W ) generated by K(W ); at this point, instead of com-
puting T̂ (W ), we soon marginalize the factors p̂(eh) of
the numerator, for each edge Eh of K(W ), with respect
to the edge C ′jh

of K′. What we obtain is a tree formula
generated by K′, which provides a closed-form expres-
sion of T̂ (W ′), where W ′ is the vertex set of K′, that is,
W ′ = W −⋃

h=1,...,k(Eh−C ′jh
). Finally, after computing

T̂ (W ′), we, marginalize T̂ (W ′) with respect to V .

Example 2 (continued). Recall that K′ = {abcgh, cdh} and
K(W ) = {abcfgh, cdhij}. After computing the distribu-
tions p̂(abcfgh) and p̂(cdhij), we soon marginalize them
with respect to the edges abcgh and cdh of K′, respectively.
The vertex set of of K′ is W ′ = abcdgh and the tree for-
mula for T̂ (W ′) generated K′ reads:

p̂(abcdgh) =
p̂(abcgh)p̂(cdh)

p5(ch)

4 Marginalizing T̃ with respect to V

The notion of collapsibility of the ME universal table of T
naturally generalizes to the q-mCE universal table of T as
follows. The table T̃ is collapsible onto W if the marginal
of T̃ with respect to W coincides with the minimum cross-
entropy universal table of T (W ) relative to the marginal

of
q(z)

size(X − Z)
with respect to W . Unfortunately, at the

present the uniqueness of a minimal superset of V that T̃
is collapsible onto is an open problem. Nevertheless, we
can get an effective procedure for computing the distribu-
tion p̃(v) as follows. Given T = {T1, . . . , Tn} with scheme
H = {X1, . . . , Xn}, let us consider the (partially speci-
fied) table set T ∗ = {T̃ (Z), T1, . . . , Tn}, where redundant
tables are omitted. It has scheme H∗ = {Z,X1, . . . , Xn}
where redundant edges are omitted. Then, it can be proven
[17] that T̃ coincides with the ME universal table of T ∗.
However, owing to the incompleteness of T ∗, we can sel-
dom apply the technique developed in Section 3 to compute
T̃ from T ∗. To see it, let K∗ be the compaction of H∗. Note
that Z is a partial edge of K∗, that is, Z is contained in at
least one edge of K∗. Of course, the closed hull W of V
in H∗ can be computed as in Section 3; but, like T ∗, also
the projection of T ∗ onto W is partially specified unless the
intersection of Z with each edge of K∗ is contained in some
edge Xi of H. In what follows, we assume that this is not
the case for, otherwise, T̃ does coincide with T̂ [17].

Example 2 (continued). Recall that Z = bcg. The table set
T ∗ is obtained from T by replacing the table T2 by T̃ (Z)
(see Figure 6).
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Figure 6. The table set T ∗

Analogously, the hypergraph H∗ is obtained from H by re-
placing the edge X2 = bc by Z = bcg. The compaction of
H∗ is K∗ = {abfg, bcg, cgh, cdhij, dej} and the compo-
nents of T ∗ are shown in Figure 7.
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Figure 7. The components of T ∗

With input K∗ = {abfg, bcg, cgh, cdhij, dej} and V =
abcdgh , CLOSED HULL yields W = abcdfghij. The pro-
jection of T ∗ onto W is shown in Figure 8.

In order to overcome the above-mentioned difficulty,
we now introduce a suitable acyclic cover of K∗. Let
K∗ = {C1, . . . , Cm} and let us assume that for some k,
1 ≤ k ≤ m − 1, Ck+1, . . . , Cm are the edges of K∗

for which the set Z ∩ Cj is neither empty nor contained
in any edge Xi of H. Let C =

⋃
j=k+1,...,m Cj . It is

easy to see that the hypergraph K = {C, C1, . . . , Ck} is
an acyclic cover of K∗, and each separator of K is con-
tained in some edge Xi of H. Moreover, by properties (i)
and (ii) of acyclic schemes, one has that: T̃ coincides with
the ME universal table of the set of the marginals of T̃ with
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Figure 8. The projection on table set T ∗ onto W

respect to the edges of K, and there is a tree formula for T̃
generated by K. Finally, the marginal of T̃ with respect to
each edge of K is the ME universal table of the correspond-
ing projection of T ∗. Note that, for each j (j = 1, . . . , k),
the projections of T ∗ and T onto the edge Cj of K are the
same (up to redundant tables) and, hence, their ME univer-
sal tables do coincide so that p̃(Cj) can be computed by
applying the IPFP procedure to T (Cj) with zero approxi-

mation
1

size(Cj)
. On the other hand, T̃ is collapsible onto

the edge C of K [17] so that p̃(C) can be computed by
applying the IPFP procedure to T (C) with zero approxi-

mation
q(z)

size(C − Z)
.

Example 2 (continued). Recall that Z = bcg. The only
edges Cj of K∗ for which the set Z ∩ Cj is empty
or is contained in some edge Xi of H are cdhij and
dej. Therefore, C = abfg ∪ bcg ∪ cgh = abcfgh and
K = {abcfgh, cdhij, dej}. A join tree of K is shown in
Figure 4 and the tree formula for T̃ generated K reads:

p̃(abcfgh)p̃(cdhij)p̃(dej)
p5(ch)p6(dj)

where the distribution p̃(abcfgh) is computed by applying
the IPFP procedure to T (abcfgh) with zero approximation

q(bcg)
size(afh)

, and the distributions p̃(cdhij) and p̃(dej) are

computed in the same way as p̂(cdhij) and p̂(dej) (see
above).

Turning to our problem of computing p̃(v), it is sufficient
to note that, since Z is contained in V , if we compute the
closed hull of V in K, it will be a superset of C. So, after
detemining the closed hull of V in K, we can compute p̃(v)
using the marginalization technique employed for p̂(v) (see
above).

Example 2 (continued). The closed hull of V = abcdgh
in K is W = abcdghij. The tree formula for T̃ (W )

generated K(W ) reads:

p̃(abcfgh)p̃(cdhij)
p5(ch)

where the distributions p̃(abcfgh) and p̃(cdhij) are com-
puted as above. Instead of computing p̃(w) using the tree
formula above, we soon marginalize p̃(abcfgh) with re-
spect to abcgh and p̃(cdhij) with respect to cdh. Thus, we
obtain the tree formula for T̃ (abcdgh):

p̃(abcgh)p̃(cdh)
p5(ch)

,

After computing the distribution of T̃ (abcdgh) using the
tree formula above, we can finally obtain p̃(v) by marginal-
ization.

5 Conclusions

We have considered the problem of estimating the answer
to a table query using a table set on the target variable and
a table on an auxiliary variable selected by the user. We
have shown that such a query can be answered with “local”
computation, that is, using a (hopefully minimal) subset of
the table set on the target variable and applying the principle
of “divide-and-conquer”. A direction for future research is
the generalization of this approach to the case that also the
information on the auxiliary variable is stored in a table set.

APPENDIX

Section A

The entropy of a distribution p(x) is the nonnegative func-
tional

H[p] = −
∑

x

p(x) log(p(x))

the summation being extended over all tuples x in the sup-
port of p(x). It is well-known that H[p] is always less
than or equal to log size(X). Given a distribution π(x)
whose support contains the support of p(x), the cross-
entropy (or “I-divergence”or “discrimination information”
or “Kullback-Leibler distance”) between p(x) and π(x) is
the nonnegative functional

D[p, π] =
∑

x

p(x) log
p(x)
π(x)

the summation being extended over all tuples x in the sup-
port of p(x). It is well-known that D[p, π] = 0 if and only
if p(x) = π(x). Let us assume that, for a subset Z of X ,
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q(z) is a distribution whose support contains the support of

p(z). Then, for π(x) =
q(z)

size(X − Z)
, we have

D[p, π] = logsize(X − Z)−H[p]−
∑

z

p(z) logq(z).

Finally, suppose that p(x) is an extension of a consistent
set of distributions p1(x1), . . . , pn(xn). If Z is a (possibly
empty) subset of Xi for some i, then

∑
z

p(z) logq(z) =
∑

z

pi(z) logq(z) = const

and, hence, minimizing D[p, π] is the same as maximizing
H[p].

Section B

A hypergraph with vertex set X is a nonempty collection
H of nonempty subsets of X , which are called edges of H
[4] and whose union recovers X . A partial edge of H is
a nonempty set of vertices that is contained in some edge
of H. A cover of H is a hypergraph K with vertex set X
such that each edge of H is a partial edge of K. Let W be a
nonempty subset of X . The subhypergraph of H inducedby
W , denoted by H(W ), is the hypergraph with vertex set
W , whose edges are exactly the maximal (with respect to
set-inclusion) intersections of W with the edges of H. A
path is a sequence of egdes such that every two consecu-
tive edges have a nonempty intersection. Two vertices are
connected if they belong respectively to the first edge and to
the last edge of a path. The connected components of a hy-
pergraph are its subhypergraphs induced by maximal sets of
pairwise-connected vertices. A hypergraph is connected if it
has exactly one connected component. Two connected ver-
tices are separated by a set S of vertices if neither belongs
to S and they belong to distinct connected components of
H(X−S). A partial edge S is a separator if there exist two
vertices that are separated by S but are not separated by any
proper subset of S. Let H be a connected hypergraph. The
intersection graph of H is the ordinary graph whose nodes
correspond one-to-one to and are labelled by the edges of
H, and two distinct nodes of G are joined by an arc if their
labels have a nonempty intersection. Moreover, if (u, v) is
an arc of G and A and B are the labels of the nodes u and v,
then the arc (u, v) is labelled by A ∩ B. A spanning tree J
of G is a join tree of H if, for every two nodes of J , the in-
tersection of its labels is contained in the label of each node
along the (unique) path in J that connects the two nodes.
The hypergraph H is acyclic if there exists a join tree of H
[4]. If this is the case, then for every join tree J of H, the
separators of H are exactly the labels of arcs of J . Several
other equivalent definitions of acyclicity exist [4].
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Abstract

Motivated by the increasing need to handle complex, dy-
namic, uncertain multidimensional data in location-based
warehouses, this paper proposes a novel probabilistic data
model that can address the complexities of such data. The
model provides a foundation for handling complex hierarchical
and uncertain data, e.g., data from the location-based services
domain such as transportation infrastructures and the attached
static and dynamic content such as speed limits and vehicle po-
sitions. The paper also presents algebraic operators that sup-
port querying of such data. The work is motivated with a real-
world case study, based on our collaboration with a leading
Danish vendor of location-based services.

1. Introduction
Corporate and personal use of location-based services

(LBSs), e.g., traffic or tourist related services, is increasing.
LBSs generate massive amounts of location-based data that
must be analyzed in order to optimize and personalize the ser-
vices. Of particular interest are aggregation queries thatin-
volve the transportation infrastructure and attached content,
e.g., ”How many users (in their cars) of age less that 21 will
be in the eastbound lane of Main Street five minutes from
now?”. Current OLAP and data warehouse (DW) technol-
ogy [11,13,18] supports aggregation queries based on amulti-
dimensionaldata model capturing hierarchies of dimensional
data. Unlike other types of data models, multidimensional
models provide first-class support for interactive, investigative
aggregate queries on complex data, e.g., roll-up and drill-down
queries [20]. This creates a need for location-based data ware-
houses (LBDWs) that can offer the benefits of traditional DW
technology for LBS data. Current DW technology, both in re-
search and industry, can provide support for many kinds of
LBDW queries, but LBDWs have additional complexities that
are not well-supported by traditional DWs such as uncertain
data. For example, in a transportation infrastructure, cars are
moving dynamically, so the future location of a car is uncer-
tain. Moreover, the current location is sometimes also uncer-
tain (e.g., known only to a wireless phone grid). Since the
problem domain is very complex, a formal foundation for LB-
DWs is needed.

The contributions of this paper are as follows. First, the pa-
per presents a probabilistic multidimensional data model (ex-
tension of the deterministic model from [26]) that can man-

age uncertain LBS data. The probabilities appear both in di-
mension hierarchies (a dimension value maypartially contain
another value) and fact characterizations (facts are character-
ized by dimension values with certain probabilities). Second,
the paper presents a set of algebraic operators for queryingthe
modeled uncertain data (extension of the operators from [20]).
Third, the paper defines different types of probabilistic fact
groupings for aggregation. Finally, the paper defines differ-
ent types of probabilistic aggregation functions applied to the
groups. The paper thus extends current OLAP/DW technology
with means for supporting LBDWs. The concepts presented in
the paper are illustrated using a real-world case study fromthe
LBS domain. The work is based on an on-going collaboration
with a leading Danish LBS vendor, Euman A/S [7].

Previous related work has generally fallen into three cat-
egories: probabilistic databases, spatio-temporal databases,
and multidimensional OLAP databases. The work on prob-
abilistic data management in general [1, 2, 6, 8] handles ba-
sic uncertainty in the data, but does not support dimensional
data with hierarchies and LBS specifics such as transporta-
tion infrastructures and attached content. Research in general-
purpose spatio-temporal data management considers “opera-
tional” queries on certain [19, 22, 24] or uncertain [4, 5, 28, 29]
spatio-temporal data in 2D spaces or transportation infrastruc-
tures, but do not consider aggregation/analysis queries. Some
papers [21, 25, 30, 31] have considered aggregation of spatial
or spatio-temporal data, but have not considered transportation
infrastructures.

Previous research has also covered the modeling of moving
objects [9], transportation infrastructures [16,17], or both [23],
for “operational”, i.e., non-analytical, purposes. The Euman
data model [10] handles multiple infrastructure representation
based on asegment-basedmodel that is a generalization of the
popular linear referencingtechnique [17]. However, none of
this work captures data in a multidimensional framework, and
thus does not provide optimal support for DW-like analytical
querying, nor does it address the inherent uncertainties inLBS
data.

Previous work on modeling multidimensional data, e.g.,
[20], does not handle the complexities of LBDWs. On the
one hand, the data model and algebra presented in [12] support
LBDW to a certain extent by allowing partial containment di-
mension hierarchies, while [26] improves on [12] by addition-
ally handling transportation infrastructures and complexcon-
tent. However, neither [12] nor [26] handles uncertainty inthe
data. On the other hand, a probabilistic multidimensional data
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model [15] does handle uncertain data (by assigning asingle
probability to awholerow of a fact table) but does not support
the other mentioned features of LBDWs. Moreover, our data
model takes a more general and more flexible approach to han-
dling uncertainty (a probability is assigned toeachattribute of
a fact table row).

The remainder of the paper is structured as follows. Sec-
tion 2 presents the case study, and describes content and
queries. Section 3 briefly introduces the model we use as the
foundation, namely the [OLAPLBS ] model from [26]. Sec-
tion 4 describes our approach to handling spatial hierarchies
using expected degrees of containment, while Section 5 deals
with probabilistic fact characterizations. Section 6 describes
the formal query algebra. Finally, Section 7 concludes the pa-
per and points to future work.

An extended version of this paper, which among other
things contains a section on pre-aggregation issues, can be
found in [27].

2. Case Study
We now discuss the requirements for an LBDW by present-

ing a real-world case study for which a UML diagram can be
seen in Figure 1(a).

Content We start with discussing LBS content. LBDW
have bothpoint and interval content [10]. Point contentcon-
cerns entities that are located at a specific geographic loca-
tion, have no relevant spatial extent, and are attached to spe-
cific points in the transportation infrastructure, e.g., traffic ac-
cidents, gas stations, and (users’ and other’s) vehicle positions.
Interval contentconcerns data that is considered to relate to a
road sectionand is thus attached to intervals of given roads.
Examples include speed limits and road surfaces. Our model
must capture both point and interval content.

Content can be further classified asdynamic (frequently
evolving) orstatic (rarely evolving). Staticcontent, e.g., gas
stations or speed limits, remains attached to a point or an inter-
val of a road for a relatively long period of time. In this paper,
we focus on very dynamic (hyper-dynamic) content, e.g., ve-
hicle positions and their predicted trajectories (which evolve
continuously). Positions of static content are usually certain,
while positions of dynamic content are usually uncertain, e.g.,
a vehicle position is approximated by a wireless phone cell.
Furthermore, any position prediction algorithm will have some
degree of uncertainty. Thus, in our model, we must capture
content of any degree of dynamism, as well as uncertainty.

In Figure 1(a), hyper-dynamic content is modeled by the
“USER” cluster, where the “User” class represents users and
(implicitly) their vehicles, The “User” class participates in
threefull containment relationshipscapturing user age, pref-
erence, and gender. The users’ (vehicle) positions in the in-
frastructure is modeled by the “LOCATION” cluster. The posi-
tions are captured at certain times, represented by the “TIME”
cluster. This content positioning/attachment, is modeledas
a ”ContentAttachment” class which is linked to users, posi-
tions, and times. In an OLAP multidimensional model, the
“Content Attachment” class would be afact characterized by
“USER”, “LOCATION”, and “TIME” dimensions.

Transportation Infrastructure We now discuss the as-
pects of the transportation infrastructure relevant to data ag-
gregation. Different, purpose-dedicated infrastructurerepre-
sentations, may be used, but most modern types of infrastruc-
ture representations, e.g., kilometer-post and geographic, are
(1) segment-basedand (2)hierarchical [10]. Thus, our data
model must capture different types of segment-based and, pos-
sibly, hierarchical representations.

The “LOCATION” cluster from the UML diagram in
Figure 1(a) contains three segment-based representations,
“LN REPR”, “GEOREPR”, and “POSTREPR”, which are
link-node, geographic, and kilometer post representations, re-
spectively. All three are a refinement of real-world representa-
tions used by the LBS company Euman A/S [7], obtained by
representinglanesinstead ofroads. Often, lanes of the same
road have different characteristics, e.g., different traffic den-
sity, so lanes must be captured separately [23]. We refer to
segments that capture individual lanes, aslane segments. Lane
segments may be further subdivided into subsegments to ob-
tain more precise positioning (see “Content”). In the “LOCA-
TION” cluster, each such lane segment level is a separate class.
“LN REPR” has only one level, “Link”, that contain segments
where the characteristics such as the speed limit remain con-
stant. “POSTREPR” has three levels: 1) the “RoadLane”
class which captures particular lanes, e.g., a lane on an exit
from a highway; 2) the “PostScopeLane” class which cap-
tures segments between two kilometer posts, i.e, subdivisions
of the road lanes above; 3) the “OneMeter Interval Lane”
class which captures one-meter intervals (of the post scopeseg-
ments above). The “GEOREPR” also has three levels (but
it could have more levels or less levels if needed). Here, a
segment is a two-dimensional polyline representing (part of)
a lane. Thus, a segment level is a geographical map. A
sequence of segments from the “LanePoly 3” class (finest
scale map), is approximated by (contained in) a segment from
the “LanePoly 2” class (medium scale map), and similarly
for “Lane Poly 2” and “LanePoly 1” (coarsest scale map),
see [10] for details. The levels define a hierarchy offull con-
tainment (aggregation) relationshipsbetween segments, which
is denoted by empty rhombus-headed arrows in our model.

Finally, relationships between the representations must be
captured, to allow content attached to one representation to
be accessible from another. In the diagram, the relationships
between the representations are modeled as ”map” aggrega-
tions. Due to differences in how and from what data the rep-
resentations are built, these mappings arepartial containment
relationships, i.e., segments from the class “LanePoly 3” par-
tially contain (fully contain is a special case) segments from the
“One Meter Interval Lane” class. The “position” association
captures attachments of user content to level-three segments
of “GEO REPR”, making content mapped to “GEOREPR”
accessible from “POSTREPR”. Further aspects such as road
segments, traffic and traffic exchange directions, and lane
change prohibitions are discussed in [26].

Time We now discuss the temporal characteristics of con-
tent. As mentioned above, content positions are captured at
certain time intervals, which are organized in a containment
hierarchy of temporal granularities, see the “TIME” cluster in
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Figure 1. (a) Case Study, (b) dimension types Tu and Tt , and (c) dimension type Tr and its instance

Figure 1(a). Our time hierarchy consists both offull andpartial
containment relationships between temporal granularities, e.g.,
the relationship between hours and days (weeks and years) is
full (partial). User positions are linked to their time intervals
by the “time” association.

Queries Analytical queries in LBS involve aggregations
along multiple hierarchical dimensions, e.g., user content at-
tachments will be aggregated along the USER, LOCATION,
and TIME dimensions. As mentioned above, content positions
may be given with some uncertainty, and we thus need to eval-
uate aggregate queries over uncertain information. Consider
the four sample queries below, each concerningpoint content
at a current or future time (the focus of this paper) and in-
volving some kind of uncertainty. In this section, we give a
prose description of the query, while in Example 6.8 we give
a solution using the operators of our probabilistic model. The
queries are: 1) as theminimum expectation, how many users
of “age less than 21”,a, arepossiblyin “the eastbound lane of
Main Street”,lms, at the current time,t?; 2) as theaverage ex-
pectation, what is an average age of the “male users”,m, that
will possiblybe in “the second eastbound lane of I-90 high-
way between Moses Lake and Spokane”,l90, at the time ”five
minutes from now”,t? ; 3) as themaximum expectation, how
many users whose locations will be known with a high degree
of confidence, will pass through “Stadium Way’s lane towards
the campus”,l, during the hour between 10AM and 11AM,t?
; 4) (supposing some segments in “GEOREPR” only partially
contain one-meter interval segments in “POSTREPR”): as the
highest possiblevalue, what is themaximumage of the users
that aredefinitely”between kilometer posts 45 and 46 of the
eastbound lane of (Danish road) E45”,l, at the current time,t?

All these queries aggregate probabilistic data with varying
degrees of uncertainty at the current or a future time. They
can all be formulated and evaluated in our framework, which
improves the state-of-the-art by handling queries on DWs with
probabilistic data.

3. The [OLAPLBS] Model
We now briefly describe the data model from [26], which is

the foundation for the probabilistic extension proposed inthis

paper. The model has constructs for defining both theschema
(types) and thedata instances. The schema of a cube is defined
by a fact schemaS that consists of afact typeF (cube name)
and a setD of thedimension typesTi for each dimension.

A dimension type consists of a setCT of thecategory types
Cj (dimension level types), arelation⊏T onCT specifying the
hierarchical organization of the category types, and the spe-
cial category types⊤T and⊥T that denote thetop andbottom
category in the partial order, respectively. For example, acat-
egory typeC may be used to model a level oflane segments.
The transitive and irreflexive relation⊏T , i.e., the partial order
extended with equivalence, specifies thepartial (including full
as a special case) containment relationships among category
types. The intuition is to specify whether members of a “child”
category type have to be contained in a member of a “parent”
category typefully or partially, e.g., segments from the same
(different) representation(s). Next, asubdimension typeof a
dimension type is a set of its category types. Subdimension
types of the same dimension type do not intersect except at⊤T

category type. For example, a subdimension type is used to
model a transportation infrastructure representation. The cate-
gory types from thesame(different) subdimension type(s)are
related by full (partial) containment relationships.

Example 3.1. Figure 1(b) depicts dimension typesTu andTt.
In addition, Figure 1(c) depicts a dimension typeTr. The types
capture the “USER”, “TIME”, and ”LOCATION” clusters
from Figure 1(a), respectively. Next, the typeTr has three sub-
dimension typesTl , Tg , andTp , which capture “LNREPR”,
“GEO REPR”, and “POSTREPR” , respectively. In the fig-
ure, the “boundary” of each type is a parralelogram and the
types are labeled by (I), (II), and (III), respectively. In the fig-
ure, full (partial) containment category type relationships are
given by empty (filled) rhombus-headed arrows. From these
direct relationships we can deduce thetransitiverelationships
between the category types.

In the modelinstances, a dimensionD consists of a set of
categories. TheTypefunction gives the corresponding type for
dimensions and categories. A categoryCj consists of a set of
dimension valuesli. The transitive and irreflexive relation⊏

275



on the union of all values,bD, i.e., the partial order extended
with equivalence, specifies the full or partial containmentre-
lationships of the values. For example, two values that model
segments from thesame(different) representation(s) are usu-
ally related by a full (partial) containment relationship.A spe-
cial value⊤ in each dimensionfully contains every other value
in the dimension.

Each relationshipl1 ⊏ l2 has an attacheddegree of contain-
ment, d ∈ [0; 1], written l1 ⊏d l2. In a given dimension, the
degrees have a unique interpretation, but different interpreta-
tions are possible. In the following definition, we present one
such,conservative, interpretation (first introduced in [12]).

Definition 3.2. [Safe degree of containment] Given two di-
mension valuesl1 andl2 and a numberd ∈ [0; 1], the notation
l1 ⊏ l2 ∧Degsaf (l1, l2) = d (or l1 ⊏d l2, for short) means that
“ l2 contains at leastd · 100% of l1”. The special case ofd = 0
means that “l2 maycontainl1, and the size of contained part is
unknown”. We termd safe degree of containment.

We abbreviatel1 ⊏1 l2 ∧ l2 ⊏1 l1 (equivalent values) by
l1 ≡ l2. Transitive safe degrees are inferred according to the
following rules. Given three dimension values,l1, l2, andl3,
and numbersd1 ∈ [0; 1] andd2 ∈ [0; 1):

1. p-to-f transitivity:
(l1 ⊏d1 l2) ∧ (l2 ⊏1 l3) ⇒ (l1 ⊏d1 l3)

l3 may contain the part ofl1 that is not inl2, but the con-
ditions of the rule do not give us information on this. We
infer only what we can guarantee: what is contained inl2
is alsocontained inl3.

2. p-to-p transitivity:
(l1 ⊏d1 l2) ∧ (l2 ⊏d2 l3) ⇒ (l1 ⊏0 l3)

If l1 is fully or partially contained inl2 andl2 is partially
contained inl3 then we can only infer that at least “noth-
ing” of l1 is contained inl3. In other words, we infer that
l1 maybe contained inl3.

Finally, subdimensionis an instance of a subdimension
type.

Example 3.3. Suppose we are given subdimensionsDl , Dg ,
and Dp of the subdimension typesTl , Tg , and Tp , respec-
tively. Parts of the subdimensions are depicted in Figure 1(c).
In the following, we show how to infer transitive partial con-
tainment relationships withsafedegrees. In the subdimension
Dg , we have valuesl121 ∈ CL P 3 andl12 ∈ CL P 2 such that
l121 ⊏1 l12. Then, in the subdimensionDp , we have a value
p1111 ∈ CL O M I such thatp1111 ⊏0.3 l121. Consequently,
we infer thatp1111 ⊏0.3 l12. Again, we havel121 ⊏1 l12.
Then, in the subdimensionDl , we have valuea1 ∈ CL L such
that l12 ⊏0.8 a1. Consequently, we infer thatl121 ⊏0 a1,
which means thatl121 maybe contained ina1. Next, in the sub-
dimensionDp , we have a valuep1133 such thatp1133 ≡ l121.
Then we have already inferred thatl121 ⊏0 a1. Consequently,
we infer thatp1133 ⊏0 a1.

A multidimensional object(cube) consists of a set offactsF

that are mapped to each dimension,Dj , with a fact-dimension

relation, Rj ⊆ F × Dj . For a factf ∈ F and a dimension value
l ∈ Dj , we define (1) acovering fact-dimension relationship
(f , l) ∈ Rc

j ⊆ Rj , which is read as “f coversl”, and (2) an
inside fact-dimension relationship(f , l) ∈ Ri

j ⊆ Rj , which is
read as “f is inside l”. Thus, the full set of fact-dimension
relationships isRj = Rc

j ∪ Ri
j . Next, we define three kinds

of fact characterizations, or inferred fact-dimension relation-
ships, writtenf  c l , f  i l , andf  i

m l . The semantics of
the first two characterizations coincides with that of the corre-
sponding fact-dimension relationships. The third characteriza-
tion means thatf may be insidel.

4. Expected Degrees of Containment
In this section, we introduce a new interpretation for de-

grees of containment. The motivation for the new interpreta-
tion is as follows. Assume that we are given a dimensionD

with its set of categories and the relation on its dimension val-
ues⊏. As mentioned in Section 3, with thesafedegrees of
containment, the notationl1 ⊏d l2, wherel1 ∈ bD, l2 ∈ bD,
andd ∈ [0; 1] means that the valuel2 containsat leastd · 100%
of the valuel1. The disadvantage of this approach is that in-
ferred, transitive relationships between dimension values are
very likely to receive a degree equal to0, because we infer
only those degrees that we can guarantee, see Example 3.3.
This makes the data too uncertain for practical use.

In order to make the transitive relationships more useful, we
introduce theexpecteddegrees of containment. Our approach
is based on probability theory [3]. We consider each dimension
value as an infinite set of points. We deal with the probabilistic
events of the form “a valuel1 is contained in a valuel2”, which
is equivalent to “any point inl1 is contained inl2”.

Definition 4.1. [Expected degree of containment] Given two
dimension valuesl1 andl2 and a numberd ∈ [0; 1], the notation
l1 ⊏ l2 ∧Degexp(l1, l2) = d (or l1 ⊏d l2, for short) means that
“ l2 is expected to containd · 100% of l1”, or, more formally,
“ l1 is contained inl2 with a probability ofd”. We termd the
expected degree of containment.

The formal definition is particularly useful for reasoning
about transitivity of partial containment and fact characteri-
zations. The rule oftransitivity of partial containment with
expected degreesis as follows. Given the valuesl1, l2, . . . , ln
from the categoryC and given the valuesl andl′, the following
holds:

(

n̂

i=1

l ⊏di
li ∧ li ⊏d′

i
l
′ ⇒ l ⊏ l

′ ∧ Degexp(l , l ′) =

nX

i=1

di · d
′
i)

The idea behind the rule is explained next. We will use notation
P (e) for the probability of the evente. Let us first consider a
special case of the rule, wheni = 1, i.e., when there is only
one, unique path between valuesl andl′. Then, the rule takes
the following form:

∀(l1, l2, l3) ∈ bD× bD× bD(l1 ⊏d1 l2∧l2 ⊏d2 l3 ⇒ l1 ⊏d1·d2 l3)

First, l1 ⊏d1 l2 means thatP (e1) = d1, wheree1 is “l1 is
contained inl2”. Second,l2 ⊏d2 l3 means thatP (e2) = d2,
wheree2 is “l2 is contained inl3”. The conjunction of these
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two events,e1 ∧ e2, i.e., “l1 is contained inl3” is equivalent to
l1 ⊏ l3. Next, having assumed that the eventse1 ande2 are
independent,P (e1 ∧ e2) = d1 · d2. This means that we have
inferred the relationshipl1 ⊏d1·d2 l3.

The general case of the rule allowsn paths betweenl and
l′. The ith path goes through a valueli. Then, the evente,
i.e., “l is contained inl′” is a disjunction ofn disjoint events,Wn

i=1
ei, whereei is “l is contained inl′, given theith path”.

The eventse1, e2, . . . en are disjoint, because (1) we assume
that values from the same category, in particular, the values
l1, l2, . . . ln do not overlap, and (2) consequently then events
“ l is contained inli” are disjoint. Thus, the general case of
the rule isn applications of the rule’s special case. Theith
application concerns anith path and infers the probabilitydi ·d

′
i

of the eventei. This means that the evente has the probability
of d =

Pn
i=1

di · d
′
i, i.e., that there is a relationshipl ⊏d l′.

In order to produce the correct aggregates, i.e., to perform
correct aggregation, a warehouse must consider all relevant ag-
gregation paths between the source and destination category.
Since no aggregation path is ignored during inferences of tran-
sitive partial containment relationships with expected degrees,
the rule offers support forcorrect aggregation, which is miss-
ing from the analogous rule with safe degrees. A further sup-
port is offered by the rules for inferring fact characterizations
(see Section 5).

Example 4.2. Continuing Example 3.3, we show how to in-
fer transitive partial containment relationships withexpected
degrees. First, we demonstrate the support for correct ag-
gregation. In the subdimensionDg , we have valuesl121 ∈
CL P 3, l122 ∈ CL P 3 andl12 ∈ CL P 2 such thatl121 ⊏1 l12

and l122 ⊏1 l12 . Then, in the subdimensionDp , we have
a valuep1111 ∈ CL O M I such thatp1111 ⊏0.3 l121 and
p1111 ⊏0.7 l122 . In other words, we have two aggregation
paths between valuesp1111 and l12. Consequently, we ”sum
up” the paths, i.e., infer thatp1111 ⊏0.3·1+0.7·1=1 l12. Sec-
ond, we demonstrate the improvement in certainty of transi-
tive relationships, compared to those obtained by the rule with
safedegrees. Then, in the subdimensionDl, we have value
a1 ∈ CL L such thatl12 ⊏0.8 a1. Consequently, we infer that
l121 ⊏1·0.8=0.8 a1. Note that the last relationship would have
received a (much lower)safedegree of 0.

5. Probabilistic Fact Characterizations
In this section, we introduce a new kind of fact characteri-

zations. The motivation for this is as follows. Assume that we
are given a dimension,D, with its set of categories and the re-
lation on its dimension values,⊏. Recall content attachments
from the case study in Section 2. Such attachments record that
auseris in a specificlocationat a giventime. The fact charac-
terizations described in Section 3 allow us to express positions
of static content, which are usually certain. However, posi-
tions of dynamiccontent are usually uncertain. For example,
a user location may be given by a wireless phone cell, which
only approximately locates the user. Furthermore, a practical
prediction algorithm would predict future user locations with
some degree of uncertainty. In addition to this location uncer-
tainty, we may also have user and time uncertainty. For exam-
ple, we may be certain about a location, but uncertain about

what user is at that position or we may not know the time. In
order to capture these possibilities, we generalize the notion of
fact characterization by defining aprobabilistic fact character-
ization.

Our approach is based on probability theory [3]. We con-
sider the probabilistic events of the form ”a factf covers (is
inside) a valuel”. We extend the definitions from Section 3 as
follows.

Definition 5.1. [Probabilistic fact-dimension relationships]
For a factf ∈ F and a dimension valuel ∈ bD, we define:

1. aprobabilistic covering fact-dimension relationship,
(f , l , pmin , pmax ) ∈ Rc,p ⊆ R, which is read as “f cov-
ers l with probability of at leastpmin and of at most
pmax”, and

2. aprobabilistic inside fact-dimension relationship,
(f, l, pmin, pmax) ∈ Ri,p ⊆ R, which is read as “f is
insidel with a probability of at leastpmin andof at most
pmax”.

R = Rc,p ∪ Ri,p is the full set of fact-dimension relationships.

Consider an inside fact-dimension relationship,
(f, l, pmin, pmax) ∈ Ri,p, pmin is a lower bound on the
“true” probability of the relationship. Moreover, for a fact,
f , and a category,C, any two events “f is inside l1” and
“f is inside l2”, where l1 ∈ C and l2 ∈ C, are disjoint.
For this reason, in an MO, we impose the following restric-
tion on minimum probabilities: for any category,C, and
any fact, f and given the restriction ofRi,p on C and f ,
R

i,p

|C,f
= {(f ′, l, pl

min, pl
max)|l ∈ C ∧ f ′ = f}, we require

that
P

l∈C pl
min ≤ 1. However,pmax is a higher bound on

the “true” probability of the relationship(f, l, pmin, pmax).
For this reason, we do not impose an analogous restriction on
maximum probabilities.

The exact probabilities of fact-dimension relationships may
also be expressed. For example, the statement “f coversl with
probabilityp” is expressed as(f, l, p, p) ∈ R

p
c . The determinis-

tic fact-dimension relationships are a special case of the prob-
abilistic fact-dimension relationships, i.e.,(f, l) ∈ Rc is ex-
pressed as(f, l, 1, 1) ∈ R

p
c and (f, l) ∈ Ri is expressed as

(f, l, 1, 1) ∈ R
p
i .

Next, we define two new kinds of fact characterizations,
written f  c

[pmin;pmax]
l and f  i

[pmin;pmax]
l. The non-

probabilistic fact characterizations are a special case ofthe
probabilistic characterizations, i.e., (1)f  c l is expressed
asf  c

[1;1]
l, which is also read as “f coversl for sure”, (2)

f  i l is expressed asf  i
[1;1]

l, which is also read as “f is

insidel for sure”, and (3)f  i
m l is expressed asf  i

[0;1]
l,

which is also read asf is insidel with unknown probability.
In addition,f  c

[0;1]
l is also read asf coversl with unknown

probability.
The setR is stored in the data warehouse and the proba-

bilistic fact characterizations are inferred when needed.For
the inference, the warehouse uses the rules described in Sec-
tions 5.1 and 5.2. In essence, the rules provide a recursive defi-
nition of the notion of probabilistic fact characterization. Since

277



the rules are valid both with thesafeandexpecteddegrees of
containment, the notation used in the rules does not reflect the
kind of degrees.

5.1. Basic Rules
In the following, we present the basic rules for inferring fact

characterizations.
∀(f, l) ∈ F × bD

1. ((f, l, pmin, pmax) ∈ R
p
c ⇒ f  c

[pmin;pmax]
l)

2. ((f, l, pmin, pmax) ∈ R
p
i ⇒ f  i

[pmin;pmax]
l)

If a factf is attached to and covers (is inside) a segmentl

with the probability of at leastpmin and of at mostpmax

, then we can infer thatf covers (is inside)l with the
probability of at leastpmin and of at mostpmax.

3. (f  c
[pmin;pmax]

l ⇒ f  i
[pmin;pmax]

l)

If a fact f coversa segmentl with the probability of at
leastpmin and of at mostpmax, thenf is also inside l

with the same probability. The idea behind the rule is as
follows. If a piece of contentcoversa segment with some
probability, i.e., betweenpmin andpmax, then it is possi-
ble to state that the piece is alsoinsidethat segment with
the same or even greater probabilities. However, the data
at hand, i.e., the probabilities that we can use for arguing,
only allows us to record the lowest possible probabilities,
i.e., those betweenpmin andpmax.

∀(f, l1, l2, . . . , ln, l) ∈ F × D × . . . × D

4. (l1 ≡ l2 ∧ f  i
[pmin;pmax]

l1 ⇒ f  i
[pmin;pmax]

l2)

5. (l1 ≡ l2 ∧ f  c
[pmin;pmax]

l1 ⇒ f  c
[pmin;pmax]

l2)

If two values are equivalent, then they characterize the
same facts in the same way.

5.2. The Characterization Sum Rule
In the following, we present the most important rule for in-

ferring fact characterizations, called thecharacterization sum
rule. Among other things, the rule provides support forcorrect
aggregation.

Definition 5.2. [Characterization sum rule] For any fact,f ,
and dimension values,l1, l2, . . ., ln, andl, the following holds:

(

n̂

i=1

(li ⊏di
l ∧ f  

i
[pi

min ;pi
max ]

li) ⇒ f  
i
[pmin ;pmax ]

l)),

wherepmin =
Pn

i=1
di · p

i
min and

pmax = min(
Pn

i=1
di · p

i
max, 1)

The basic idea behind the rule is that we obtain the proba-
bility for a fact characterization by summing up probabilities
for that fact characterization obtained throughn different ag-
gregation paths. A more formal explanation is as follows. We
use the notationP (e) for the probability of the evente and
P (e ∧ e′) for the conjunction of the eventse ande′. First, let
the evente1 be “a piece of content is inside a segmentl”, i.e.,

is “f  i l”. We need to computepmin, which is a lower
bound onP (e1). The evente1 is a disjunction ofn disjoint
eventsei

2 ∧ ei
3, whereei

2 is “f  i li” and ei
3 is “li ⊏ l”. The

eventse1

2 ∧ e1

3, e2

2 ∧ e2

3, . . . , en
2 ∧ en

3 are disjoint, because (as
with transitivity of containment) we assume that values from
the same category, in particular, the valuesl1, l2, . . . ln do not
overlap. For this reason,P (e1) =

Pn
i=1

P (ei
2 ∧ ei

3). Since
eventsei

2 andei
3 are independent,P (ei

2 ∧ ei
3) = P (ei

2) ·P (ei
3).

Next, P (ei
2) ≥ pi

min andP (ei
3) ≥ di or P (ei

3) = di, if di

is an expected or safe degree, respectively. This means that
P (e1) ≥

Pn
i=1

di · pi
min. So,pmin =

Pn
i=1

di · pi
min. The

case ofpmax, i.e., the maximum probability that a piece of
content is inside a segmentl, is analogous. However, since in
this case we sumupperbounds on probabilities, the resulting
upper bound,pmax, may be higher than1. Since according to
probability theory the maximum probability of any event is1,
we “cut” pmax down to1.

Since no aggregation path is ignored in the process of infer-
ring fact characterizations, the characterization sum rule offers
significant support forcorrect aggregation. Furthermore, if ex-
pected degrees are used for constructing an MO, the rule for in-
ferring transitive relationships between dimension values (see
Section 4) provides additional support. In particular, combined
effect of these two rules is that a query engine may perform
inferences on an MO in any order without losing any informa-
tion, i.e., transitive relationships between values first,then fact
characterizations, or in the reverse order.

Example 5.3. Given a dimension hierarchy from Figure 1(c),
we exemplify the use of the characterization sum rule. Sup-
pose our data warehouse has data on (uncertain) positions ofa
user in the kilometer-post representation, which are stored as
(f1, p1111, 0, 0.1) ∈ R

p

i
and (f1, p1133, 0.9, 1) ∈ R

p

i
. Then,

the positions of the user in the link-node representation are
deduced as follows. First, assuming that the degrees from
Figure 1(c) areexpected degrees, we infer the relationships
p1111 ⊏0.8 a1, p1111 ⊏0.2 a2, p1133 ⊏0.8 a1, andp1133 ⊏0.2

a2. Second, by basic rule 2, we obtain the fact characteriza-
tionsf1  

i
[0;0.1]

p1111 andf1  
i
[0.9;1]

p1133. Finally, by the

characterization sum rule, we inferf1  
i
[p1

min
;p1

max]
a1 and

f1  
i
[p2

min;p2
max]

a2, wherep1

min = 0.8 · 0 + 0.8 · 0.9 = 0.72,

p1
max = 0.8·0.1+0.8·1 = 0.88, p2

min = 0.2·0+0.2·0.9 = 0.18,
andp2

max = 0.2 · 0.1 + 0.2 · 1 = 0.22.

Note that Definition 5.1 allows two levels of uncertainty in
fact-dimension relationships. At the first level, we express un-
certainty about content attachmentsby relating the same fact,
f , to several dimension values. At the second level, we ex-
pressuncertainty about probabilities of content attachments
by specifiying the lower and upper bounds of the probabilities.
The second level provides the model with additional flexibil-
ity: (1) it makes more sense to map the user’s intuitive under-
standing of uncertainty to intervals, rather than precise num-
bers, e.g., ”very low probability” means a whole range of un-
certainty and is more accurately represented by[0.1; 0.3] than
by 0.2; (2) using probability bounds when inferring fact char-
acterizations allows having simple inference rules.
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6. The Algebra
In this section, we present a set of algebraic operators,

i.e., algebra, that is a formal foundation for querying the data
captured by our model. The operators allow us to formulate
queries for probabilistic fact-dimension characterizations. Due
to space constraints, onlyselectionand aggregate formation
operator are discussed in detail, while others, i.e.,union, pro-
jection, join, anddifferenceare discussed briefly.

We base our algebra on thedeterministicalgebra from [20],
which is proven to be at least as powerful as the relational alge-
bra with aggregation functions [14]. The operators from [20]
need to be extended to handle probabilistic aspects of our
model. Intuitively, after the extension, our algebra will be
at least as powerful as a probabilistic relational algebra (e.g.,
from [1]).

Let i range from 1 ton. For unary operators, we assume
a single n-dimensional MOM = {S, F ,DM ,RM }, where
DM = {Di} and RM = {Ri}. For binary operators, we as-
sume twon-dimensional MO’sMj = (Sj ,Fj ,DMj

,RMj
), j =

1, 2, whereDMj
= {D j

i } andRMj
= {Rj

i }.

6.1. Selection Operator
The selection operator is used to select a subset of the facts

in an MO based on a predicate. LetK = {i , c}, where the
symbolsi andc stand for “inside” and “covering”, respectively,
and letI = [0; 1]. The selection operator,σ, uses a predicate
q : bD1 × . . . × bDn × (I × I )n × Kn

 {true , false}. Thus,
the parameters of the predicateq aren dimension values, each
from a different dimension,n intervals of probability values,
and n “inside” or “covering” symbols. The resulting set of
facts is:

F
′ = {f ∈ F |

∃(l1, . . . , ln) ∈ bD1 × . . . × bDn

(∃([p1

min; p1

max], . . . , [pn
min; pn

max]) ∈ (I × I)n

(∃(k1, . . . , kn) ∈ K
n

(q(l1, [p1

min; p1

max], k1, . . . , ln, [pn
min; pn

max], kn)

∧

n̂

j=1

f  
kj

[p
j

min
;p

j
max]

lj}

We thus restrict the set of facts to those that are character-
ized by dimension values whereq evaluates totrue . This op-
erator supports probabilistic covering/inside fact characteriza-
tions. Specifically, the operator allows us to formulate queries
that select facts that are characterized (1) with given intervals
of uncertainty, i.e.,[pi

min; pi
max] for a characterization by the

dimensionDi, and (2) kind of characterization, i.e., inside,
covering, or both by means ofki for a characterization by the
dimensionDi. In addition, we restrict the fact-dimension re-
lations accordingly, while the dimensions and the fact schema
stay the same.

Example 6.1. [Selection operator] Continuing Example 5.3,
suppose that we would like to selectreliable data on male
users,m ∈ CGender , on a link,a1 ∈ CL L, at a future time,

t ∈ CSecond . For this, the predicateq could be defined as fol-
lows:

q(l1, [p1

min; p1

max], k1, l2, [p2

min; p2

max], k2,

l3, [p3

min; p3

max], k3) = true ⇔

(l1 = m ∧ p
1

min = p
1

max = 1 ∧ k1 = i)∧

(l2 = a1 ∧ [p2

min; p2

max] ⊆ [0.5; 1] ∧ k2 = i∧

(l3 = t ∧ p
3

min = p
3

max = 1 ∧ k3 = i)

The predicate defines thereliable data as the fact characteri-
zations such as: (1) in the USER and TIME dimension, the
minimum and maximum probability equals to1, (2) in the LO-
CATION dimension, the minimum (maximum) probability is
at least0.5 (any).

Suppose we have characterizationsf1  i
[1;1]

m and

f1  
i
[1;1]

t in the USER and TIME dimension, respectively.

Since we have inferred the characterizationf1  
i
[0.72;0.88]

a1,

the factf1 would contribute to the result, i.e.f1 ∈ F ′. How-
ever, if we replacea1 with a2 in the query, then the factf1

would be outside the result, because of the characterization
f1  

i
[0.18;0.22]

a2. As another example, we could select all
data that isunreliablewith respect to positioning, for instance,
to remove it from a subsequent computation, as follows:

q(. . .) = true ⇔ [p2

min; p2

max] ⊆ [0; 0.5)

6.2. Aggregate Formation Operator

The unary aggregate formation operator is used
when applying aggregate functions to an MO. We
assume a set of traditional aggregation functions,
H =

Sn
i=1

{SUM i ,AVG i ,MIN i ,MAX i} ∪ {COUNT}.
The COUNT works by considering fact-dimension relation-
ships for all dimensions, while other functions “look up” the
required data for the facts in the relevant fact-dimension rela-
tion. For example,SUM 1 finds its data in the fact-dimension
relationR1 and sums them.

In addition, the operatorGroup : D1 × . . . × Dn  2F is
defined. In general, the operator groups the facts characterized
by the same dimension values, i.e.,Group(l1, . . . , ln) = {f ∈
F | f  l1 ∧ . . . ∧ f  ln}. Later in this section, we present
more elaborate definitions of the grouping operator.

Aggregate Formation Operator Definition Next, we re-
state a generic definition of the aggregate formation opera-
tor from [12], which is also suitable in our context of un-
certain data. In the definition, we denote(l1, . . . , ln) and
Group(l1, . . . , ln) by ~l andG, respetively. Also, we assume
that~l ∈ C1 × . . . × Cn.

Definition 6.2. [Aggregate formation operator] Given a
new (result) dimensionDn+1 of a new (result) typeTn+1,
an aggregation functionh : 2F

 Dn+1 from the setH,
and a set of grouping categories{Ci ∈ Di , i = 1, . . .n},
the aggregate formation operator, α, is defined as follows:
M ′ = α[Dn+1 , h,C1 , . . . ,Cn ](M ) = (S′,F ′,D ′

M ′ ,R
′
M ′),

whereS
′ = (F′, D′) and
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F
′ = 2F

, D
′ = {T′

i, i = 1, . . . , n} ∪ {Tn+1},

T
′
i = (C′

i,⊏
′
Ti

,⊥′
Ti

,⊤′
Ti

),

C
′
i = {Cij ∈ Ti | Ci ⊏Ti

Cij} ∪ {Ci},

⊏
′
Ti

=⊏Ti|C′

i

,⊥′
Ti

= Ci,⊤
′
Ti

= ⊤Ti
, F

′ = {G 6= ∅},

D
′ = {D′

i, i = 1, . . . , n} ∪ {Dn+1}, D
′
i = (C′

D′

i
,⊏

′
D′

i
),

C
′
D′

i
= {C′

ij ∈ Di | C
′
ij ∈ C

′
i},⊏

′
D′

i
=⊏Di|D′

i

R
′
M ′ = {R′

i, i = 1, . . . , n} ∪ {R′
n+1},

R
′
i = {(f ′

, li) | ∃~l(f
′ = G}, R′

n+1 =
[

~l

{(G 6= ∅, h(G)}

Thus, for every combination of dimension values~l =
(l1, . . . , ln) in the given grouping categories, the aggregation
functionh is applied to the set of facts characterized by~l, i.e.,
to the groupG = Group(~l), and the result is placed in the new
dimensionDn+1.

The new facts from the setF ′ are of typeF′, which denotes
sets of the argument fact type, and the resulting dimensions
types fromD

′ are obtained by restricting argument dimension
types to the category types that are greater than or equal to
the types of the grouping categories. The new dimension type
Tn+1 for the result is added to the set of dimension types.

The new set of factsF ′ consists ofsetsof the original facts,
where original facts in a set share a combination of charac-
terizing dimension values. The argument dimensions are re-
stricted to the remaining category types, and the result di-
mensionDn+1 is added. The fact-dimension relations for the
argument dimensions now link sets of facts directly to their
corresponding combination of dimension values, and the fact-
dimension relationR′

n+1 for the result dimension links sets of
facts to the function results for these sets.

Grouping In Section 5, we introduced probabilistic fact
characterizations, which allows us to group facts with an arbi-
trary degree of confidence, i.e., with arbitrary requirements to
the probabilities of the characterizations of the grouped facts.
Next, we define different kinds of grouping, consideringinside
fact characterizations only. The cases ofcoveringcharacteri-
zations are analogous.

Definition 6.3. [Grouping operators] We define the follow-
ing grouping operators.
1. Degree-of-confidence grouping operator, Groupd:

Groupd(l1, . . . , ln, [p1

min′ , p
1

max′ ] . . . , [pn
min′ , p

n
max′ ]) =

{f ∈ F |
n̂

k=1

f  
i
[pk

min;pk
max]

lk∧

[pk
min; pk

max] ⊆ [pk
min′ ; pk

max′ ]}

2. Conservative grouping operator, Groupc:

Groupc(l1, . . . , ln) = Groupd(l1, . . . ln, [1; 1], . . . , [1; 1])

3. Liberal grouping operator, Groupl:

Groupl(l1, . . . , ln) = Groupd(l1, . . . ln, [0; 1], . . . , [0; 1])

In the degree-of-confidence grouping, a group is formed
from the facts that belong to the group with a probability given
by the parameters ofGroupd operator.

We define the following special cases of the operator. First,
in theconservative grouping, a group is formed from the facts
thatdefinitelybelong to the group. Since only precise data will
be used in calculations and the remaining data discarded, this
kind of grouping is useful for computing a “lower bound” for
a query result, i.e., the result contains as little data as possible.

Second, inliberal grouping, a group is formed from the
facts thatpossiblybelong to the group. Liberal grouping can
be used for computing an “upper bound” for a query result,
i.e., the result contains as much data as possible, because all
the data, both precise and imprecise, are taken into considera-
tion. This means that our definition of conservative and liberal
grouping corresponds to the general understanding of the terms
introduced in [20].

Example 6.4. Continuing Example 5.3, suppose we also have
a factf2 characterized as follows:f2  

i
[1;1]

m, f2  
i
[1;1]

a1,

andf2  
i
[1;1]

t. Then, suppose we wish to aggregate thecer-
tain data to the level ofCGender , CL L, and CSecond , and
discard everything else, e.g., in order to decrease the chance
of overcounting. Then, we will use theconservative grouping
operator and obtain the groupsGroupc(m,a1, t) = {f2} and
Groupc(m,a2, t) = ∅. Next, if we wish to aggregateall data,
e.g., in order to decrease the chance ofundercounting, then we
will use the liberal grouping operator and obtain the groups
Groupl(m, a1, t) = Groupl(m,a2, t) = {f1, f2}. Finally, if
we wish to aggregate the data given with areliable degree of
confidence, e.g., in order to balance the chances ofundercount-
ing andovercounting, then we will use adegree-of-confidence
grouping operator, e.g.,Groupd(l, [0.5; 1]). In this case,
we obtain the groupsGroupd(m, a1, t, [1; 1], [0.5; 1], [1; 1]) =
{f1, f2} andGroupd(m, a2, t, [1; 1], [0.5; 1], [1; 1]) = ∅.

Aggregation FunctionsIn the following, we discuss aggre-
gation functions. We assume a group

G = {fj ∈ F |

n̂

k=1

fj  
i

[p
k,j

min
;p

k,j
max]

lk}.

We start with the COUNT function, which countsminimum
expected, maximum expected, average expected, definite, and
possiblenumber of facts that belong to the groupG.

Definition 6.5. [COUNT function ] Given thatN is the num-
ber of facts in the groupG, we define different kinds of counts.

1. Theminimum expected countis:

COUNTmin(G) =
NX

j=1

(p1 ,j
min · . . . · pn,j

min)

2. Themaximum expected countis:

COUNTmax (G) =
NX

j=1

(p1 ,j
max · . . . · pn,j

max )

3. Theaverage expected countis:

COUNTavg(G) =
NX

j=1

(
p
1 ,j
min + p

1 ,j
max

2
· . . . ·

p
n,j
min + p

n,j
max

2
)
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4. If G is a conservative group, then thedefinite countis:

COUNTdef (G) = N

5. If G is a liberal group, then thepossible countis:

COUNTpos(G) = N

Since the procedure of computing the expected counts as-
signs degrees of group membership to facts, any grouping in-
cluding the liberal and conservative groupings may be consid-
ered weighted groupings.

Example 6.6. [COUNT function ] Continuing Ex-
ample 6.4, we consider the following three groups:
Gc = Groupc(m,a1, t), Gl = Group l (m, a1 , t), and
Gd = Groupd(m,a1, t, [1; 1], [0.5; 1], [1; 1]).

Then,COUNTmin(Gc) = 1 ·1 ·1 = 1, COUNTmin(Gl) =
1 · 0.72 · 1 + 1 · 1 · 1 = 1.72, andCOUNTmin(Gd) = 0.72 +
1 = 1.72. Also, COUNTmax (Gc) = 1, COUNTmax (Gl) =
0.88 + 1 = 1.88, andCOUNTmax (Gd) = 0.88 + 1 = 1.88.

As may be seen from Example 6.6, differentCOUNT func-
tions, in combination with different kinds of grouping, pro-
duce different values. For example, the difference between
COUNTmin(Gc), and COUNTmax (Gl) is 88%. The for-
mer (latter) value is useful when the user wishes to maxi-
mally not overcount (undercount). In case the user wishes
to obtain less extreme values, he/she may use an “intermedi-
ate” combination of aCOUNT function and grouping, such
asCOUNTmin(Gl), COUNTavg(Gc), etc., that produce val-
ues betweenCOUNTmin(Gc) andCOUNTmax (Gl). Thus,
the introduced means of querying flexibly adapt to concrete
situation.

Due to space constraints, we only briefly discuss other ag-
gregation functions. First, we consider theSUM function,
which is, in essense, a generalization of theCOUNT func-
tion. Intuitively, the former sums arbitrary values of a measure,
while the latter sums values of1. Suppose, in an MO, thenth

dimension supplies data for the function. We assume that this
dimension isregular, i.e. (1) there are only full containment
relationships in the dimension hierarchy and (2) facts are only
mapped to this dimension deterministically. Then, given the
groupG, we define theminimum expected sumby modifying
the definition of the minimum expected count as follows:

SUMmin (G) =
NX

j=1

(p1 ,j
min · . . . · pn−1 ,j

min · v(ln , fj ))

wherev(ln, fj) is a numerical value assigned to a dimension
value l such thatl ⊏ ln and (f, l, 1, 1) ∈ Rn. This way we
sum the most precise data. Definitions ofmaximumor average
expectedandpossibleor definitesums can be obtained by mod-
ifying the definitions of the corresponding counts analogously.

Example 6.7. [SUM function] For example, suppose in our
case study, we added a fourth dimension that captured weights
of user cars. In addition, suppose (1) valuesw5 ∈ bD4,
w2.5 ∈ bD4, and w1.75 ∈ bD4, stand for 5, 2.5, and 1.75
tons, respectively, (2)w2.5 ⊏ w5 and w1.75 ⊏ w5, and
(3) (f1, w1.75, 1, 1) ∈ R4 and (f2, w2.5, 1, 1) ∈ R4. Thus,
v(w5, f1) = 1.75 andv(w10, f2) = 2.5. Then, we could find
the minimum expected sumof weights of cars of users from

the groupG′
l = Group(m, a1, t, w5) (see Example 6.6), as fol-

lows: SUMmin (G′
l) = 1 · 0.72 · 1 · 1 · 1.75 + 1 · 1 · 1 · 1 · 2.5 =

1.26 + 2.5 = 3.76.

Second, we consider theAVG function. Given the groupG,
we define (different kinds of) the function as follows:

AVGmod(G) =
SUM mod(G)

COUNTmod(G)

wheremod is one of the following:min, max , avg , def , and
pos.

Finally, we consider theMIN function. Given the groupG,
we define thepossibleanddefinite minimumas follows:

MINmod(G) = min({v(ln, fj), j = 1, . . . , N})

wheremod is eitherpos or def and min is a function that
returns the minimum number from a set of numbers. Analo-
gously with theCOUNT function,MIN pos (MIN def ) is de-
fined, if G is a liberal (conservative) group.

Example 6.8. [Queries] In this example, we express queries
from Section 2 with the operators of our probabilistic algebra.
The expressions are:
(1) COUNTmin(GROUP l(a, lms, t)),
(2) AVGavg(GROUP l(m, l90, t)),
(3) COUNTmax(GROUPd(⊤, l, t, [1; 1], [0.75; 1], [1; 1])),
(4) MAX pos(GROUPc(⊤, l, t)).

6.3. Other Operators
Union Operator The union operator is used to take the

union of two MOs. Prior to defining the operator itself, we
define two helper union operators,union on dimensionsand
union on fact-dimension relations. Due to space constraints,
all the definitions in this section are informal.

Given two dimensions of the same type,D1 and D2, the
union operator on dimensions,

SD, builds a new dimension,
denotedD′ = D1

SD
D2 by performing set union on corre-

sponding categories and by building a new relation⊏D′

on
dimension values: there exists adirect relationship between
two valuesl1 andl2 if there exist adirect relationship between
the values in either dimension. The degree of containmentd

for a resulting relationship depends on the degrees for given
relationshipsd1 and d2 and may be determined in different
ways. For example, if a user wants to decrease the chance of
overcounting (undercounting)facts in the resulting MO, thend
should be equal to theminimum (maximum)of d1 andd2. The
indirect relationships between values in the resulting dimen-
sion are inferred using our transitivity rules from Section5.

Next, given two fact-dimension relations,R1 andR2, relat-
ing facts and dimensions of the same type, theunion opera-
tor on the relations,

SR, builds a new fact-dimension relation
R′ = R1

SR
R2: the new relation relates a fact and a dimen-

sion value, if either relation relates the fact and the value. The
probabilities for a resulting relationship,p′min andp′max, de-
pend on the probabilities for given relationships,p1

min, p1
max,

p2

min, andp2
max, and may be determined in different ways. For

example, if the facts-dimension relationships from the first MO
areless precisethan those from the second MO, thenp′min and
p′max should be equal top2

min andp2
max, respectively. Thefact

characterizationsare inferred using the rules from Section 5.
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Finally, given two MO’s with common fact schemas,M1

and M2, the union operator,
S

, builds a new MO,M ′ =
M1

S
M2, by combining dimensions and fact-dimension re-

lations with the help of the
SD and

SR operator, respectively.
Given argument MOs,difference, projection, and identity-

based joinoperators are not meant to transform the probabili-
ties of the fact characterizations or the degrees of containment
in the dimensions. The only requirement is to preserve the
probabilities. Therefore, we define the probabilistic version of
these operators as their deterministic counterparts in [20] ex-
cept the probabilistic operators take probabilistic MOs asar-
guments and produce probabilistic MOs in the result. How-
ever, more general versions of difference and join operatorthat
transform or combine probabilities of input MOs may also be
useful.

7. Conclusions and Future Work
Motivated by the increasing use of location-based data

warehouses (LBDWs) in industry, and the need to handle com-
plex, dynamic, uncertain multidimensional data in such LB-
DWs, we propose a probabilistic data model that is able to
capture the complexity of such data. The model provides a
foundation for handling LBDW data, e.g., LBS data such as
transportation infrastructures and the attached static/dynamic
content (e.g., speed limits and vehicle positions). The paper
also formally defines a set of algebraic operators that support
querying of the afore-mentioned data. Finally, the paper out-
lines a real-world case study, based on our collaboration with
a leading Danish vendor of location-based services. To our
knowledge, this paper is the first to address the management of
LBDW data.

In future work, it is interesting to generalize the expected
degree of containment approach to intervals. Also, one inter-
esting area of future work is to extend the fact characteriza-
tions to include a density function, in addition to a minium
and maximum probability. The density function, e.g., uni-
form or normal, could be used to provide more information
in the computation of some aggregates. However, more re-
search is needed to ensure that the cost of adding and using
this information is feasible. Furthermore, this paper consid-
ers only identity-based joins, but it would be useful to gener-
alize our approach to consider other kinds of joins, in partic-
ualr joins on uncertain attributes [1]. On the implementation
side, the interesting directions concern pre-aggregationissues,
e.g., (1) using pre-aggregation to compute a wide range of ag-
gregate functions, (2) probabilistic pre-aggregation techniques,
and (3) (which would enable LBS queries for future time) pre-
aggregation techniques for dynamic content such as user posi-
tions, including an embedded probabilistic position prediction
method. Also, it is important to define a user-friendly, possibly
SQL-like, query language.
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Abstract

Material scientists regularly acquire and analyze in-
frared images of deforming objects in their material ten-
sile deformation, crack propagation, and fracture toughness
tests. Although there are many image processing packages,
none of them are available in a database integrated fash-
ion. Material scientists typically select a set of image files
satisfying given constraints by browsing a file directory/cat-
alog, and then perform simple but labor-intensive content-
querying on the images. These simple queries take days to
answer. A more serious problem is that material scientists
are not equipped with the flexibility to query images across
different time snapshots or materials to validate their re-
search hypotheses.

In this paper, we report about our work helping material
scientists accelerate their work. Specifically, we propose a
database approach to solve the problem of storing images
and querying the content of images. In particular, we (1)
proposed to use map algebra operations to compose image
content querying needed by material scientists; (2) devel-
oped an SQL integrated image data cartridge which imple-
ments a core set of map algebra operations needed by mate-
rial scientists; (3) analyzed the query processing and eval-
uation challenges; and (4) empirically evaluated the per-
formance of three approaches, namely a multi-dimensional
array based approach, a relational table based approach,
and a binary large object (BLOB) based approach on bulk
loading and typical material science queries using both real
and synthetic data.

1 Introduction

Material scientists regularly acquire and analyze infrared
images of deforming objects [22, 23, 3, 4] in their material
tensile, crack propagation, and fracture toughness tests. The
technique of thermal wave imaging utilizes the theories of
radiation heat transfer which occur in the wavelengths of 3-
13 m band. The overlap of a substantial wavelength with
that of infrared (IR) wavelength leads to the utility of IR

thermometry to interpret the temperatures generated in the
emitting material. Figure 1 shows the basic setup material
scientists use to study the materials.

IR Camera

Material

Figure 1. Setup used for collecting images.

Test machines such as Instron Materials are used to ap-
ply bending or stretching to material samples as shown in
Figure 2, which allows material scientists to study how the
material reacts under stress and strain. During the test the
IR emission from the sample is monitored as a function of
time using infrared cameras such as an Inframetrics IR740
Camera (8 m-12 m spectral band) at a 30 Hz frame rate.
When a crack forms, energy is dissipated as heat [22, 23]. In
general, the area around the crack-tip should have the high-
est temperature. Figure 3 (gray scaled to allow proper print)
shows two images from the same test at different times. No-
tice that the area between the two crack-tips is brighter in
the latter image indicating it has a higher temperature.

Each sample image set has associated meta-data which
may correspond to the type of material, the concentration
of filler, timestamps for the images, and the experimental
setup. Material scientists ask various spatio-temporal ques-
tions [22, 23] about the images they capture, for example (1)
Where is(are) the crack-tip(s) for a sample? (2) What is the
average temperature 5 mm from the crack-tip for a given
sample? (3) What is the temperature change for a point
(x, y) while a sample is pulled? (4) What is the change in
distance between two marked points after a given material
is pulled? (5) What is the area of deformation for a sam-

1
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Material

(a) Bending

Material

(b) Stretching

Figure 2. Deformations applied to the mate-
rial.

ple? (6) What is the difference in the area of deformation
for different samples at time=10 seconds? (7) How do the
contours of the image grow over time? (8) When does the
area of deformation become greater thanA? (9) Which ma-
terials have similar areas of deformation to a given sample?
These questions involve both meta-data (e.g. material and
time) and content of the sample images (e.g. crack tip and
formation area).

(a) Time=0 sec (b) Time=13 sec

Figure 3. Snapshots of a material as it is being
stretched.

Like scientists in many other domains, material scien-
tists are facing both data processing and data management
challenges. Currently, all questions are typically answered
by isolated software packages, e.g. Image J and Matlab,
on isolated image files. It takes material scientists days to
get answers to simple queries on these data using either in-
flexible predefined functionalities of software packages or
writing customized codes. A more serious problem is that
material scientists are not equipped with the flexibility to
issue ad hoc queries across different time snapshots or ma-
terials to validate their research hypotheses. Their research
has been greatly hindered by the limited expressive power
of image querying languages/tools.

In this paper, we report our work on helping material
scientists accelerating their answers to their research ques-
tions. Specifically, we propose a database approach to solve
the problem of storing and querying images that has plagued
material scientists for years. In particular, we first proposed

to use map algebra operations to compose image content
querying needed by material scientists. Then we developed
a SQL integrated image data cartridge which implements a
core set of map algebra operations needed by material sci-
entists. Third, we analyzed the query processing and evalu-
ation challenges. We proposed possible solutions although
the actual implementation and evaluation of these solutions
are out of the scope of this paper. Finally, we empiri-
cally evaluated the performance of three basic approaches,
namely a multi-dimensional array based approach, a rela-
tional table based approach, and a binary large object based
(BLOB) approach on bulk loading and typical material sci-
ence queries using both real data and synthetic data.

The paper is organized as follows. Section 2 starts off
by surveying related work. The proposed SQL integrated
map algebra approach is described in section 3. Section
4 discusses the various implementation options of the pro-
posed approach and their query processing challenges. We
present the experiment results on the performance of data
load and typical queries on both real and synthetic datasets
in section 5.The paper concludes by discussing some of the
future work in section 6.

2 Related Work

Researchers in scientific database management have
been addressing the problem of organizing and querying
images for many years [2, 19, 7]. Images typically have
both meta-data and content. Approaches for managing im-
ages have been centered around meta-data based, content
based, or a hybrid approach. A meta-data based approach
could easily adopt traditional database operations. A con-
tent based approach, noticeably Content Based Image Re-
trieval (CBIR) [21], retrieves images similar to a given im-
age using features derived from image content, e.g. color,
textures, and shapes. A hybrid approach allows queries in-
volving both meta-data and image contents. However the
“content” in research literature is generally referring to fea-
tures describing the images in a very general sense, e.g.
color histogram and textures. In a broad sense, our work
is related to the hybrid approach. The uniqueness of our
approach is the ability to allow material scientists to ask ad
hoc queries to the content of their images in a SQL inte-
grated way.

Material scientists are interested in quantifying qual-
itative assessment of failure in materials. Temperature
changes on the surface represented by thermal images are
related to the change in stresses via thermoelastic equations.
Quantification of this has been limited since tools that al-
low queries across data that are continuous across the sur-
face are not generally available to material scientists. As a
result, one of the authors had to resort to using map alge-
bra [18, 5, 13], supported by many GIS software packages,
to query the images in a semi automatic but still laborious
fashion.
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Spatial information is generally represented by two mod-
els: objectandfield [16]. The object model represents con-
ceptual entities as objects in an intuitive and direct way. The
vector data structure implements theobject model using
polygons, lines, and points to represent shapes of objects,
e.g. lakes, buildings, and rivers. Thefield model is often
used to represent continuous phenomena over a space, e.g.
temperature. The raster data structure obtained by imposing
a uniform grid on the underlying space implements thefield
model on a computer. Map algebra [18, 5, 13] is an infor-
mal and thede factogeographic and cartographic modelling
language for manipulating raster data. As a high-level com-
putational language to describe geographic data processing,
map algebra creates new map layers using existing map lay-
ers and operations in a sequence. It is a powerful raster ma-
nipulation language by allowing calculation of values for
locations based on the location itself, its neighborhood, a
related zone, or the entire raster. Although supported by
many GIS software products, e.g. ArcInfo [6], AutoCAD,
and PCRaster [11], map algebra is not supported in an SQL
integrated fashion. Users first need to select the raster files
satisfying given constraints, e.g. all images of materialX
with y% filler concentration, by either browsing a file di-
rectory/catolog or writing SQL statements. The names of
raster files are then embedded into map algebra operations
manually.

A logical way to support image content querying in a
database system is to extend current database data types
and query languages. Many object-oriented or object-
relational database management systems allow abstract data
types (ADT) together with stand alone/member functions
defined by end users. Such research prototypes/commer-
cial/open source software products include Postgres [8],
Monet [1], Jasmine [9], Starburst [15], Oracle, DB2, and
MySQL. Many of them support images as binary large ob-
jects (BLOB). A cartridge supporting map algebra in an
SQL integrated fashion is not known.

In a similar vein as our proposed approach in this paper,
Nes proposed to add core image processing functionality
to the database management system, making it a better tool
for image analysis research in his thesis [10]. Image algebra
[14] is a formal set of image-processing operations many of
which may not have practical usage in material science im-
age content querying, which is a very light form of image
analysis. Geo-algebra [17] attempts to borrow techniques
from image algebra to formalize and extend the functional-
ities of map algebra.

RasDaMan [20] is an extension of an ODBMS to sup-
port multidimensional arrays. In addition, it also supports
an extended version of SQL called RasQL that allows the
user to select and manipulate multidimensional array data.
However, for the queries posed by material scientists the
expressive power of RasQL is limited by the difficulty of
performing focal and zonal operations.

3 SQL Integrated Map Algebra Approach

Fracture mechanics relies on balancing the energy before
and after failure in terms of incremental crack growth. Since
temperature has a dominating effect on polymeric materi-
als, analysis of the temperature fields around the crack tip
over the time of propagation of the crack to failure yields
information on the state of the material. Being able to is-
sue ad hoc queries in the form of :“What is the temperature
change for a point(x, y) while a given materialX with filler
concentrations% is pulled?” or “What is the average tem-
peraturel mm from the crack-tip for materialX with filler
concentrations% at time t?” helps material scientists to
study the state of a material at a given time. The latter ques-
tion could also be easily extended to queries like “What is
the rate of temperature changel mm from the crack-tip for
materialX with filler concentrations% at timet? This sec-
tion describes how map algebra operations can be used in
conjunction with SQL to answer these queries.

We classify the material science queries into two cat-
egories, namely image content queries and multi-criteria
queries. The first category has simple meta-data conditions
to specify which images you want content information for,
while the second category has mixed meta-data and image
content conditions.

3.1 Map Algebra

Map algebra [18] is a cell by cell combination of raster
layers using some mathematical operation. A raster layer
is a grid imposed over an image with a value for each cell.
Map algebra can be extended to support most mathemati-
cal operations found in a spreadsheet tool. The result of a
map algebra operation is another raster layer. Operators can
be grouped into four basic categories (1) local operations
where the value of a cell in the output is a function of the
corresponding cells of the input; (2) focal operations that
determine the output value of a cell based on a small spec-
ified neighborhood; (3) zonal operations that determine the
output based on all of the values in a zone; (4) global oper-
ations determine the output based on all of the values in the
raster.

1 2 4
3 6 7
5 9 8

+
2 3 5
4 7 8
6 1 9

=
3 5 9
7 13 15
11 10 17

Figure 4. Local addition operator.

Figure 4 shows a local addition operator on two rasters.
Local operations are useful for general manipulation such
as for looking at the difference in temperatures between two
images of a material over time.

Figure 5 shows the general focal max with a3×3 neigh-
borhood. This operation chooses the new cell value for the
center pixel of the output by looking at all of the cells in
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Neighborhood:

FocalMax(
1 2 4
3 6 7
5 8 9

) =
6 7 7
8 9 9
8 9 9

Figure 5. Focal maximum operator.

the specified neighborhood. Focal operations are useful in
many material science image queries, e.g we can find the
boundaries of the temperature zones by using the focal ma-
jority operator (will be described in detail later in section
3.2).

ZonalMax(
1 2 4
3 6 7
5 9 8

,
1 1 3
2 1 2
3 1 2

) =
9 9 5
8 9 8
5 9 8

Figure 6. Zonal maximum operator. The first
raster is the input and the second is the zonal
map.

For some tasks zonal operations are also useful. For ex-
ample, as stated earlier, the crack-tip in general should have
the highest temperature. In order to find the location of the
crack-tip, we need to know the location with the highest
temperature or in terms of the raster the pixel with the max-
imum value in some zone. Figure 6 shows how the zonal
maximum operator works. A zone is the set of cells that
have the same value in the zonal map raster. The new cell
value is determined by looking at all cells in the same zone.
Global operations are a special case of zonal operations
where the entire raster is one zone.

Local Operations
Arithmetic add, subtract, abs, sqrt, etc...
Boolean equal, greater than, less than
Aggregate min, max, minority, majority, median, sum
Statistic standard deviation, mean

Focal Operations
Aggregate min, max, minority, majority, median, sum
Statistic standard deviation, mean

Zonal and Global Operations
Geometric fill, area, perimeter, thickness, distance
Aggregate min, max, minority, majority, median, sum
Statistic standard deviation, mean

Miscellaneous Operations
Miscellaneous get value, trim

Table 1. Map algebra operations.

There are also two useful operations that do not fit well
into the other categories. Both involve reducing the dimen-
sions of an input raster to get a new raster. The first provides
for getting the value of a specified cell or zone and returns

ImageSet

ImageElement

Contains

Name

Material

Filler Rate

Scale

Dimensions

Time

Crack

Pixel Data

Figure 7. ER diagram of schema.

a scalar value1. The second trims a raster and returns some
sub-raster.

Many GIS products support some form of map algebra,
however currently there is no official map algebra standard.
For this paper table 1 summarizes the representative opera-
tions we use for each category.

For all our queries we will assume a simple schema
shown in the entity-relationship diagram in figure 7. The
ImageSetentity set would contain the general description
of a set of images. This would include the meta-data that
is the same for every image in the set such as the set name,
material, filler, the scale for the images, and the dimensions
of the images, and strain rate applied to the material. For
example, the material might be a polypropylene + ethylene
propylene diene blend, with a filler that is a 1000 nanome-
ter wide by 1 nanometer thick ceramic platelet added to the
material, and a 4 mm/min strain rate. For simplicity, we
will use filler concentration to represent questions related
to various treatment applied to the material. TheImageEle-
mententity set has the actual image data along with the time
stamp for the image and the location of the crack tip.

3.2 Expressing Image Content Queries

The first class of queries involves querying the content of
the images. The constrains of these queries are simple meta-
data constraints, e.g. material type and filler concentration.
The main challenge is how image content can be queried
using the map algebra operations.

It is assumed for this paper that the materials have only
one crack and thus one crack-tip. The crack propagation

1This can be thought of as a1× 1 raster so the operation is still closed.
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ID SQL Statement Description
Q1 SELECT c t . c r a c k t i p

FROM ImageElement as i e , ImageSet as i s
WHERE M a t e r i a l =X and Time= t and F i l l e r =s
and i s . Set ID= i e . Set ID ;

Where is(are) the crack-tip(s) for materialX
with filler concentrations% at timet?

Q2 SELECT FindShape ( i e . Data )
FROM ImageElement as i e , ImageSet as i s
WHERE M a t e r i a l =X and F i l l e r =s and i s . Set ID= i e . Set ID ;

What is the shape of the crack for materialX
with filler concentrations% at timet?

Q3 SELECT GetValue ( i e . Data , x , y )
FROM ImageElement as i e , ImageSet as i s
WHERE M a t e r i a l =X and F i l l e r =s and
i s . Set ID= i e . Set ID ;

What is the temperature change for a point
(x, y) while a given materialX and filler
concentrations% is pulled?

Q4 ZM=MakeRaster ( ” c i r c l e ” , CX, CY, ToP i xe l s ( 5 ) )

SELECT GetValue ( ZAvg ( i e . Data , ZM) , ZM, 1)
FROM ImageElement as i e , ImageSet as i s
WHERE M a t e r i a l =X and F i l l e r =s and i s . Set ID= i e . Set ID
and t ime = t ;

What is the average temperature 5 mm from
the crack-tip for materialX with filler con-
centrations% at timet?

Q5 SELECT Time , CreateMap ( i e . Data )
FROM ImageElement as i e , ImageSet as i s
WHERE M a t e r i a l =X and F i l l e r =s and i s . Set ID= i e . Set ID ;

How do the contours of the image grow over
time?

Table 2. Typical Material Science Image Content Queries(Q1-Q5) and Their SQL Statements

rate is important for determining how resilient a material
is to stress. The propagation rate can easily be determined
given the location of the crack-tip for each image. So the
query can be formulated as “(Q1) Where is the crack-tip for
materialX with filler concentrations% at timet?”. As the
crack-tip is part of the meta-data this query can be answered
using standard SQL. The resulting SQL statement is shown
in Table 2.

Figure 8. Finding the shape of a crack.

The shape of the crack that is formed in the material
is important because it can indicate how fast the crack is
likely to propagate through the material. A common ques-
tion would be “(Q2) What is the shape of the crack for ma-
terialX with filler concentrations% at timet?”.

To determine the shape of the crack the image first needs
to be cleaned up. For determining the shape of the crack
only two zones are needed: one that represents the back-
ground with a value of zero in every cell, and one that repre-
sents the material with a value of one in every cell. This can
be done using a simple local thresholding operation. Then
the minimum bounding box around the crack is selected as

shown in figure 8. Since the location of the crack-tip is
part of the meta-data, a reference raster can be created for
a particular shape such as a triangle. The reference raster is
subtracted from the actual crack. The fewer non-zero val-
ues there are in the result the closer the actual crack is to the
reference shape. TheFindShapemacro performs the steps
outlined earlier for each of the basic crack shapes to see
which shape matches with the highest probability. The re-
turned result is a textual description of the basic shape, e.g.
triangle or parabolic. The resulting SQL statement is shown
in table 2.

As mentioned earlier temperature has a dominating ef-
fect on polymeric materials so it is important to be able to
query the temperature in a number of ways including: a spe-
cific value “(Q3) What is the temperature for a point(x, y)
while a materialX with filler concentrations% is pulled?”,
the average for a set of values “(Q4) What is the average
temperaturep mm from the crack-tip for a materialX with
filler concentrations% at time t?”, and for the growth of
temperature zones “(Q5) How do the contours of the im-
age for a materialX with filler concentrations% grow over
time?”. Query Q5 is particularly useful as fracture tough-
ness equations call for understanding the volume of the de-
formed material.

Query Q3 can be answered by simply using the get value
operation to get a scalar value. As the image uses pixels a
simple macro can be defined to convert millimeters to pixels
as the dimensions of a pixel in millimeters is part of the
meta-data for each image set. Query Q4 can be answered
by creating a zone map raster that has a 1 in every cell that
is p mm from the crack-tip and getting the value of that
zone. Q3 and Q4 are shown in Figure 2
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Query Q5 is more complicated. Since an image can have
hundreds of distinct temperature values, the first step is to
assign ranges of temperatures to a given value so that the
result will have the desired number of zones. This is similar
to adjusting the distance between contours on a topographic
map to get the desired amount of detail. LetR be the origi-
nal raster andM be the contour map.

T = GMax(R)−GMin(R) (1)

D = LDivide(T,MakeRaster(n)) (2)

M = FMajority(LRound(R,D, B)) (3)

Equation 1 uses the global operations min and max to
find the overall temperature range for the image. The out-
put raster,T , is a raster where every cell has the temperature
range as the value. In equation 2 the temperature range is
divided by the desired number of zones,n. The function
MakeRaster(n) creates a raster where every cell has the
valuen. Equation 3 produces the final contour map raster,
M , by rounding the values and using the focal majority op-
eration with a3 × 3 neighborhood to clean up the zones.
Equation 4 shows how thei, jth cell of the raster returned
from the local round operation is determined from the cor-
responding cells of the three input rasters. A good value for
B is GMin(R).

R′
i,j =

⌊
Ri,j −Bi,j

Di,j

⌋
Di,j +

Di,j

2
+ Bi,j (4)

As you will see later creating a contour map is useful
for other operations. As such we will define theCreateMap
macro which performs the steps outlined earlier to create a
contour map from an image. Q3, Q4, and Q5 are shown in
table 2.

Stress-strain curve could be used to divide materials into
different classes that depend on their relative behavior under
stress. Stress is a force applied over an area. When mate-
rials deform they are said to strain. A strain is a change in
size, shape, or volume of a material. When a material is sub-
jected to increasing stress it passes through three successive
stages of deformation: reversible elastic deformation, irre-
versible ductile deformation, and fracture. Depending on
the regions of elastic and ductile behaviors, materials can
be said to be brittle or ductile. The extent of certain parts
of the material have stretched could be used to measure the
strain of the material. So material scientists want to know
“(Q6) What is the change in distance between two marked
points after the material is pulled?”. This query can be an-
swered by using the global distance function to find the dis-
tance from the cell markedM1 to every other cell. Then,
using the original image as a zone map, get the value of the
cell markedM2.

Many of the equations for determining the energy that is
being dissipated as heat require the area of the deformed re-
gion. Given a contour map of the image this can be thought

of as the area of the zone that has the highest temperature.
In particular queries such as “(Q7) What is the area of de-
formation for materialX with filler concentrations%?” and
“(Q8) What is the difference in the area of deformation for
different samples at timet?” are very useful. As finding the
deformation area is fairly common aDfrmAreamacro can
be defined that finds the area of the contour with the highest
temperature as follows:

DfrmArea (R)
MAP:= CreateMap (R , n )
ZONE:= GetValue (GMax(MAP) , 0 , 0 )
r e t u r n GetValue ( ZArea (MAP) , MAP, ZONE)

Essentially it creates a contour map and then uses the
global max operation to find the correct zone. As global
max creates a raster where every cell has the same value,
we can get any value to pass to the operation for getting the
value of a zone. The zonal area function calculates the area
of each zone and then the value of the zone with the highest
temperature is returned. Q6,Q7, and Q8 are shown in table
3.

3.3 Expressing Multi-Criteria Queries

In this section, we discuss queries whose constraints use
information about image content as well as other meta-data
to determine the result set.

Materials are selected by matching their properties to
the service conditions. The growth rate of the area of de-
formation of a material is an important property of a ma-
terial. The deformation area is defined as the area of the
highest temperature zones. Useful questions include “(Q9)
When does the area of deformation become greater than
A?” and “(Q10) Which materials have similar areas of de-
formation to materialX with filler concentrations% at time
t?”. Query Q9 requires a query with a image content con-
dition “deformation area is greater thanA” to be specified
and can be expressed as:

SELECT Min ( Time )
FROM ImageElement as i e , ImageSet as i s
WHERE M a t e r i a l =X and F i l l e r =s and

i s . Set ID= i e . Set ID
and DfrmArea ( i e . Data )>A;

Query Q10 is a complex query involving calculating in-
termediate results storing the deformation area of a given
material with a given filler concentration at a given time and
comparing every other images in the database with it. This
query can be expressed as:

WITH Refe r (A) as
SELECT DfrmArea ( i e . Data ) as A
FROM ImageElement as i e ,

ImageSet as i s
WHERE M a t e r i a l =X and Time= t and

F i l l e r =s and i s . Set ID= i e . Set ID

6
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ID SQL Statement Description
Q6 SELECT GetValue ( GDist ( i e . Data , M1) , i e . Data , M2)

FROM ImageElement as i e , ImageSet as i s
WHERE M a t e r i a l =X and F i l l e r =s and i s . Set ID= i e . Set ID ;

What is the change in distance between two
marked points after the material is pulled?

Q7 SELECT DfrmArea ( i e . Data )
FROM ImageElement as i e , ImageSet as i s
WHERE M a t e r i a l =X and F i l l e r =s and i s . Set ID= i e . Set ID ;

What is the area of deformation for material
X with filler concentrations%?

Q8 SELECT DfrmArea ( i e 1 . Data)−DfrmArea ( i e 2 . Data )
FROM ImageElement as ie1 , ImageElementas i e 2
WHERE i e 1 . Set ID =1 and i e 2 . Set ID =2 and Time=10;

What is the difference in the area of defor-
mation for different samples at time=10 sec-
onds?

Table 3. Typical Material Science Image Content Queries (Q6-Q8) and Their SQL Statements

SELECT Name , M a t e r i a l , F i l l e r
FROM ImageElement as i e , ImageSet as i s
WHERE i s . Set ID= i e . Set ID

and DfrmArea ( i e . Data )− Refe r .A <0.5;

These two queries represent a broad range of complex
queries. Q10 may be easily extended to questions that re-
quire a spatial join of the raster images, e.g. “Find the pair
of materials whose area of deformation correlated well”.

4 Implementation and Query Processing

There are three basic methods which can be used to store
images in an OO/OR database management systems. One
way is to store them in a table that has an image id, (x,y))
coordinates, and the pixel value. This method is not very
practical as it wastes space, since an image id and the co-
ordinates must be explicitly stored for each pixel, and it
leads to a huge table which usually has to be joined with
another table to connect an image with its meta-data. One
reason that this approach may still be useful is that it repre-
sents images and meta-data in a consistent way and standard
database language such as SQL could be adopted in query-
ing content of the image tables. One may want to implement
the image tables in an efficient way while still providing end
users with a table kind of view. A second method is to store
images using the binary large object (BLOB) data type. The
primary disadvantage with this is the lack of random access
to cells. Finally, some OO/OR database management sys-
tems provide multidimensional array types which provide
efficient storage with random access (provided the imple-
mentation is good).

For the first class of queries (Q1-Q8), the constraints are
meta-data based. Traditional query processing and opti-
mization techniques could be adopted well. When the im-
ages are implemented as tables, the image content queries
require time consuming join operations and indexing on co-
ordinates of cells may be useful. For the BLOB and multi-
array based approaches the support for random cell access
is critical in improving query performance.

The second class of queries have complex constraints in-
volving both meta-data and derived values of image con-

tent. The major performance enhancement techniques in-
clude materializing frequently calculated values, e.g. defor-
mation area, and building function based indexes for image
content queries with variables, e.g.l mm from crack-tip.

5 Experiment Design and Results

We chose to test queries Q1, Q3, Q5, and Q9 to see how
their performance varied with the number of images in a
single image set. These four queries were chosen to get a
representative sample of the performance of queries with
no map algebra functions (Q1) compared to those using the
get value operation (Q3), the create map macro (Q5), and
the deformation area macro (Q9). Finally query Q10 was
tested to see how it performed depending on the number of
image sets where each set had 100 images.

The performance was tested on both synthetic and real
data. The synthetic data consisted of 100 image sets that
each had 100 images. Each image was 200 by 200 pixels.
The deformation area of the images for each set was cho-
sen randomly to be between 100 and 1600 pixels. The real
data consisted of 26 images of a material as it was being
deformed. The material was a polyethylene teraphthalate
(PET) nanocomposite with3% MLS concentration supplied
by KOSA [12]. Like the synthetic data, each image was 200
by 200 pixels.

The test environment is PostgreSQL 8.0 running on Win-
dows XP. The machine is a 2.8 GHz Pentium IV with 512
MB of ram. The map algebra operations and user macros
were implemented in Java and connected to PostgreSQL us-
ing PLJava.

5.1 Results

Importing the data consists of reading the bitmap files for
the real data or generating the appropriate synthetic data and
storing this data in the database system. We used the Java
ImageIO library with the Java Advanced Imaging plug-ins
for working with the bitmap images.

For inserting the data the blob representation was the
fastest. It took 512.116 seconds (8.54 minutes) to insert the
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100 image sets of synthetic data. The array approach took
5994.515 seconds (99.91 minutes). The table approach was
much slower than the other two taking 2594.297 seconds
(41.57 minutes) to insert 1 data set.

For the synthetic data queries Q1, Q3, Q5, and Q9 were
tested to see how the performance varied between the three
storage techniques.

 30

 35

 40

 45

 50

 55

 60

 65

 10  20  30  40  50  60  70  80  90  100

E
xe

cu
tio

n 
T

im
e 

(m
ill

is
ec

on
ds

)

Number of Images

Query 1

Blob
Array
Table

Figure 9. Results for tests on synthetic data
with Q1.

Query Q1, shown in figure 9, does not use any map alge-
bra functions and does not access the image data.
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Figure 10. Results for tests on synthetic data
with Q3.

It is shown as a reference for the general response time
for simple queries under the test environment. Query Q1
could be answered in under 70 milliseconds regardless of

the image representation. Note that the times for all of these
queries are small so the spikes in the figure for the blob and
table based representations were probably the result of other
factors on the machine or in the database.

Query Q3, shown in figure 10, tests the time to access
a single value from a particular image. The array approach
did the best followed by the blob. The blob is approximately
2-3 times slower than the array based method. The table
based approach was more than a thousand times slower than
both. All methods had a linear growth rate.
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Figure 11. Results for tests on synthetic data
with Q5.

Query Q5, shown in figure 11, tests the create map func-
tion. The blob approach was about 60 times faster than the
array based approach. This was probably due to string pro-
cessing that has to be done to pass the array from the system
to the back-end functions. The table approach was several
hundred times slower than the blob approach.

Query Q9, shown in figure 12, tests the deformation area
function. The blob approach was about 16 times faster than
the array based approach. The array approach was about 4
times faster for this query compared to query Q8 with the
same number of images. This speed up is probably due to
the deformation area function returning a simple floating
point number and the create map returns a raster which for
the array approach must be packaged into a string. The table
approach was still much slower than the other two.

Query Q10 was also tested for synthetic data using the
blob and array representations to see how they performed
on a more complicated query comparing image sets. Fig-
ure 13 shows the results. The blob approach was consid-
erably faster. With 100 image sets the blob approach took
364.938 seconds (6.08 minutes) where the array approach
took 5108.891 seconds (85.14 minutes).

Real data was also tested for queries Q1, Q3, Q5, and
Q9 using all of the images. It had roughly the same per-
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Figure 12. Results for tests on synthetic data
with Q9.
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Figure 13. Results for Q10 on synthetic data.

formance as the synthetic data, which was expected since
the image sizes and processing requirements were the same.
Figure 14 shows the results. It can clearly be seen that the
blob and array based representations have much better per-
formance.

6 Conclusion

By integrating map algebra operations with SQL ma-
terial scientists can now efficiently answer some ad-hoc
queries based on meta-data and image content. These
queries can be image content queries which return infor-
mation about image content using conditions based solely
on meta-data, or multi-criteria queries which allow for op-
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Figure 14. Results for tests on real data with
different queries.

erations based on image content to be part of the conditions.
Of the three ways outlined for storing images in OR-

DBMS emperical results indicate that using the BLOB or
multidimensional array currently offer the best performance
with arrays being better for getting a specific value and
BLOBs being better when the entire image must be loaded
and manipulated as with the create map and deformation
area macros. Using a separate relation does not perform
well but has the advantage that the images can be manipu-
lated using standard SQL.

Future work should focus on improving the shortcom-
ings of the various ways of representing images, and in-
creasing the integration with SQL to make image content
queries less complex. Furthermore, work needs to be done
to evaluate the benefit of storing or pre-computing values
for commonly used functions or macros such as create map
and deformation area. It is also possible that indexes could
be built based on the results of these functions to speed up
processing at the expense of storage space.
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Abstract

Modern database applications including computer-aided de-
sign, multimedia information systems, medical imaging, mo-
lecular biology, or geographical information systems impose
new requirements on the effective and efficient management
of spatial data. Particular problems arise from the need of
high resolutions for large spatial objects. In this short paper,
we sketch a new decompositioning approach based on clus-
tering. We propose to describe a voxelized spatial object by a
set of Gaussian distribution functions. Based on this decom-
positioning technique, we propose intersection queries which
do not simply return a boolean value for each database object,
but assign to each object a probability value indicating how
likely an intersection is. The benefit of this approach com-
pared to traditional approaches is that we do not any longer
need an expensive refinement step for detecting whether ob-
jects intersect exactly on the fine-grained voxel sets. 

1. Introduction

The efficient management of rasterized geographical ob-
jects has become an enabling technology for many novel da-
tabase applications. As a common and successful approach,
spatial objects can conservatively be approximated by a set of
voxels, i.e. cells of a grid covering the complete data space
(cf. Figure 1). By means of space filling curves, each voxel
(often called pixel in 2D) can be encoded by a single integer
and, thus, an extended object is represented by a set of enu-
merated voxels. As a principal design goal, space filling
curves achieve good spatial clustering properties since cells
in close spatial proximity are encoded by contiguous integers.
Adjacent cell values can be grouped together to intervals, tiles
or boxes which are basic datatypes for spatial applications. 

By expressing spatial region queries as intersections of
these spatial primitives, vital operations for GIS applications
can be supported. For these applications suitable index struc-
tures, which guarantee efficient spatial query processing, are
indispensable. An important new requirement for large spa-
tial objects is a high approximation quality which is primarily
influenced by the resolution of the grid covering the data
space. A promising way to cope with high resolution spatial
data may be found somewhere in between replicating and
non-replicating spatial index structures. In the case of repli-
cating access methods, e.g. the Relational Interval Tree [7],
the number of the simple spatial primitives used to approxi-

mate the objects can become very high, resulting in a storage
and query processing overhead. On the other hand, many of
the non-replicating access methods, e.g. R-trees [5], use sim-
ple spatial primitives such as rectilinear hyper-rectangles for
one-value approximations of extended objects. Although
providing the minimal storage complexity, one-value approx-
imations of spatially extended objects often are far too coarse.
In many GIS applications, objects feature a very complex ge-
ometry. A non-replicating storage of such data causes region
queries to produce too many false hits that have to be elimi-
nated by subsequent filter steps. For such applications, the ac-
curacy can be improved by decomposing the objects.

In this paper, we propose a new fuzzy decompositioning
paradigm for high-resolution objects which is based on the
well-known k-means clustering algorithm. The basic idea is
to describe the voxel set by k clusters where the value of k de-
pends on the characteristic of the voxel set. Each cluster is de-
scribed by a few statistical values which are stored in a data-
base. If we carry out collision or window queries, we
determine for each object in the database a certain probability
value that indicates the likelihood that the object belongs to
the result set. This probability value can be computed by ex-
ploiting the statistical information describing the k clusters of
the object and without accessing the fine-grained exact voxel
representations. Note that the traditional approach also as-
signs probability values to the object, i.e. 0 if the object inter-
sects the query object and 1 otherwise. As we omit the refine-
ment step on the exact voxel representations, we can
accelerate the complete query process. 

The remainder of the paper is organized as follows. In Sec-
tion 2, we present the related work in the area of spatial object
decompositioning. In Section 3, we present our decomposi-
tioning approach based on clustering. In Section 4, we show
how we can carry out fuzzy intersection queries based on de-
composed spatial objects. Finally, we will close the paper in
Section 5 with a short summary and a few remarks on future
work. 

Figure 1. Voxelized Spatial Objects.

ii) Voxel seti) Spatial object iii) Voxel linearization
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2. Related Work

In this section, we will shortly present the related work in
the area of decomposing high resolution voxelized objects. 

Gaede pointed out that the number of voxels representing
a spatially extended object exponentially depends on the
granularity of the grid approximation [4]. Furthermore, the
extensive analysis given in [2] shows that the number of vox-
els is proportional to the surface of the approximated object.
Thus, in the case of large high resolution parts, the number of
voxels can become unreasonably high.

A common approach to approximate the high resolution
voxelized objects is to use their minimum bounding rectan-
gles. Although providing the minimal storage complexity,
one-value approximations of spatially extended objects often
are far too coarse. In many applications, GIS or CAD objects
feature a very complex and fine-grained geometry. The recti-
linear bounding box of the brake line of a car, for example,
would cover large parts of the data space. A non-replicating
storage of such data would cause too many false hits in the
filter step that have to be eliminated by the refinement step. 

On top of the resolution of the data space and the clustering
properties of the space-filling curve, a more fine-grained con-
trol of the trade-off between redundancy and accuracy is de-
sired for many applications. Note that the granularity may
have to differ for each individual object rather than to apply
the same resolution to all objects. An approach to control this
trade-off is the concept of size-bound and error-bound ap-
proximation [9] beyond the granularity-bound approxima-
tion [4]. A recursive subdivision procedure stops if the de-
sired redundancy (size-bound) or the desired maximum
approximation error (error-bound) is reached.

In [10], Kriegel and Schiwietz tackled the problem of
“complexity versus redundancy” for 2D polygons. They in-
vestigated the natural trade-off between the complexity of the
components and the redundancy, i.e. the number of compo-
nents, with respect to its effect on efficient query processing.
The presented empirically derived root-criterion suggests to
decompose a polygon consisting of n vertices into 
many simple approximations. 

In [6] a high-resolution spatial object was decomposed
based on its linearized voxel sequence (cf. Figure 1c) into
gray intervals which cover both object voxel and non object
voxel. The hull of the gray intervals was used in the filter step
to generate a candidate set. In the refinement step the voxel
set covered by a gray interval was evaluated to avoid false
hits. The disadvantage of this approach is that the filter step
has a rather bad selectivity because much dead space is cov-
ered by the gray intervals. 

In this paper, we propose a totally new decompositioning
approach of voxelized objects based on clustering. Thus, we
decompose the spatial objects directly in the original 2D/3D
space without linearizing the voxels before by means of space
filling curves. 

3. Clustering based Object Decompositioning 

In the following, we assume that the geometry of a spatial
object is described by a set of voxels which in 2D are also
known as pixels. Throughout the remainder of this paper, we
assume a 3D data space. 

Definition 1 (Voxelized Objects)
Let O be the domain of all object identifiers and let id ∈ O be
an object identifier. Furthermore, let IN3 be the domain of
3-dimensional points. Then, we call a pair Ovoxel = (id, {v1, ...,
vn})  a 3-dimensional voxelized object. We call
each of the vi an object voxel, where i ∈ {1, .., n}. By vx, vy,
and vz we describe the corresponding coordinates of a voxel v.

The idea of our decompositioning approach is to apply the
rather simple and well-known k-means clustering algorithm
[8] to our voxel set. The k-means algorithm can be regarded
as a simplified version of the more general EM algorithm [1]
which describes a dataset by multiple Gaussian distribution
functions. In our approach, we regard each voxel as a 3-di-
mensional feature vector. The clustering algorithm k-means
divides each voxelized object o = (id, {v1, ..., vn}) into a set of
k clusters ,.. , . Each cluster  contains a voxel set .
For these k voxel sets the two following properties hold:

  •
  •

Each cluster is represented by a centroid .

Each voxel of the object is thereby assigned to the closest
centroid. An iterative control strategy is used to minimize the
squared distances of the voxels to the centroids:

The algorithm starts with a random partition and iterative-
ly reassigns the voxels to the centroids based on the distances
between the voxels and the centroids until a convergence cri-
terion is met. For example, the iteration may stop when no
voxels are reassigned from one centroid to another one any
more, or when the squared error sqerro of the clustering ceas-
es to decrease significantly, or after a maximum number of it-
erations has been performed. Advantages of the k-means
clustering algorithm are that it is easy to understand and to im-
plement and that the runtime complexity is O( ) for n
voxels, k clusters and l iterations. 

The accuracy of our decompositioning algorithm is influ-
enced by the chosen parameters, i.e. the value of k and the ini-
tial centroids. In [3] a method based on sampling is intro-
duced which helps to chose these parameters appropriately. 

O n( )

 O 2N 3

×∈

C1
o Ck

o Ci
o Vi

o

i j 1…k( ): i j≠ v V∈ i
o

v Vj
o∉⇒( )⇒( )∈,∀

Vi
o

i 1…k=
∪ v1 ... vn, ,{ }=

Ci
o

Ci
o 1

Vi
o

----------  vx
v Vi

o∈
∑ vy

v Vi
o∈

∑ vz
v Vi

o∈
∑, ,

 
 
 
  t

=

Ci
o

sqerr
o

L2 v Ci
o, 

 
2

v Vi
o∈

∑
i 1=

k

∑=

n k l⋅ ⋅

294



The distribution of the voxels within one cluster  can
accurately be described by the centroid = ( , , )
and the standard deviations , , . These standard
deviation values can be estimated by using the following for-
mula1.

Obviously, we could also describe the distribution of the
voxels  by means of their covariance matrix . In order
to reduce the storage cost per cluster, we refrain from this
more complex description and store only the centroids and the
standard deviation values. Thus, we approximate a voxel set

 of a cluster  by an axis-parallel Gaussian distribution
function. 

Figure 2 shows an example for describing two 2-dimen-
sional voxelized objects o1 and o2 by means of 3 and 2 ax-
is-parallel Gaussian distribution functions, respectively. Note
that the problem of finding an appropriate value of k is part of
active research in the data mining community. We can benefit
from these results for solving the problem of finding the right
trade-off between accuracy and redundancy in the case of
spatial object decompositioning. 

Figure 2, furthermore, shows the minimum bounding rect-
angles (MBR) of the clusters. These MBRs can be used
throughout the filter step to detect true misses. Nevertheless,
in the example in Figure 2, for both objects o1 and o2 a rather
expensive refinement step on the exact voxel representation
is necessary to decide whether the objects belong to the result
set or not. 

We propose to store the MBRs of an object in an R-tree [5]
or one of its variants. In order to increase the efficiency of the
refinement step, we do not store the exact voxel sets  of a
cluster . We only store the centroid values , , 
and the standard deviations , ,  along with the
MBRs of the cluster. Based on this statistical information, we
can compute how likely an intersection between an object and
the query object is without accessing the detailed information
provided by the voxel set. In Figure 2, for instance, we will
detect that the probability that o1 is intersected by the window

query is below 50%. On the other hand, based on the Gaussian
distribution functions we can compute that it is very likely
that o2 belongs to the result set. In the following section, we
will formally introduce this approach.

4. Fuzzy Intersection Query

The idea to avoid the expensive refinement step, is to as-
sign to each database object represented by an object depen-
dent number of k clusters a probability value indicating the
likelihood that the object belongs to the result set. Traditional
intersection queries assign a value 1 or 0 to each object in the
database indicating whether the object belongs to the result or
not. We propose fuzzy intersection queries which order all da-
tabase objects according to their intersection probability. 

Definition 2 Fuzzy Intersection Query
Let DB be a database of voxelized decomposed objects,

and let q be a query object. Furthermore, let p( ) denote
the probability that q intersects the object . Then, the
fuzzy intersection query fuzzy : 1..|DB| → DB×[0,1] is a
function which ranks all objects o ∈ DB according to their
probabilities p( ), i.e. 

∀i, j ∈ 1..|DB|: 
i<j ∧ fuzzy (i)=(oi, p( )) ∧ fuzzy (j)=(oj, p( )) ⇒ 

p( ) p( ) 

Note that the result of such a fuzzy intersection query does
not necessarily contain less information than the traditional
result set. For instance, in Figure 2 the traditional approach
only detects that object o1 does not intersect the window
query. Our approach might assign a probability value
p( ) = 0.28 indicating that the object is quite close to
the query object. We suggest that this probability value can be
regarded as a meaningful measure for describing the close-
ness between database objects and query objects. Thus, the
fuzzy intersection queries might even provide more informa-
tion than the binary result intersection or non-intersection.

The crucial question is now how to compute the probabil-
ity that an object belongs to a result set. In this short paper, we
will exemplarily demonstrate how to compute this value for
box volume queries (cf. Figure 2) which are commonly used
in many applications, e.g. GIS or CAD applications. 

First, we must compute for each cluster  of an object o
the probability that at least one voxel of the corresponding
voxel set  intersects the query. Thereto, we first determine
for each dimension  individually the probabil-
ity  that the query interval [l∆, u∆] intersects the
one-dimensional Gaussian distribution with center 
and standard deviation  (cf. Figure 3). By means of the
standard Gaussian cumulative distribution function, conven-
tionally denoted by Φ, we can compute the probability 
straightforward by the following equation:

1.  Likewise, we compute the values  and 
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For the voxel set belonging to the current cluster, we can
assume that the three dimensions are independent from each
other. Note that this assumption has to hold only for the object
voxels of one cluster and not for all voxels of an object. Based
on this legitimate assumption, we can easily compute the
probability p that the box query intersects the axis-parallel
3-dimensional Gaussian distribution which describes the
cluster C. 

Lemma 1. Let q = [lx, ux]x[ly, uy]x[lz, uz] be a 3-dimension-
al box query. Furthermore, let  be a cluster having | |
many voxels which can be described by a 3-dimensional
Gaussian distribution function with centroid = (ci,x, ci,y,
ci,z) and standard deviations , , . Then, we can
compute the probability that at least one voxel of the cluster

 is within the box query by:

Finally, we can state the following lemma.

Lemma 2. Let q = [lx, ux]x[ly, uy]x[lz, uz] be a 3-dimension-
al box query. Furthermore, let o be a voxelized object
which is decomposed into k clusters , ..., . Then, we
can compute the probability p(q, o) that q intersects o by: 

Obviously, based on this probability value, we can answer
the fuzzy intersection query introduced in Definition 2. We
traverse the R-tree as usual. On the leaf level of the R-tree, we
compute the probability values for each cluster (cf. Lemma
1) and combine these probability values to object probability
values according to Lemma 2. Note that if we find one cluster
which intersects our window query with high probability, the
corresponding object probability value will be close to 1. On
the other hand, to those objects for which we have not detect-
ed any clusters throughout the tree traversal, we assign a
probability value of 0. 

5. Conclusion

In this short paper, we sketched a new approach which
helps to find an optimal trade-off between complexity and re-
dundancy of object approximations. The proposed decompo-
sitioning algorithm is based on the well-known clustering al-
gorithm k-means. Thus a voxelized object is described by k
clusters. We describe each of these clusters by an axis-parallel
3-dimensional Gaussian distribution function and a minimum
bounding rectangle of the cluster voxels. We store these min-
imum bounding rectangles along with statistical information
in standard index structures. During query processing, we
propose to omit the expensive refinement step on the exact
voxel representations. Instead, we assign a probability value
to each database object indicating how likely it belongs to the
result set. The corresponding probability values are comput-
ed by exploiting statistical information describing the multi-
variate Gaussian distribution functions. In a give-me-more
manner the user receives the objects which most likely belong
to the result set. 

Our first experiments showed that we can accelerate inter-
section queries considerably while still achieving high quali-
ty results. In our future work, we plan a detailed experimental
evaluation demonstrating the characteristics and benefits of
our fuzzy decompositioning approach. 
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Abstract 

 
The high volume of today's remotely sensed Earth Science 
data creates a strong motivation to minimize the amount of 
data delivered to the end user. The goal is to get users 
everything they need but nothing they don't need.  One 
way to decrease the amount of unneeded data delivered is 
to increase spatial search accuracy.  Unfortunately, the 
most voluminous data, orbital swath data, is also the most 
difficult to run spatial searches on.  Three reasonably 
accurate means for spatially searching orbital swath data 
are: methods employing lookup tables, methods employing 
orbit propagators, and backtrack orbit searching. This 
paper outlines these three types of methods and discusses 
some of the advantages and disadvantages of each. 
 
 
1. Introduction 
 

Many satellites circle the globe, continuously imaging 
and collecting Earth Science data. These ribbons of 
remotely sensed data, which wrap around and around the 
Earth, are called swaths. For convenience, the continuous 
swaths are split into individual orbits that begin and end 
where the satellite crosses the equator from south to north. 
Typical polar orbiting satellites (meaning their orbits go 
nearly over each pole) will make 14 to 15 orbits per day, 
with each orbit comprising many megabytes of data. In 
general, only a few of these orbits will cover a researcher’s 
study area. Earth scientists requesting data need some 
means to find these matching orbits. To aid the researcher, 
most data producers provide spatial search of their 
inventory.  

The first problem is to define the area covered by the 
swath. As provided, most swath data does not contain an 
explicit description of the covered area. This information 
is usually computed upon ingest into the database. The 
simplest and most popular spatial search method is to 
define both search areas and data coverage areas as 
latitude, longitude (lat/lon) bounding boxes on a flat Earth. 

Latitude and longitude is a common spatial reference 
system for the Earth and all swath data users should be 
familiar with its use. (All methods discussed here are 
projection neutral.)  A lat/lon bounding box simplifies 
spatial search because each area can be completely defined 
with only four numbers and area intersections can be 
determined by appropriate boolean comparisons of the 
minima and maxima.  The popularity of this method is 
understandable because it’s easy to implement and 
sufficient for most purposes. Orbital swath data is an 
extraordinarily bad fit to a lat/lon bounding box.  A single 
orbit swath from a sensor with a sufficiently wide field of 
view can easily cover all latitudes and all longitudes while 
covering only a small portion of the Earth. Spatial search 
of orbital swath data requires special methods to 
accurately and efficiently compare search areas to data 
coverage areas. 

 

 
Figure 1. Typical swath coverage of a polar 
orbiting satellite shown on a flat Earth. 

 
 
2. Lookup table methods  

 
The idea behind lookup table methods is that while 

spatial search of swath data is difficult, spatial search of 
other areas, of a different spatial type, isn’t.  So, if we can 
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convert the swath into smaller areas that are easier to work 
with the problem is more manageable.  The actual spatial 
search becomes a preliminary search on the smaller areas 
in the lookup table, which returns area IDs that match the 
area of interest.  Spatial search of the data is then turned 
into a search on the set of IDs.  

The Worldwide Reference System (WRS-1 & WRS-2) 
used by Landsat is one such method [5].  WRS-1 and 
WRS-2 are custom coordinate systems based on Landsat 
orbits.  For WRS-1 252 “paths” are defined that correlate 
with the 252 orbits in the 18-day repeat cycle. Then, each 
path is broken into 248 “rows” that each represent 25 
seconds, or about 1.45 degrees, of coverage in the path.  
This scheme yields 62,496 areas to search on in the lookup 
table and each Landsat scene in the inventory is tagged 
with the path and row coordinates it covers.  The path and 
row coordinate system is similarly defined for WRS-2 
based on a shorter 16-day repeat cycle. 

The Nominal Orbit Spatial Extent (NOSE) scheme used 
by NASA’s Earth Observing System (EOS) is an attempt 
to extend the WRS concept to other satellites and other 
sensors [2].  For satellites without a well defined and 
enforced repeat cycle, a typical implementation of NOSE 
will simply create 360 nominal orbits, one per degree, 
called “tracks”.  Each track will then be broken into 36 
“blocks” that each represents about 2.7 minutes, or 10 
degrees, of coverage in the track.  This scheme yields 
12,960 smaller areas to search on in the lookup table and 
each granule in the inventory is tagged with the track and 
block coordinates it covers. 

Because both WRS and NOSE rely on custom 
coordinate systems derived from the orbital characteristics 
of the satellite and the field of view of the sensor, they end 
up being sensor specific schemes.  This means the work 
involved in creating the lookup table in the first place has 
to be repeated for each new sensor, and sometimes even 
for the same sensor on a different satellite.   

A more general approach is to break the Earth into 
areas that are independent of the data being collected.  A 
simple approach is to use 1x1 degree lat/lon bins, which 
yields 64,800 smaller areas to search on in the lookup 
table.  Because those bins are generic the lookup table can 
be reused for swath data from other sensors, and even for 
other kinds of data.  Indeed, one advantage of a binning 
scheme is that it can be used for all types of data, which 
means the data provider can have a single spatial search 
mechanism for all its data.  Both accuracy and 
performance will suffer as a result, but the trade-off may 
be worth it in some cases. 

Lookup table schemes all require some preprocessing 
of the data to determine which IDs each granule in the 
inventory should be tagged with.  But, the main 
disadvantage is both accuracy and performance suffer.  
Landsat has an advantage in that the orbit is tightly 
controlled and any drift in the satellite is periodically 

corrected.  So, even with only 252 paths defined, the 
accuracy is much better than the (360°/252=) 1.43 degrees 
one would expect.  Moreover, the performance hit 
associated with using the lookup table in a preliminary 
search can often be avoided because Landsat users have 
become so accustomed to the WRS scheme they often 
search directly on the path and row coordinates they 
already know cover their area of interest. 

Satellites in less tightly controlled orbits must rely on 
the more general NOSE scheme or a simple binning 
scheme.  With 360 nominal orbits defined, or bins defined 
as 1x1 degree boxes, accuracy is limited to 1 degree, or 
111 km at the equator.  Greater accuracy requires a larger 
lookup table, which further degrades performance.  

There are schemes that use bins of variable size, 
hierarchical nesting, and more efficient search methods, 
for example, Peano keys, Morton codes, R-trees, spherical 
quad-trees, etc., which may partially mitigate the 
performance issues. However these schemes require the 
swath coverage to be computed, either by a lat/lon 
bounding box, nominal orbit, or orbit propagator. We have 
already discussed the problems with the lat/lon bounding 
box. Once you have found a nominal orbit or defined the 
coverage with an orbit propagator, as we shall see, it’s no 
longer an area comparison problem. 

 
3. Orbit Propagator Methods 

 
Orbit propagators have been around for quite a while 

because they are useful for more than just spatial search.  
They are primarily used to simply track and predict 
satellite movements and using them for search purposes 
evolved naturally from that.  Systems that use propagators 
to run spatial search include: NOAA’s Comprehensive 
Large Array-data Stewardship System (CLASS), The 
University of Wisconsin-Madison’s Man computer 
Interactive Data Access System (McIDAS), and The 
University of Alabama-Hunstville’s Space Time Toolkit 
(STT).  

The idea behind using orbit propagator methods for 
spatial search is that while spatial search of swath data is 
difficult, temporal search isn’t.  Orbit propagators work by 
using an orbit model to determine when the satellite was 
over the area of interest [1].  Given a time range for the 
search the propagator will initialize with an ephemeris file 
that defines exact position, speed, and heading of the 
satellite prior to the start of the time range.  The 
propagator then spins the model forward to predict when 
the sensor saw the area of interest. Any cumulative error is 
corrected by periodically re-initializing the system with 
known ephemeris data.  Consequently the spatial search is 
turned into a temporal search and since the temporal 
coverage of each granule is already in the inventory table 
no database changes are required. 

298



Once an orbit propagator is integrated into a system the 
addition of new satellites, and new sensors, is relatively 
easy.  Because they use actual ephemeris data and 
reinitialize periodically, orbit propagators can be quite 
accurate.  Because they turn spatial search into temporal 
search, orbit propagators are ideally suited for use in 
coincident search.  And, both the work of the propagator 
and the subsequent search are fast enough for short time 
ranges that performance is not an issue. 

The main disadvantage of orbit propagator methods is 
that performance is inversely related to the time range 
searched.  Earth scientists studying climate change are 
often interested in data over a time range of several years 
or even decades and at these time scales performance 
drops dramatically.  No matter how fast the propagator 
may be it still has to spin through the entire time range, 
which means the time it takes the propagator to complete 
its task is directly proportional to the time range searched.  
More importantly, the end result is a large set of disjoint 
time ranges to search on, which can degrade database 
performance considerably.  

For example, Thule, Greenland is located fairly far 
north and sensors on board polar orbiting satellites see 
Thule frequently.  Many sensors see Thule ten times a day, 
which results in a query for a single day’s worth of data 
like the one below.  A request for a year’s worth of data 
over Thule would result in 3,650 disjoint time ranges to 
search on.  Obviously, the problem is less extreme at 
lower latitudes where coverage is less frequent.  But, even 
at a point near the Equator, where coverage may be only 
twice daily, a request for only a year’s worth of data 
would result in a search on 730 disjoint time ranges. 
 
where (  
('2003/02/18 01:23:03' between startDateTime and endDateTime) or  
('2003/02/18 03:03:57' between startDateTime and endDateTime) or 
('2003/02/18 04:44:34' between startDateTime and endDateTime) or  
('2003/02/18 06:05:21' between startDateTime and endDateTime) or  
('2003/02/18 07:46:32' between startDateTime and endDateTime) or  
('2003/02/18 12:47:46' between startDateTime and endDateTime) or  
('2003/02/18 14:10:32' between startDateTime and endDateTime) or  
('2003/02/18 15:51:02' between startDateTime and endDateTime) or  
('2003/02/18 17:11:31' between startDateTime and endDateTime) or  
('2003/02/18 18:52:07' between startDateTime and endDateTime)  ) 

Figure 2. The temporal clause created by an orbit 
propagator to search for data over Thule on 
February 18, 2003. 

 
4. Backtrack Orbit Search 

 
The Backtrack Orbit Search Algorithm (BOSA) is 

currently in use at the National Snow and Ice Data Center 
(NSIDC) and NASA’s EOS ClearingHOuse (ECHO).  The 
idea behind backtrack orbit search is that while spatial 
search of swath data is difficult in general, Earth Science 
swath data has a number of characteristics that make the 

task a lot easier.  Remotely sensed data is valuable to 
Earth scientists because it is frequent, regular, and global.  
For the purposes of doing Earth Science, scientists have an 
interest in keeping the data as consistent as possible.  
Among other things, that means they want the sensor to 
have a constant field of view. An easy way to accomplish 
that is to put the satellite in a circular orbit.  For this 
reason (and others), all Earth Science satellites are in a 
circular orbit. 

The Backtrack Orbit Search Algorithm [4] exploits this 
fact to greatly simplify the orbit model by just modeling 
an orbit as a great circle under which the Earth rotates.  
The simplicity of the model allows backtrack to be more 
efficient than orbit propagator methods, which are 
designed to work with any satellite.  The simplified orbit 
model relies on only three parameters: inclination, period, 
and swath width.  The accuracy of the method depends on 
the stability of those three parameters over the life of the 
sensor, but there is also a scientific interest in keeping 
those parameters stable, so they generally stay within 
reason, or the data aren’t useful. 

As the name implies, backtrack works by tracing the 
orbit backwards.  Backtrack starts with the area of interest 
and answers the question “In order for the sensor to have 
seen this area, where must the satellite have crossed the 
equator?”  There is no time dependence, so the speed of 
the algorithm is independent of the time range searched.  
There is no cumulative error because backtrack backs up 
at most one orbit.  There is no performance hit from using 
a lookup table because backtrack calculates the actual 
equatorial crossing range.  And, the subsequent search is a 
simple, fast, boolean search on that crossing range rather 
than a text search on IDs.  Shown below is one such search 
statement for 20 year’s worth of AVHRR data. 
 
select distinct file_ID, start_date, data_set, ascending_crossing  
from inventory where data_set like "AVHRR_LAC" and  
start_date >= 19800101 and end_date <= 20000218 and   
(ascending_crossing between -80.0 and -64.0)  or  
(ascending_crossing between 88.0 and 106.0)  )  
 
Figure 3. A query for 20 years worth of data 
created using Backtrack. 
 

The main disadvantage of backtrack is that the 
crossings do have to be in the database to be searched on.  
Those values are generally known but because they are not 
generally used they don’t often get stored in the database.  
So, a change to the inventory table will usually be 
required.   

 
5. Summary 

 
Lookup table methods provide reasonably fast search 

once the table parameters are defined, calculated, and 
stored in the database. New satellites or sensors require 
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new parameter schemes. Both search speed and accuracy 
are determined by the size of the individual bins in the 
table. 

Orbit propagator methods are the most accurate means 
of searching. However, the search speed is proportional to 
the length of the time interval of interest. This penalty is 
paid twice, once in building the query, and once in 
executing the search. The ancillary ephemeris data is 
unique to each satellite and requires frequent updating. 

Backtrack orbit searching is fast and accurate. 
However, it is restricted to sensors with a constant field of 
view on satellites in circular orbits. The ancillary orbit 
parameters are unique to each satellite and sensor, but only 
need be obtained one time. Accuracy depends on the 
stability of those parameters. The crossing times must be 
added to the database. 

Throughout this paper we have assumed single orbit 
granules.  Each of the methods described requires some 
adjustment for partial or multiple orbit granules—some 
more than others. 

The choice of which method to use largely depends on 
the purpose of the system.  For the purposes of searching 
inventories of orbital Earth Science data we highly 
recommend backtrack as faster, cheaper, and more 
efficient than any other method.  Moreover, the accuracy 
of backtrack orbit search is competitive with orbit 
propagator methods without the attendant performance 

issues. We realize this is a qualitative analysis. Further 
quantitative tests need to be done. 
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Abstract 
 
Information managers at each of the 26 sites in the Long 
Term Ecological Research (LTER) Network face many 
challenges managing structurally and thematically 
diverse ecological data sets collected by LTER scientists.   
Since the LTER’s inception in 1980, LTER information 
managers have partnered with computer scientists to seek 
innovative information management solutions. This panel 
of three computer scientists and three LTER informatics 
scientists will present current collaborative research 
projects and offer perspectives on engendering mutually 
beneficial partnerships among research ecologists, the 
eco-informatics community, supercomputer centers, and 
computer science researchers.   A discussion with 
SSDBM attendees about DB and CS research areas that 
might benefit the LTER information management mission 
will follow panelist remarks.     
 
1. Introduction 
In 1980 the National Science Foundation (NSF) set aside 
$1.5 million in research funds to support six Long Term 
Ecological Research (LTER) sites [3], a budget which has 
now grown to $20 million per year to support 26 sites. 
All LTER sites accumulate long term data on common 
themes including plant and animal population dynamics, 
biogeochemistry and primary productivity.   Some sites 
are operated in conjunction with government agencies 
(e.g., US Forest Service) and have data extending back 
many decades.       

Since the program’s inception, NSF has charged 
LTER scientists with preserving and making data from 
ecological studies publicly available so that retrospective 
research and network-level data syntheses could be more 
easily performed.  Most LTER sites presently employ an 
information manager (IM) to facilitate site and inter-site 

science through informatics, and to support the databases 
and data repositories necessary to fulfill the NSF data 
mandate. LTER information managers (IM’s) have 
cooperatively developed metadata standards, inter-site 
databases, information management evaluation criteria, 
Databits (a publication on LTER informatics issues 
http://lternet.edu/documents/Newsletters/DataBits), and 
informatics training modules.  LTER IM’s also assist 
each other with information management issues at LTER 
sites.  With 20+ years in managing information for 
ecology researchers, the LTER IM’s have significant 
insight into the problems and issues that arise from 
acquiring, documenting, validating, publishing, and 
analyzing long-term ecological data. 

Information managers and ecologists are faced with 
many challenges when developing tools to manage and 
analyze the ever-increasing volume and diversity of data 
being collected at LTER sites.  Eco-informatics research 
[9] has also been identified by NSF as critical 
(http://www.evergreen.edu/bdei). This panel of three 
LTER information managers and three computer 
scientists will address the computer science research that 
might increase the effectiveness of LTER information 
management and ecological research.  LTER panelists 
will 1) provide relevant background and history of the 
LTER; 2) address institutional collaborations between the 
LTER Network Office and supercomputer centers and 
national labs; and 3) describe the evolving nature of 
informatics research as a partnership between ecologists 
and computer scientists.  Computer scientists on the panel 
will discuss projects they have conducted with LTER 
information managers and ecology researchers, and the 
research problem was defined so that CS partners could 
help provide IT solutions while contributing to the real-
world problems faced by LTER IM’s.   Research projects 
include software component development, analysis and 
management of real-time sensor web data, and cyber-
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infrastructure for ecological research.   Perspectives on 
how to make successful collaborations among 
information managers, domain scientists, and computers 
scientists will be shared.  After panelist remarks, panel 
organizers (one LTER Information Manager and one CS 
researcher) will moderate a discussion with SSDBM 
attendees on CS and DB research areas that might reap 
particular benefit to the LTER mission, how attendees 
might approach collaboration with LTER, how to balance 
theoria and praxis [5] in a successful collaboration, and 
what benefit to the computer science research community 
might follow. 
 
2. Statements from Panelists 
 
2.1 LTER Information Managers 
 
2.1.1 Kristin Vanderbilt:  Introduction to the LTER.  
   The Long Term Ecological Research (LTER) Network 
was established in 1980 with six sites, and has since 
grown to include 26 sites and 1800 scientists and students 
studying environmental phenomena that span multiple 
temporal and spatial scales.  LTER sites encompass 
diverse ecosystems such as tropical rainforest, temperate 
deciduous forest, arctic tundra, lakes, coral reefs, 
estuaries, salt marsh and deserts.   The five core areas of 
research that all LTER sites address are:  1) patterns of 
net primary production, 2) distribution and dynamics of 
populations, 3) organic matter accumulation and 
decomposition, 4) inorganic nutrient cycling through 
water, soils, and sediments, and 5) frequency and pattern 
of disturbance.  The mission of the LTER Network is to 
promote synthesis and comparative research across sites 
and ecosystems and among other related national and 
international research programs.    
 LTER information managers have a diverse collection 
of physical, chemical, biological, and human-related data, 
often spanning many years, and must develop solutions 
for managing and creating linkages among these disparate 
data.  LTER information managers have long worked 
cooperatively to solve IM problems.  The LTER IM 
Committee, comprised of information managers for each 
site, has evolved from a handful of individuals who met 
irregularly during the 1980’s to a highly organized group 
who have become leaders in the field of ecological 
information management.   This group has actively 
standardized information management practices to 
facilitate data exchange and network-wide data 
integration.  Many information managers have also 
sought partnerships with computer scientists to further 
enable LTER information management capabilities at the 
site level.  The Sevilleta LTER information manager, for 
example, partnered with computer scientists at the 
University of New Mexico in the early 1990’s to develop 
workflow software for image analysis.  

 More recently, collaborations between computer 
scientists and the LTER information management 
community have begun to occur at the LTER network 
level.   In 1996, the proposal for the LTER Network 
Office (LNO), the office that coordinates LTER site 
activities, included the San Diego Supercomputer Center 
(SDSC) as a partner.   The Spatial Data Workbench [8] 
resulted from this collaboration 
(http://sdw.sdsc.edu/index.html).   A collaboration 
between SDSC, National Center for Ecological Analysis 
and Synthesis (NCEAS), and LNO yielded the 
Knowledge Network for Biocomplexity 
(http://knb.ecoinformatics.org/), which aimed to integrate 
data from distributed, autonomous data repositories [4].   
The current SEEK (Science Environment for Ecological 
Knowledge [7]) collaboration includes computer 
scientists, LTER information managers, and domain 
scientists from several institutions.  LNO is developing a 
Network Information Management system [1], which has 
as one of its components the EcoGrid, an internet 
architecture for data storage, sharing, access being 
developed by SEEK.   
   At the SSDBM panel, Kristin Vanderbilt will present an 
overview of LTER, and introduce collaborative LTER-
CS projects that other panelists will discuss more fully.    
 
2.1.2 James Brunt:  Building institutional bridges 
between ecology and supercomputer centers and industry.     
   The US Long Term Ecological Network has been 
successful at attracting collaborators and funding for 
informatics efforts supporting ecological science. Interest 
has been high in part because of the high profile of the 
LTER program at the National Science Foundation. 
Successful partnerships have been forged with national 
labs and supercomputer centers, and proposals in high 
profile NSF programs for Knowledge and Distributed 
Intelligence and Information Technology Research have 
been funded.  
   The above efforts although successful have not always 
directly addressed the research and development  needs of 
the LTER Network. Partnerships on specific efforts with 
national labs and supercomputer centers have taken on a 
variety of symbiotic relationships not all of which were 
mutual. Successful research proposals required impacts 
that extend beyond the boundaries of LTER science and 
that were primarily new “research”. LTER has taken new 
approaches that hinge on direct collaboration with LTER 
information scientists. Clarity of purpose and persistence 
are required to convince computing partners steeped in 
“service” architecture of the mutual benefits of this type 
of relationship. While LTER has been successful at 
collaborating on informatics proposals, the real challenge 
is (once research projects are complete) how to fund 
deployment and maintenance of cyber-infrastructure that 
meets immediate requirements for the advancement of 
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ecological synthesis but does not interest funding 
agencies as research.   
   James Brunt will describe prior research collaboration 
(KDI and ITR grants), and suggest how deployment of 
research results within the LTER could be effected to 
bring about benefit to both the LTER and the research 
community. 
 
2.1.3 Peter McCartney:  Academic sciences such as 
ecology face considerable challenges in developing and 
maintaining cyber-infrastructure to support research, 
education and decision making. Many users in the 
business, medical, or other high-profile research fields 
can rely on the software industry or labs such as Los 
Alamos or JPL to take on the challenge of bringing 
advances in computer science into everyday software 
tools. Ecology, on the other hand, relies on a mixed 
strategy of adapting commercial off-the-shelf tools 
originally designed for other market bases, developing 
partnerships with our computer science colleagues, and 
building computing expertise of practitioners within its 
discipline. We typically refer to this boundary 
specialization as informatics (often with an appropriate 
prefix such as eco-, geo-, bio-, etc) to recognize the 
specific challenge of applying information technology to 
a specific research domain. These efforts are often 
frustrated by the fact that the domain problems as 
presented by the practitioner may pose insufficient 
research challenges to many computing science (CS) 
students or faculty and, in turn, the advanced solutions 
produced by CS research cannot sometimes be 
implemented with the expertise and resources found 
within the domain science community.  
   To build more effective partnerships, we need solutions 
for promoting greater student collaboration in informatics 
as a boundary specialty where CS students can be 
encouraged and rewarded for taking on topics that are 
less about carrying out cutting edge research and more 
about embedding applications of that research within 
research domains, and where domain students can be 
encouraged and offered opportunities to become more 
proficient in the advanced information technologies upon 
which the future of their domain’s information legacy 
rests.  
   Peter McCartney will discuss the above issues along 
with Arizona State University experiences engaging CS 
students in ecological and archaeological infrastructure 
projects and promoting interdisciplinary thesis projects 
between CS and other sciences.  
 
 
 
2.2 Computer Science Researchers 
 
2.2.1  Judy Cushing:  Tools  that  increase researcher  
productivity and provide metadata as a by-product.  

   Discussions with LTER Information Managers at the H. 
J. Andrews LTER Site articulated metadata acquisition as 
a major barrier to long term archiving of ecological data.  
An individual researcher, however, has little incentive to 
spend time documenting data if that activity (typically 
completed at the end of an active research project) does 
not also improve his or her own work.   If database 
technology were integrated earlier into the research 
process, however, metadata might be collected more 
“naturally” if rendering one’s data and metadata into that 
technology also provided benefits such as data 
transformation or data visualization.      
   The Canopy Database Project [2] is a joint computer 
science and ecology project that facilitates end-user 
database development and programming through domain-
specific database components.  The database technology 
and companion software components aim to facilitate not 
only data documentation of, but also data validation, 
analysis and visualization that will provide immediate 
value.   
   Longer term computer science research goals are 
physical and semantic integration of disparate data sets, 
component-based and domain-specific software 
engineering, and end-user programming strategies, but 
these have been subordinate to building a corpus of data 
sets and tools that illustrate the breadth of domain-
specific components that might promote researcher 
productivity. 
   Though originally intended for end users who are 
ecology researchers, a proof of concept experiment with 
LTER information managers led to insights about the 
project’s corpus of components and tools, and suggests 
that a database generator and companion tools based on 
domain-specific components could be an efficiency tool 
for information managers. 
 Judy Cushing will address how ecological 
information management problems were translated into a 
computer science research project and the benefit of 
collaboration with the LTER information managers.  She 
will talk about how that partnership might have been 
improved and completed, and present ideas for sharing 
software components between research projects and the 
LTER IM network, and for future research. 
 
2.2.2 Matt Jones:  The Knowledge Network for 
Biocomplexity (KNB) and Science Environment for 
Ecological Knowledge (SEEK).  Both the KNB and 
SEEK projects involve innovative research in CS that is 
risky in terms of deployment in particular application 
areas over short time scales.  One example of computer 
scientist-ecologist interactions from SEEK is where the 
Ecological Niche Modeling group meets with computer 
scientists in workshops to evaluate approaches and set 
requirements.  These interactions, and others like them in 
KNB and SEEK, have engendered helpful lessons during 
the project about successful collaboration and suggest 
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future activities that would aid deployment of 
technologies to specific application areas and networks 
like the LTER.   
   Matt Jones will describe the real world eco-informatics 
problems and ecology research needs that led to KNB and 
SEEK, along with lessons learned during those projects. 
 
2.2.3  Amarnath Gupta:   Collaboration strategies for 
sensor observing system research.   
   Recently, a number of large-scale scientific projects 
have been undertaken under the general umbrella of 
“observing systems”. In all these projects, a variety of 
sensors are placed in the environment and information 
from them is combined to gain a deeper understanding of 
natural physical and biological phenomena, and perhaps 
more importantly, to predict significant natural events, 
and the impact of anthropogenic disturbances.  
   In the Lakes project [6], conducted at North Temperate 
Lakes LTER site in Wisconsin and Yuan Yang Lake in 
Taiwan, buoys containing heterogeneous sensors are 
placed in different lakes. These sensors collect 
information on variables like water temperature at 
different depths, dissolved oxygen, light penetration, 
water velocity vectors in a water column, barometric 
pressure and wind speed, humidity and so forth. The 
information is often collected locally in a low-capacity 
on-buoy data store and transmitted to a central server in 
bursts. In addition, near-lake data are collected from other 
sensors for barometric pressure, air temperature and so 
on. Further, water samples are collected at different 
intervals, to measure inorganic content like total 
phosphorous, nitrogen and carbon, and organic content 
like chlorophyll concentration, phytoplankton and 
bacteria counts.  
   In this context, information integration plays a number 
of roles. First, for exploratory data analysis, some 
observed sensor data, some transformed sensor data and 
some interpolated non-sensor data need to be window-
joined over multiple streams. In this process, the non-
sensor data may have to be transformed into a stream, by 
passing it through a simulation model that has been 
developed by scientists. Since there is a need to combine 
real-time observed streams with somewhat delayed 
computed streams, there is potential for interesting CS 
research in the development of join algorithms in a data 
stream management system (DSMS). Secondly, 
integrated information is often used for the purpose of 
discovering patterns of model invalidity. In this problem 
the goal is to first determine when the observed values of 
a variable are different from predicted values in a 
statistically significant manner, and then to determine 
whether such discrepancies occur for some specific 
ranges of the non-predicted variables. In yet a third use 
case, complex aggregates are computed from different 
combinations of sensor and non-sensor data coming from 
different lakes in a system of nearby lakes and are 

statistically compared against one another to estimate the 
influence of a common external cause such as a 
thunderstorm passing over the lake system. 
 Amarnath Gupta will describe some of the data 
management challenges that he and colleagues have 
encountered in working with the Lakes project. He will 
also highlight how often he uses a three-party-
collaboration across the domain scientists, their data 
managers and the computer scientists to gain a deeper 
sense of the scientific tasks and how these tasks translate 
to implementation needs, as well as new research 
problems. While this presentation will confine itself to 
our experience within the limnological domain, this 
interdisciplinary collaboration strategy has been equally 
effective in other domains of natural science. 
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