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ABSTRACT 17	
  

Synthesizing long-term observations at multiple spatial and temporal scales is vital to 18	
  

understanding and predicting ecosystem responses to a changing climate.  Here, we 19	
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developed a novel method for measuring giant kelp (Macrocystis pyrifera) canopy 20	
  

biomass using LANDSAT 5 Thematic Mapper satellite imagery for the Santa Barbara 21	
  

Channel.  The regional, 25-year mean giant kelp canopy biomass was estimated at 43700 22	
  

metric tons and was highly variable (C.V. = 87%), illustrating the important role of 23	
  

disturbance in regulating regional scale giant kelp biomass.  The canopy biomass 24	
  

determinations were compared with oceanographic and climatic data to assess the roles of 25	
  

environmental processes in determining regional and subregional giant kelp biomass.  26	
  

Seasonal losses and recoveries of regional kelp canopy biomass were correlated with 27	
  

surface gravity wave heights and sea surface temperature (r2 = 0.50 and 0.30 28	
  

respectively), the later of which is inversely related to nutrient availability.  On 29	
  

interannual timescales, regional kelp canopy biomass lagged wave heights, sea surface 30	
  

temperature, and the North Pacific Gyre Oscillation (NPGO) index by 3 years, indicating 31	
  

potential relationships between these variables and population-level recruitment and 32	
  

mortality cycles.  Cluster analysis demonstrated that subregions with similar temporal 33	
  

dynamics were largely determined by environmental conditions.  The dynamics of kelp 34	
  

biomass in exposed subregions were related to surface wave disturbance while kelp 35	
  

dynamics in sheltered regions tracked sea surface temperatures more closely.  This work 36	
  

demonstrates how long-term, high-frequency remote observations of dynamic systems 37	
  

such as kelp forests can be combined with physical data to better understand how 38	
  

physical drivers impact ecological systems in space and time. 39	
  

 40	
  

41	
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INTRODUCTION 41	
  

Climate-related changes in the oceans appear to be accelerating: oceans are 42	
  

becoming warmer and more acidic, nutrient distributions are changing, and, in some 43	
  

regions such as the Northwest Pacific, the frequency and intensity of large storms are 44	
  

increasing (e.g., Easterling et al. 2000, Behrenfeld et al. 2006, IPCC 2007a, Meehl et al. 45	
  

2007; Doney et al. 2009).  Many marine ecosystems have displayed dramatic responses 46	
  

to recent fluctuations in climate, and accumulating evidence suggests that coastal marine 47	
  

ecosystems are especially vulnerable to the effects of climate change (e.g., Harley et al. 48	
  

2006, Przeslawski et al 2008; Hoegh-Guldberg and Bruno 2010).  However, our 49	
  

understanding of how climate changes will affect coastal marine ecosystems is limited.  50	
  

Data collection in many coastal ecosystems is labor intensive and there are relatively few 51	
  

long-term (>20 yr) studies of change in coastal marine ecosystems as compared to 52	
  

terrestrial systems (Rosenzweig et al 2008).  Increasing the number of long-term, large-53	
  

scale data sets on coastal ecosystems and their responses to climate changes is of critical 54	
  

importance.   55	
  

Among coastal primary producers, forests of giant kelp (Macrocystis pyrifera) are 56	
  

particularly sensitive to climate change (Graham et al. 2007).  Giant kelp is the world’s 57	
  

largest alga and its numerous fronds extend vertically in the water column and form a 58	
  

canopy at the sea surface. Giant kelp’s biomass is exceptionally dynamic; short lifespans 59	
  

of both fronds and entire plants  (4 - 6 months and 2 - 3 years, respectively) combine with 60	
  

rapid growth (~ 2% d-1) to produce a standing biomass that turns over 6 to 7 times per 61	
  

year (Reed et al. 2008).  Because of such rapid turnover, the biomass dynamics of giant 62	
  

kelp responds quickly to changes in environmental conditions.   63	
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Giant kelp recruitment and growth are controlled by abotic factors including 64	
  

substrate availability, solar radiation, water temperature, and nutrient availability as well 65	
  

as the biotic effects of inter- and intra-species competition for space and light and grazing 66	
  

(reviewed in Graham et al. 2007).  In southern California, growth is fastest in winter and 67	
  

spring when nutrients are high, temperature is low and competition for light and space is 68	
  

low (due to low algal biomass) and slowest during summer when nutrients are low, 69	
  

temperatures are high and competition for light and space is high due to well developed 70	
  

algal canopies (Zimmerman and Kremer 1986, Reed et al. 2008).  The relatively low 71	
  

capacity of giant kelp to store nutrients (~30 days, Zimmerman and Kremer 1986) causes 72	
  

populations to respond rapidly to fluctuations in nutrient supply. Much like growth, the 73	
  

recruitment of giant kelp in southern California and elsewhere responds greatly to 74	
  

fluctuations in nutrients, temperature, and light as determined by biotic and abiotic 75	
  

processes (Dayton et al. 1984, Reed and Foster 1984, Reed et al. 2008).  Giant kelp 76	
  

produces spores throughout the year (Reed et al. 1996) and the recruitment of new plants 77	
  

typically occurs whenever favorable conditions of light, temperature and nutrients 78	
  

coincide (Deysher and Dean 1986).   79	
  

Giant kelp mortality occurs in the form of senescence, trophic interactions (i.e., 80	
  

grazing), and surface wave-driven disturbance (Graham et al. 2007).  Reed et al. (2008) 81	
  

found that both frond losses and plant mortality were correlated to wave heights in kelp 82	
  

forests near Santa Barbara, California.  While correlated to waves, frond losses occurred 83	
  

continuously throughout the year and significant losses occurred from senescence 84	
  

unrelated to wave dislodgement.  On the other hand, plant-level loss was episodic and 85	
  

occurred primarily during periods of high waves.  Large-scale mortality can also result 86	
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from extreme nutrient limitation; for example, kelp populations across southern and Baja 87	
  

California were devastated by the warm, nutrient poor conditions of the 1983 and 1997 El 88	
  

Niño events (Dayton & Tegner 1984, Dayton & Tegner 1989, Dayton 1999, Edwards 89	
  

2004).  The regional dynamics of giant kelp reflect the interplay of these physical and 90	
  

biological forcings that control the mechanisms of recruitment, growth, and mortality.  91	
  

The relative importance of resource availability (light/nutrients) vs. physical 92	
  

disturbance (waves) in controlling the biomass dynamics of giant kelp remains an open 93	
  

question.  For example, Dayton et al. (1999) found that large-scale, low frequency 94	
  

changes in nutrient availability had the largest effects on kelp populations in San Diego; 95	
  

however, recent analyses of kelp forests in central and southern California during 2001-96	
  

2009 (a period lacking any major nutrient poor El Niño conditions) showed that wave 97	
  

driven disturbance explained more variability in kelp biomass and production than either 98	
  

nutrient availability or consumer pressure (Reed et al. 2008, Reed et al. in prep).  It is 99	
  

clear that the influence that each of these physical forcings has on kelp populations is 100	
  

dependent on the spatial and temporal scales of observation (Edwards et al. 2004).  The 101	
  

vast majority of long-term kelp studies have been made at the local scale and so it has 102	
  

been difficult to test how their conclusions apply to larger areas.  In the past, aerial and 103	
  

satellite imagery has been used to examine kelp forests at regional scales; however, these 104	
  

studies have all been either short-term pilot studies (e.g. Deysher 1993, Stekoll et al. 105	
  

2006) or limited to just a few years (e.g. Donnellan 2004, Cavanaugh et al. 2010), too 106	
  

short a period to examine interannual to decadal variability in kelp biomass dynamics.  107	
  

Here, we describe the development of a new kelp canopy biomass dataset 108	
  

possessing unprecedented spatial and temporal resolution and extent using multispectral 109	
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imagery from the LANDSAT 5 Thematic Mapper (TM) sensor.  These observations 110	
  

enabled the assessment of giant kelp canopy biomass at 30 m resolution across the entire 111	
  

Santa Barbara Channel every 1 to 2 months for 25 years (1984 to 2009).  We compare 112	
  

these novel observations of giant kelp forests with oceanographic and climate 113	
  

observations to assess resource and disturbance driven controls on kelp populations at 114	
  

multiple spatial and temporal scales.  Our objectives were to determine (1) the relative 115	
  

importance of resource availability and wave disturbance in driving both seasonal and 116	
  

interannual cycles of regional kelp biomass in the Santa Barbara Channel and (2) the 117	
  

level of spatial variability in the importance of these forcing processes within the 118	
  

Channel.  We show that kelp biomass was significantly related to significant wave 119	
  

heights, sea surface temperatures (SST), and climate indices at seasonal to interannual 120	
  

timescales.  We also demonstrate that these responses were spatially partitioned into 121	
  

distinct subregions within the Santa Barbara Channel.  A picture of a complex system 122	
  

emerges where large-scale climate changes drive variability in temperature, nutrient 123	
  

levels, and surface gravity wave energy, which in turn drives spatially variable seasonal 124	
  

and interannual cycles in giant kelp canopy biomass.  Variability in kelp biomass has 125	
  

been shown to impact many other trophic levels (Graham 2004, Byrnes et al. in review), 126	
  

thus the ecological implications of these results are far-reaching.  A more complete 127	
  

understanding of how giant kelp forests vary in space and time will provide insight into 128	
  

how they affect the vast number of ecologically and economically important species 129	
  

associated with them. 130	
  

 131	
  

METHODS 132	
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Study site 133	
  

We used available LANDSAT 5 TM satellite imagery to track giant kelp canopy 134	
  

biomass across the entire Santa Barbara Channel from 1984 to 2009.  The study area 135	
  

included the coastline from Pismo Beach, CA to Oxnard, CA and each of the northern 136	
  

Channel Islands (Figure 1).  Oceanographic conditions over this region are highly 137	
  

dynamic in space and time (Harms and Winant, 1998, Otero and Siegel, 2004); thus the 138	
  

region represents an ideal system in which to investigate the importance of physical 139	
  

controls on the spatiotemporal distributions of giant kelp populations.   140	
  

The Santa Barbara Channel experiences pronounced seasonal cycles in sea 141	
  

surface temperature, nutrient conditions, and wave energy.  During the winter, major 142	
  

storms move across the Northwest Pacific and send large northwesterly swells into the 143	
  

Santa Barbara Channel. Wave energy from these storms is a major source of giant kelp 144	
  

mortality in the region (Reed et al. 2008).  Nutrient levels are relatively high in the winter 145	
  

as a deepening of the mixed layer entrains nutrients into surface waters.  Spring 146	
  

represents a period of transition in the wave climate of the Santa Barbara Channel as the 147	
  

frequency of large northwesterly wave events decreases, giving way to smaller southerly 148	
  

swells that are characteristic of summer months (Adams et al. 2008).  Nutrient levels in 149	
  

the nearshore regions generally reach maximums during spring months due to coastal 150	
  

upwelling.  The role of upwelling in providing nutrients and rapid incorporation by 151	
  

biological processes leads to a strong negative relationship between SST and nutrient 152	
  

levels (McPhee-Shaw et al. 2007).  During the summer and fall, vertical stratification 153	
  

increases creating warmer temperatures and lower nutrient levels (e.g., McPhee-Shaw et 154	
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al. 2007, Fram et al. 2008). Less intense southerly swells are common in the summer 155	
  

months and can affect exposed south-facing coastlines.  156	
  

The seasonal cycles in resource availability and physical disturbance are super-157	
  

imposed on longer period cycles driven by El Niño/Southern Oscillation (SOI), Pacific 158	
  

Decadal Oscillation (PDO), and North Pacific Gyre Oscillation (NPGO) events.  These 159	
  

climate cycles alter seawater temperatures, nutrient levels, and storm patterns, and can 160	
  

have dramatic effects on kelp populations (e.g., Dayton & Tegner 1990, Edwards 2004). 161	
  

El Niños generally correspond with a deepening of mixed layer, reduced upwelling, 162	
  

warmer surface waters, and reduced ecosystem productivity along the U.S. west coast 163	
  

(Barber and Chavez 1983).  Strong El Niño years have also been shown to produce 164	
  

stronger winter storms that take more southerly tracks across the North Pacific, resulting 165	
  

in larger wave events along the coast of Southern California (Seymour 1998, Adams 166	
  

2008).  The PDO is a longer period cycle that changes state every 20-40 years (Mantua 167	
  

and Hare 2002); positive phases generally correspond with increased SST.  Whereas the 168	
  

PDO represents the 1st mode of sea surface height variability in the Northeast Pacific and 169	
  

is the dominant signal in physical parameters such as SST, the recently identified NPGO 170	
  

is the 2nd mode of sea surface height variability and is better correlated with ecosystem 171	
  

productivity metrics such as nutrient levels, salinity, and phytoplankton chlorophyll (Di 172	
  

Lorenzo et al. 2008, 2009).  All of the above climate cycles control large-scale, low 173	
  

frequency changes in physical variables important to kelp populations.  174	
  

The Santa Barbara Channel also experiences a great deal of spatial variability in 175	
  

oceanographic conditions.  The region is located at the convergence of the equatorward 176	
  

flowing California Current and the recirculating Southern California Eddy and Inshore 177	
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Countercurrent (Hickey 1979).  Strong upwelling north of Pt. Conception creates cool, 178	
  

nutrient rich conditions throughout most of the year while regions in the eastern portion 179	
  

of the Channel experience warmer, more nutrient limited conditions during summer 180	
  

months (Otero and Siegel, 2004). While there is spatial variability in the SST of the Santa 181	
  

Barbara Channel, the vast majority of the region’s temporal variability is homogeneous 182	
  

across the entire channel (Otero and Siegel 2004, see below).   183	
  

Even more dramatic is the spatial variability in wave exposure.  Again, Point 184	
  

Conception represents a natural boundary: the coastline north of Pt. Conception is 185	
  

exposed to both powerful winter northwest swells as well as weaker summer southern 186	
  

swells while the coastline south of Pt. Conception is sheltered from northern swells by Pt. 187	
  

Conception and from southern swells by the Channel Islands (O’Reilly and Guza 1993).  188	
  

The Channel Islands themselves present a myriad of exposures, but in general the north 189	
  

sides of the islands are exposed to northwest swells and sheltered from southern swells, 190	
  

while the opposite is true for the south facing sides of the islands.  It is important to note 191	
  

that while the above descriptions depict wave exposure in general, the precise spatial 192	
  

distribution of wave energy along the coast of our study area depends on the specific 193	
  

direction of a given swell (Adams et al. 2008).  As with SST and nutrients, large, long-194	
  

period swells affect the entire Channel, but to varying degrees due to the large amount of 195	
  

spatial variability in wave exposure.  Clearly, subtidal ecosystems of the Santa Barbara 196	
  

Channel such as giant kelp experience physical conditions that vary substantially in space 197	
  

and time. 198	
  

 199	
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Satellite estimation of giant kelp canopy biomass 200	
  

Giant kelp forms a dense floating surface canopy that is distinctive when viewed 201	
  

from above.  In our study area, giant kelp is the only canopy forming macrophyte in 202	
  

water depths from 5 to 30 m.  This greatly simplifies its quantification from satellite 203	
  

imagery.  The spectral signature of a giant kelp canopy is similar to that of 204	
  

photosynthetically active terrestrial vegetation, namely a high near infrared and 205	
  

significantly lower visible reflectance (Jensen et al. 1980; Cavanaugh et al. 2010).  Water 206	
  

absorbs almost all incoming near-infrared energy so kelp canopy is easily differentiated 207	
  

using its near-infrared reflectance signal. 208	
  

The LANDSAT 5 TM sensor has acquired 30 m spatial resolution multispectral 209	
  

imagery nearly continuously from 1984 to the present on a 16-day repeat cycle 210	
  

(Markham et al. 2004).  TM obtains data in 7 spectral bands: blue (450-520 nm), green 211	
  

(520-600 nm), red (630-690 nm), near infrared (760-900), shortwave infrared (1500-1750 212	
  

and 2080-2350 nm), and longwave (thermal) infrared (10400-12500 nm) 213	
  

(http://landsat.gsfc.nasa.gov/about/tm.html).  TM data is stored as 8-bit encoded radiance, 214	
  

with 256 possible “brightness values” representing the range of radiance for each band.  215	
  

The kelp near infrared (band 4) radiance signal, while strong compared to that of water, 216	
  

spans only the lowest ~40 brightness values detectable by TM.  Each LANDSAT scene 217	
  

covers an area 170 x 180 km; the scene we used for this study included the entire study 218	
  

area described above (Figure 1).  During preprocessing, LANDSAT images were 219	
  

geometrically corrected using ground control points and a digital elevation model to 220	
  

achieve a scene-to-scene registration accuracy < 7.3 m (Lee et al. 2004).  We selected 221	
  

209 relatively cloud-free images that provided us with coverage of the study area 222	
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approximately every 2 months from April 1984 to September 2009 223	
  

(http://glovis.usgs.gov/).  224	
  

The following describes the automated classification process that we developed in 225	
  

order to consistently and efficiently transform these 209 images into maps of kelp canopy 226	
  

biomass.  First, a single orthorectified TM image was atmospherically corrected to 227	
  

apparent surface reflectance using an atmospheric transmission model (MODTRAN4; 228	
  

Berk et al. 1998).  We used this corrected image as a reference and standardized the 229	
  

radiometric signals from all other images to this reference using 50 targets that were 230	
  

assumed to be spectrally stable across the time series (i.e. airport runways, highways, 231	
  

sand dunes, lakes; Furby & Campbell 2001, Baugh & Groeneveld 2008).  Outliers were 232	
  

manually removed to reduce the effects of temporal changes in some of these targets.  233	
  

This ‘target matching’ procedure accounted for all atmospheric, sensor, and processing 234	
  

differences between the scenes and created a time-series of standardized TM imagery. 235	
  

We estimated kelp canopy abundance from the calibrated TM reflectance data 236	
  

using multiple endmember spectral mixture analysis (MESMA).  Spectral mixture 237	
  

analysis models the fractional cover of two or more “endmembers” within a pixel.  Each 238	
  

endmember represents a pure cover type, and endmembers are assumed to combine 239	
  

linearly (Adams et al., 1993).  Standard spectral mixture analysis uses a uniform set of 240	
  

endmembers for the entire image.  One challenge in the near-shore marine zone is that the 241	
  

“water” reflectance is influenced by sun glint, breaking surface waves, phytoplankton 242	
  

blooms, dissolved organic matter, sediment runoff, etc.   Since water reflectance is highly 243	
  

variable in space and time, a single water endmember cannot be used (Figure 2A). 244	
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Roberts et al. (1998) developed MESMA to allow endmembers to vary on a per-pixel 245	
  

basis.  By selecting from multiple endmembers for one or more cover types, MESMA can 246	
  

better capture the spectral variability of the cover type within an image and through time.  247	
  

MESMA has been extensively used for mapping terrestrial vegetation, include aridland 248	
  

vegetation (Okin et al., 2001), shrublands (Dennison and Roberts, 2003a), forests 249	
  

(Youngentob et al., in review), and salt marsh (Li et al., 2005).  250	
  

 We modeled pixel reflectance as the linear mixture of reflectance from two 251	
  

endmembers: kelp and water.  Thirty water endmembers were selected from non-kelp 252	
  

covered areas within each TM scene using the endmember selection technique described 253	
  

by Dennison and Roberts (2003b).  A single kelp endmember was selected by extracting 254	
  

kelp-covered pixel spectra from each image and finding the single spectrum that fit the 255	
  

entire library of kelp spectra with the lowest root mean square error (RMSE) (Dennison 256	
  

and Roberts, 2003b).  The pixels in each TM image were then modeled as a two-257	
  

endmember mixture of kelp and each of the 30 water endmembers.  The final model (out 258	
  

of 30) chosen for each pixel was the model that minimized RMSE when fit to the 259	
  

spectrum of that pixel.  The result of this process was a measure of the relative fraction of 260	
  

each pixel that was covered by kelp canopy (Figure 2B).  We used a kelp fraction 261	
  

threshold of 0.15 to automate the identification of ‘kelp-covered’ pixels.  The multiple 262	
  

endmember process successfully delineated kelp canopy extent under a variety of 263	
  

conditions.  Figure 2 provides examples of how our technique retrieved kelp fractions 264	
  

from images that were contaminated by large amounts of sediment runoff (Feb 23, 2005) 265	
  

and high levels of sun glint (July 4, 2006). 266	
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The retrieved kelp fractions were then compared to giant kelp canopy biomass 267	
  

observations that were collected by divers at permanent plots maintained by the Santa 268	
  

Barbara Coastal Long Term Ecological Research (SBC LTER) project at the Arroyo 269	
  

Quemado and Mohawk kelp forests (Figure 1).  The data and the methods used to 270	
  

measure giant kelp canopy biomass from diver surveys are described in detail in 271	
  

Rassweiler et al. (2008).  Briefly, divers measured the length of all fronds along 5 272	
  

transects (40 x 1 m) within a plot (40 x 40 m) and converted these lengths to biomass 273	
  

using validated length to weight regressions.  Each plot was overlapped by four 30 m TM 274	
  

pixels.  For each TM image, we compared the mean kelp fraction of these pixels to the 275	
  

diver measured canopy biomass of each plot with a linear regression. 276	
  

Regional physical and climate datasets 277	
  

Pearson correlation coefficients between the satellite-derived time series of 278	
  

regional kelp canopy biomass and physical and climate data that represented first order 279	
  

controls of growth (temperature and nutrients) and disturbance (waves) were calculated 280	
  

on both seasonal and interannual timescales.  Kelp canopy biomass was square root 281	
  

transformed to meet assumptions of normality.  SST was used as a proxy for ambient 282	
  

nitrate concentrations to investigate the effect of nutrient availability on growth and 283	
  

mortality.  Temperature and nitrate are strongly inversely correlated in this region 284	
  

(McPhee-Shaw et al. 2007, Fram et al. 2008).  Hourly SST measurements were collected 285	
  

from the National Data Buoy Center’s Pt. Arguello buoy for 1984-2009 (Figure 1).  The 286	
  

Pt. Arguello buoy is located west of the Santa Barbara Channel and north of Pt. 287	
  

Conception.  While generally relatively cool and nutrient rich compared to the rest of the 288	
  

region, this part of our study area captures the temporal variability of the entire region.  289	
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Otero and Siegel (2004) performed temporal principal components analysis on 4 years 290	
  

(October 1997-June 2001) of satellite-derived SST within our study area and found that 291	
  

91% of the temporal variance was explained by the first mode of variability, which was 292	
  

positively correlated with all parts of the study area.  Hence, a single point measurement 293	
  

of SST should be a reliable indicator of the regional temporal variability in SST and, by 294	
  

extension, nutrient concentations.   295	
  

Significant wave height observations were acquired from the National Data Buoy 296	
  

Center’s Harvest buoy and Harvest platform sites (Figure 1).  The Harvest platform 297	
  

measured significant wave height every 3 hours from January 1987 to April 1999 and the 298	
  

Harvest buoy has collected data two times an hour from March 1998 to the present.  We 299	
  

combined these datasets to create a single time series of daily mean significant wave 300	
  

height from 1987-2009, using the Harvest buoy data when both the buoy and platform 301	
  

were operational.  Overlapping data from the two were nearly identical (regression slope 302	
  

= 0.96, bias = 0.18, r2 = 0.97).  Both the Harvest buoy and Harvest platform were located 303	
  

west of the Santa Barbara Channel in offshore locations exposed to long-period northwest 304	
  

and south swells.  Giant kelp is predominantly affected by extreme wave events (Gaines 305	
  

& Denny 1993, Utter & Denny 1996) and powerful, long-period swell (> 12 seconds) is 306	
  

more important than short-period sea in causing kelp mortality.  Since long-period swell 307	
  

affects the entire Channel, we accepted a point measurement as an accurate 308	
  

characterization of the regional wave environment with the understanding that there 309	
  

would be significant spatial variability in the size of breaking waves for a given swell.  310	
  

Currently there is no spatially explicit dataset of nearshore wave heights that matches the 311	
  

spatial resolution and temporal extent of our kelp data.  The nearshore wave models that 312	
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do exist for the Santa Barbara Channel are parameterized using the same Harvest buoy 313	
  

data we used in this study (the Coastal Data Information Project’s swell model: 314	
  

http://cdip.ucsd.edu).  315	
  

The Harvest buoy collects wave direction as well as height and period.  For the period 316	
  

that the Harvest buoy was operational (1998-present), seasonal histograms of wave 317	
  

direction were calculated for all swell events with periods >= 12 seconds in order to 318	
  

capture the seasonal variability in swell direction.  The directional data were used to 319	
  

identify sections of the coast that represented strong gradients in wave exposure. 320	
  

The kelp time series was also compared to the indices of three climate cycles 321	
  

known to affect oceanographic conditions in the Santa Barbara Channel: the Southern 322	
  

Oscillation Index or SOI (http://www.cpc.noaa.gov/data/indices/soi), the Pacific Decadal 323	
  

Oscillation or PDO (http://jisao.washington.edu/pdo/), and the North Pacific Gyre 324	
  

Oscillation or NPGO (http://www.o3d.org/npgo/data/NPGO.txt).  By convention, 325	
  

positive anomalies in the PDO represent warmer, nutrient poor conditions in the Santa 326	
  

Barbara Channel while positive anomalies in the SOI and NPGO represent increased 327	
  

upwelling, nutrient, and chlorophyll-a levels.  We reversed the sign of the SOI and 328	
  

NPGO for all figures and analyses so that positive deviations in all climate indices 329	
  

represent warmer, nutrient poor conditions. 330	
  

Subregional dynamics 331	
  

Spatial heterogeneity in the responses of local kelp populations to regional 332	
  

physical forcings cannot be captured by a regional comparison.  Clustering analysis was 333	
  

used to understand how the relationships between physical variables and kelp canopy 334	
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dynamics varied in space.  First, the coastline was divided into 1 km segments and each 335	
  

pixel of kelp canopy was assigned to the closest coastline segment.  Segments where kelp 336	
  

did not appear in at least 25% of the images were removed from analysis.  Because the 337	
  

amount of kelp in each coastline segment varied from segment to segment, the 1-km 338	
  

segment biomass values were standardized as the proportion of that segment’s maximum 339	
  

biomass over the entire time series.  The data were then normalized across segments by 340	
  

subtracting the regional mean and dividing by the regional standard deviation of each 341	
  

date. Each segment’s degree of wave exposure was calculated using an exposure index 342	
  

based on Baardseth (1970).  A circle with a radius of 100 km was placed at the center of 343	
  

each 1 km section of coastline and divided into 40 sectors, each of which had an angle of 344	
  

9°.  Sectors were given a score of 0 if they intersected land and 1 if they were free of 345	
  

land.  The exposure index is the sum of sector scores; 0 represents complete shelter and 346	
  

40 represents maximum exposure. 347	
  

K-means clustering was used to identify subregions with similar temporal 348	
  

dynamics (e.g. Huth 1996).  K-means classification is an unsupervised classification 349	
  

technique that requires the number of clusters to be specified beforehand.  The data were 350	
  

clustered using 2-7 clusters to examine the robustness of the results.  The kelp canopy 351	
  

biomass of each subregion was then compared to the physical and climate data described 352	
  

above. 353	
  

 354	
  

RESULTS 355	
  

LANDSAT estimation of kelp canopy biomass 356	
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A strong positive linear relationship was found between the LANDSAT derived 357	
  

kelp fraction index and giant kelp canopy biomass (r2 = 0.64, p << 0.001, df = 94; Figure 358	
  

3). We restricted our comparisons to canopy biomass rather than total biomass because 359	
  

optical remote sensing only detects floating kelp.  Generally canopy biomass is highly 360	
  

correlated to total biomass (r2 = 0.92; unpublished SBC LTER data); however, the 361	
  

relationship between TM kelp fraction and canopy biomass was stronger than between 362	
  

kelp fraction and total biomass (r2 = 0.49, p << 0.001, df = 94).  This discrepancy was 363	
  

driven by a few data points where the ratio of canopy to total biomass was unusually low.  364	
  

Neither tidal nor current fluctuations had any effect on the kelp fraction/canopy biomass 365	
  

relationship (p = 0.65 and 0.25 when the residuals of the fraction-biomass relationship 366	
  

were compared to local tides and currents for the time of LANDSAT data collection, 367	
  

respectively).  This result agrees with previous work showing that the relatively weak 368	
  

tidal fluctuations and current speeds in this area do not affect remote sensing estimates of 369	
  

kelp biomass as they do in other locations (Cavanaugh et al. 2010 compared to Britton-370	
  

Simmons et al. 2008).  The relationship between satellite derived kelp fraction and diver 371	
  

measured canopy biomass (Figure 3) was used to transform images of kelp fractional 372	
  

cover into quantitative, validated maps of giant kelp canopy biomass.  These maps are 373	
  

available every 1 to 2 months for the past 25 years and resolve giant kelp canopy biomass 374	
  

on spatial scales of 30 m to regional scales, which is here defined as the extent of the 375	
  

LANDSAT 5 TM scene used (Figure 1).   376	
  

Regional dynamics 377	
  

The regionally averaged giant kelp canopy biomass is shown in Figure 4A.  The 378	
  

long-term (1984-2009) mean regional giant kelp canopy biomass was 43,700 wet metric 379	
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tons but there was an extremely high amount of variability about this mean, as evidenced 380	
  

by a temporal coefficient of variation of 86%.  Changes in regional kelp biomass were 381	
  

rapid and order of magnitude increases and decreases in regional mean biomass routinely 382	
  

occurred over a span of less than 4 months.  Most years displayed a seasonal cycle with 383	
  

biomass minimums occurring in the winter followed by rapid growth in the spring and 384	
  

early summer leading to maximums in late summer or early fall; however, the amplitude 385	
  

and timing of this cycle varied substantially.  This seasonal cycle was superimposed on a 386	
  

cycle with a 12-13 year period.  In this longer cycle relatively low periods of canopy 387	
  

biomass in 1984-1990 and 1994-2003 were separated by high biomass periods in 1990-388	
  

1995 and 2003-2009.  The length of this cycle matches the 11-13 year period of the 389	
  

NPGO (Figure 4A; Di Lorenzo et al 2008).  We plotted the kelp and NPGO time series 390	
  

together in Figure 4A to emphasize this match in periods and to facilitate the 391	
  

interpretation of Figures 4 A & D.  There were no long-term trends in the regional 392	
  

canopy biomass time series. 393	
  

Both SST and wave height displayed the pronounced seasonal cycles 394	
  

characteristic of this region (Figure 4B and 4C).  SST typically reached its annual 395	
  

minimum between February and March and its maximum between August and October.  396	
  

Significant wave height maximums occurred in the winter months, corresponding with 397	
  

the timing of increased storm activity in the North Pacific.  Between 1987 and 2009 the 398	
  

annual maximum winter (Dec.-Feb.) wave height averaged 4.9 m while the annual 399	
  

maximum summer (June-Aug.) wave height averaged 3.26 m.  During our study period 400	
  

annual mean significant wave heights increased significantly at the pace of 0.02 m yr-1 401	
  

(F1,22 = 25.9, p < 0.001).  This positive trend in wave height agrees with other 402	
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observations of increasing wave heights in the Northeast Pacific over the last 60 years 403	
  

(Bromirski et al. 2003, Ruggiero et al. 2010). 404	
  

The oscillations of the three climate cycles ranged from 3-7 years (SOI) to 11-13 405	
  

years (NPGO) to 20-30 years (PDO) (Figure 4 A & D).  All climate indices experienced 406	
  

both positive and negative extremes during our study period.  The 1990s saw a number of 407	
  

positive El Niño anomalies and the 1997-1998 El Niño was one the strongest ever 408	
  

recorded.  La Niña conditions were present in 1998-1999, 2001, and 2008.  The NPGO 409	
  

cycled fairly consistently with positive (nutrient poor) anomalies in the early 1990s and 410	
  

mid 2000s separated by negative anomalies in the early 2000s. The PDO displayed 411	
  

mostly positive anomalies from the beginning of the time series until the early to mid 412	
  

2000s when negative anomalies became more prevalent; this change may represent a shift 413	
  

of the PDO from the warm phase that began in the late 1970s (Mantua et al. 1997, 414	
  

Peterson and Schwing 2003).  All climate indices were positively correlated with SST 415	
  

(Table 1).  The NPGO was weakly negatively correlated with higher wave heights; there 416	
  

was no significant relationship between either SOI or PDO and waves.   417	
  

 Seasonal relationships to physical and climate variables 418	
  

We examined the relationships between physical and climate variables and 419	
  

monthly variability in kelp biomass by calculating Pearson correlation coefficients 420	
  

between square root normalized regional kelp canopy biomass and each of the physical 421	
  

and climate variables.  Univariate correlation analyses indicated that there were 422	
  

significant but weak negative relationships between kelp canopy biomass and both SST 423	
  

and wave height on monthly timescales (Table 1).  The failure of SST and wave height to 424	
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explain much variation in kelp canopy biomass at this scale is not surprising given the 425	
  

high level of month-to-month variability in the kelp time series as well as the large spatial 426	
  

scale over which regional kelp biomass was evaluated.  The PDO was the only climate 427	
  

index with a significant correlation to kelp biomass, however the relationship was again 428	
  

weak.  While the SOI index was not significantly correlated with kelp biomass, strong El 429	
  

Niño events in the winters of 1997-1998 and 2002-2003 corresponded with massive 430	
  

regional kelp canopy losses (regional kelp biomass dropped to almost zero).  In addition, 431	
  

strong La Niña events in late 1988 and 2008 marked large increases in regional kelp 432	
  

biomass.   433	
  

We further investigated the relationship between physical forcings and seasonal 434	
  

kelp variability by isolating winter canopy losses and spring recoveries and comparing 435	
  

them to our physical forcing variables.  Winter loss was defined as the percent change in 436	
  

regional kelp canopy biomass from the fall (Aug-Nov) maximum to the winter (Dec-437	
  

March) minimum of each year; the specific time frame varied from year to year 438	
  

depending on the timing of kelp maximums and minimums.  We compared the percent 439	
  

loss of kelp to the maximum wave height over the same time period and found a strong 440	
  

polynomial relationship between the two that appeared to saturate between wave heights 441	
  

of 6-7 m (Figure 5A).  Only the extreme wave events appeared to control regional kelp 442	
  

biomass, we did not find significant relationships between waves and kelp losses for 443	
  

other times of the year when waves were smaller.  There was no significant relationship 444	
  

between winter loss and nutrient levels (r2 = 0.00, p = 0.75).  Among the climate indices 445	
  

we found a weak but significant positive relationships between winter PDO and kelp loss 446	
  



Cavanaugh et al.: Climate controls on kelp populations 

	
   21	
  

(r2 = 0.19, p = 0.03) and between winter SOI and kelp loss (r2 = 0.16, p = 0.05) but no 447	
  

significant relationship between NPGO and kelp loss (r2 = 0.05, p = 0.31). 448	
  

A similar analysis was performed between spring recovery and nutrient levels.  449	
  

Spring recovery was defined as the increase in canopy biomass between the winter (Dec-450	
  

March) minimum and the spring/summer (April-July) maximum of each year.  Biomass 451	
  

increases were log transformed to meet assumptions of normality for the linear 452	
  

regression.  There was a weaker (as compared to kelp loss vs. waves), but still highly 453	
  

significant negative linear relationship between spring/summer recovery of regional kelp 454	
  

biomass and mean SST (Figure 5B).  There was no significant relationship between 455	
  

spring recovery and wave heights or any of the climate indices.  456	
  

Interannual relationships to physical and climate variables 457	
  

To investigate the drivers of interannual variability in kelp canopy biomass we 458	
  

calculated the cross correlation, at lags of 0-6 years, of annual mean canopy biomass and 459	
  

the annual means of SST, and the 3 climate indices, and annual maximums of significant 460	
  

wave height.  On interannual timescales there was no direct significant relationship 461	
  

between annual mean kelp canopy biomass and any of the physical or climate variables 462	
  

(Table 1B).  However, cross correlation analysis revealed strong and significant 3-year 463	
  

lagged relationships between kelp canopy biomass and SST, waves, and NPGO (r = -464	
  

0.48, 0.48, and -0.50 respectively; Figure 6). There was no significant relationship 465	
  

between kelp canopy biomass and SOI or PDO at any lag.   466	
  

Subregional dynamics 467	
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The clustering analysis divided the Santa Barbara Channel into subregions along 468	
  

wave exposure and nutrient gradients.  The clustering results were robust to varying the 469	
  

number of clusters used in the k-means algorithm: all solutions separated the mainland 470	
  

coastline at Pt. Conception and separated the north and south sides of the Channel 471	
  

Islands.  We displayed the results from the 4-group clustering in Figure 7; increasing the 472	
  

number of clusters simply further separated these 4 ‘major’ subregions into smaller 473	
  

groups.  The subregions from the 4-cluster solution were labeled A to D in order of 474	
  

decreasing mean exposure as measured by the exposure index (Table 2).  Bonferroni 475	
  

adjusted paired t-tests demonstrated that the mean exposures of the two ‘exposed’ 476	
  

subregions (A and B) were not significantly different from each other, but each was 477	
  

significantly different from the two ‘sheltered’ regions (C and D) (p<0.01).  It is 478	
  

important to note that the exposure index measures potential exposure, it does not take 479	
  

into account the direction of swells.  Because the largest swells in the Santa Barbara 480	
  

Channel come from the northwest (Figure 7), the index may overestimate the realized 481	
  

exposure of regions that are sheltered from northwest swells, but exposed to swells from 482	
  

other directions (i.e. subregion B). 483	
  

Temporal dynamics of the four subregions were relatively similar (mean pairwise 484	
  

r = 0.61, Figure 8); however, upon closer inspection it was possible to identify 485	
  

differences that tracked wave exposure.  Kelp canopy biomass dynamics of the exposed 486	
  

subregions were well correlated to maximum wave heights, but not SST, while the 487	
  

dynamics of sheltered subregions corresponded to SST, but not wave heights (Table 2).  488	
  

In addition, the strength of seasonal cycles increased with increasing exposure (Figure 9).  489	
  

As the strength of the seasonal cycle decreased with decreasing exposure, the strength of 490	
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the longer 12-13 year period cycle increased, suggesting a closer connection between the 491	
  

NPGO and sheltered regions (Figure 8).  For example, the extended periods of low 492	
  

regional canopy biomass in 1984-1990 and 1994-2003 reflected a near complete lack of 493	
  

recovery in the sheltered regions; the exposed regions maintained relatively high levels of 494	
  

biomass during these years.  495	
  

 496	
  

DISCUSSION 497	
  

Remote sensing of kelp forests 498	
  

Our LANDSAT 5 TM dataset represents the first high resolution, local- to 499	
  

regional-scale assessment of giant kelp canopy biomass on monthly to decadal 500	
  

timescales.  This dataset is itself a significant accomplishment as it provides a novel view 501	
  

into kelp forest dynamics across a wide range of scales.  Previous studies have 502	
  

demonstrated the feasibility of measuring kelp canopy cover and biomass with aerial and 503	
  

satellite imagery (Jensen et al. 1980, Deysher 1993, Stekoll et al. 2006, Cavanaugh et al. 504	
  

2010); however these studies have not had the extended temporal coverage that is 505	
  

presented here.  Recent work by Parnell et al. (2010) examined annual to decadal 506	
  

variability in giant kelp cover near San Diego using aerial surveys, but they used annual 507	
  

kelp maximums and so did not measure seasonal variability.  While LANDSAT provides 508	
  

unmatched temporal resolution and coverage, it has a coarser spatial resolution than the 509	
  

sensors used in some of these previous studies (30 m as compared to ~1 m in Stekoll et 510	
  

al. 2006 and 10 m in Cavanaugh et al. 2010).  In addition, LANDSAT has a relatively 511	
  

low radiometric resolution; this limits the ability of the sensor to differentiate small 512	
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changes in reflectance between pixels.  One consequence of the reduced spatial and 513	
  

radiometric resolution of LANDSAT is higher levels of uncertainty when comparing 514	
  

satellite data to transect scale diver-measured biomass (the r2 between LANDSAT and 515	
  

diver measured canopy biomass was 0.64 compared to 0.77 for Cavanaugh et al. 2010 516	
  

and 0.84 for Stekoll et al. 2006).  Nevertheless, the LANDSAT-canopy biomass 517	
  

relationship was still strong and highly significant and provides a path for assessing 518	
  

regional satellite canopy biomass variations.  As the availability of imagery with higher 519	
  

spatial and radiometric resolutions increases, more accurate remotely sensed time series 520	
  

of kelp can be developed using techniques similar to the one we have presented here. 521	
  

Regional dynamics 522	
  

Recently, investigators have speculated that the global extent of kelp forests is 523	
  

shrinking (i.e. Hoegh-Guldberg and Bruno 2010).  We did not find a significant negative 524	
  

long-term trend in the 25-year record of kelp canopy biomass of the Santa Barbara 525	
  

Channel.  Long-term trends in giant kelp are difficult to identify because canopy biomass 526	
  

varies across orders of magnitude over short time periods.  Large disturbance events (i.e. 527	
  

strong El Niños) cause dramatic large-scale reductions in canopy biomass, however 528	
  

recoveries can be almost as rapid.  There is an upper limit on the amount of kelp that the 529	
  

region can support that is based simply on the availability of suitable habitat.  However, it 530	
  

seems difficult to identify a regional equilibrium for giant kelp canopy due to its highly 531	
  

dynamic nature.  If the global extent of kelp is indeed shrinking, then it will likely be 532	
  

difficult to detect in regions such as the Santa Barbara Channel that are at the center of 533	
  

giant kelp’s hemispherical range.  While we did not observe a long-term directional trend 534	
  

in kelp canopy biomass, we did find that regional scale kelp biomass oscillated on cycles 535	
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with periods of 1 and 12-13 years.   The annual cycles were related to winter storm 536	
  

activity and, to a lesser extent, nutrient levels (Figure 5).  While physical storm driven 537	
  

mortality was direct and immediate, the effect of nutrients on kelp growth were likely 538	
  

delayed and complicated by a number of other factors including the availability of light 539	
  

and space, spore settlement and recruitment, etc.; hence, a weaker relationship was 540	
  

observed.  In addition, variability in the nutrient/temperature relationship may propagate 541	
  

to our attempts at relating nutrient levels to biomass dynamics.  While these winter losses 542	
  

and spring recoveries characterized the annual cycle in general there was a great deal of 543	
  

variability in the amplitude and timing of these cycles from year to year. 544	
  

Interannual relationships between kelp canopy biomass and physical drivers were 545	
  

less clear.  Recovery of kelp populations can be extremely rapid and so annual means and 546	
  

maximums can be decoupled from the previous winter’s wave disturbance.  This may 547	
  

help explain why past studies using annual observations made in the summer or fall failed 548	
  

to find a relationship between waves and kelp population metrics (Tegner et al. 1996).  549	
  

The longer period cycles in kelp biomass corresponded to the NPGO, waves, and nutrient 550	
  

levels (as inferred from SST), but lagged these variables by 3 years (Figure 6).  This 3-551	
  

year lag is somewhat counterintuitive in light of the rapid turnover of the fronds that 552	
  

create kelp canopies.  We suspect that the lagged relationships are related to plant level 553	
  

recruitment and mortality.  While losses at the frond level occur continuously throughout 554	
  

the year, mortality of entire plants occurs more episodically and is related to large wave 555	
  

events (Reed et al. 2008).  Exceptionally large wave events can clear space and allow for 556	
  

dramatic spikes in recruitment (Graham et al. 1997).  Previous work has shown that 557	
  

environmental conditions at the time of recruitment and juvenile growth of kelp cohorts 558	
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can have long lasting effects on population dynamics and community structure (Tegner et 559	
  

al. 1997, Dayton et al. 1999).  For example, Tegner et al. (1997) compared succession 560	
  

after 2 large disturbances under contrasting oceanographic regimes and found that 561	
  

nutrient rich conditions led to high densities and competitive dominance of giant kelp that 562	
  

lasted for the life of the cohort.  This result agrees with the lagged negative relationship 563	
  

we found between nutrient levels and kelp canopy biomass.  Together, large waves and 564	
  

high nutrient levels in a given year allow for the recruitment and juvenile growth of a 565	
  

new cohort of giant kelp plants (Figure 10).  This cohort matures over the next 2-3 years, 566	
  

developing high levels of canopy biomass in the absence of severe storms.  Currently, in 567	
  

Southern California severe storms occur at the average frequency of 1 every 3.5 years 568	
  

(Graham et al. 1997), thus allowing populations to expand their areal extents until the 569	
  

cycle is repeated or all available habitat is utilized.  In addition, LANDSAT only 570	
  

measures canopy changes; it takes approximately 6-8 months for a newly recruited kelp 571	
  

plant to reach the surface (author’s personal obervations) and so there is an inherent lag 572	
  

in responses observed with satellite imagery.    573	
  

Many studies have linked massive declines in kelp populations to severe El Niño 574	
  

conditions and have observed rapid recovery of kelp populations during nutrient rich La 575	
  

Niña events (Dayton and Tegner 1989, Dayton 1992, 1999, Edwards 2004).  In addition, 576	
  

Parnell et al. (2010) found that the response of kelp populations to El Niño events is 577	
  

modulated by low frequency changes in the PDO: the importance of nutrient control in 578	
  

the San Diego area increased after the PDO switched to a warm phase in the late 1970s.  579	
  

However, the relationship between kelp and the NPGO has largely been neglected.  We 580	
  

observed that strong El Niño events in 1987, 1997, and 2003 coincided with large 581	
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regional mortality events (Figure 4); however, the long (12-13 year) period cycles in 582	
  

regional kelp biomass were better correlated with the NPGO, again at a 3 year lag.  The 583	
  

NPGO is driven by regional variations in wind-driven upwelling and horizontal advection 584	
  

and corresponds closely with correlates of ecosystem productivity such as nutrient levels 585	
  

and chlorophyll concentrations (Di Lorenzo et al. 2008).  Therefore, the NPGO appears 586	
  

to influence decadal variations in kelp canopy biomass though large-scale, low frequency 587	
  

changes in nutrient availability that in turn affect recruitment and growth of kelp 588	
  

populations.   589	
  

While no long-term trends were evident in the kelp time series, we did see a 590	
  

significant long-term increase in mean and maximum wave heights over our study period.  591	
  

Other studies have observed similar trends in the Eastern Pacific (Bromirski et al. 2003, 592	
  

Ruggiero et al. 2010) and many climate models predict that the frequency, and possibly 593	
  

the intensity of large storms will continue to increase in this region (Easterling et al. 594	
  

2000, Meehl et al. 2000, Meehl et al. 2007).  This has the potential to increase the effects 595	
  

of wave events on the more sheltered coastlines of southern California, leading to higher 596	
  

annual winter losses.  Reed et al (2008) found that biomass at the start of the growth year 597	
  

(after winter storm disturbances) explained 63% of the observed variation in annual net 598	
  

primary productivity of three kelp populations in the Santa Barbara Channel .  Therefore, 599	
  

increased wave losses would likely lead to decreased productivity by giant kelp in this 600	
  

region .  In addition, the implications of increased levels of physical disturbance span 601	
  

trophic levels as repeated kelp loss due to waves has been linked to lower diversity and 602	
  

complexity of  kelp forest food webs (Byrnes et al. in review). 603	
  

Subregional dynamics 604	
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The Santa Barbara Channel experiences a large amount of spatial variability in 605	
  

environmental conditions.  As a result, the regional comparison of kelp biomass to 606	
  

physical variables may be confounded by the response of subregions that are controlled 607	
  

by different physical forcings.  We found that subregions with similar temporal dynamics 608	
  

could be separated statistically and these subregions have different wave exposures and 609	
  

respond differently to variations in SST and presumably nutrient levels (Table 2).  The 610	
  

dynamics of the relatively sheltered mainland coastline south of Pt. Conception 611	
  

(subregion D) were significantly correlated with SST, but not maximum wave height.  612	
  

Tegner et al. (1996) observed similar behavior in the Pt. Loma kelp forest near San 613	
  

Diego: a measure of canopy density was significantly correlated with SST but not wave 614	
  

heights.  Also, in many years minimum canopy biomass levels occurred in late 615	
  

summer/early fall for subregion D (Figure 9).  This is generally a time of relatively low 616	
  

wave energy and low nutrient levels, suggesting that senescence unrelated to waves is 617	
  

causing these annual minimums.   618	
  

Our results indicate that Pt. Conception marks a major biogeographic boundary 619	
  

for the dynamics of giant kelp forests in California. Changes in kelp biomass along the 620	
  

exposed coastline north of Pt. Conception were well correlated with wave height, but not 621	
  

SST as high storm mortalities were observed each winter.  This created a pronounced and 622	
  

predictable seasonal cycle with lower interannual variability than the more sheltered 623	
  

subregions to the south (Figure 9). The high variation in canopy biomass observed in 624	
  

October and November (e.g. long boxes in Figure 9A) reflect variability in the timing of 625	
  

the onset of the winter storm season.  Relatively high nutrient conditions in this subregion 626	
  

likely allowed for consistent spring recovery each year (Jackson 1987).  This result 627	
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agrees with a study by Donnellan (2004) that found that seasonal canopy dynamics of 628	
  

exposed Central Californian kelp beds were highly regular and predictable.  The 629	
  

subregions containing the Channel Islands represented a combination of more complex 630	
  

exposures.  Subregion B displayed dynamics similar to the exposed subregion A even 631	
  

though subregion B was protected from large northwest swells. This likely reflects the 632	
  

fact that both subregions are rarely nutrient limited and so nutrient fluctuations have less 633	
  

control on biomass dynamics in these regions.  Like the coastline north of Point 634	
  

Conception, the south sides of the two westernmost Channel Islands are typically bathed 635	
  

in cold, nutrient-rich upwelled water (Harms and Winant 1998; Otero and Siegel, 2004).   636	
  

Previous local empirical and theoretical studies have observed kelp populations 637	
  

fluctuating on cycles of 3-5 years and have theorized that these fluctuations are due to 638	
  

seasonal forcings such as wave disturbance.  Graham et al. (1997) found these cycles in 639	
  

both exposed kelp populations of central California as well as more sheltered populations 640	
  

of southern California.  Their work suggested that in sheltered populations recruitment 641	
  

occurred continuously and so the cycles were controlled by the irregularity of large storm 642	
  

events.  In exposed populations where large storms occurred more frequently, sporadic 643	
  

recruitment created a lag in recovery that was dependent on the coincidence of a juvenile 644	
  

population and conditions suitable for juvenile growth.  Such lags in recovery can cause 645	
  

interannual cycling. Nisbet and Bence (1989) developed a family of 2-stage kelp 646	
  

population models (juvenile and adults) that reproduced similar 3-5 year cycles as well as 647	
  

more regular annual cycles.  Their models were based on the idea that population 648	
  

dynamics are driven by recruitment events which are in turn controlled by temperature, 649	
  

bottom irradiance, and unknown stochastic factors.  Their models predicted that larger 650	
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seasonal fluctuations in surface irradiance and adult mortality, such as those that occur in 651	
  

central California, should lead to more regular annual recruitment.  On a regional scale, 652	
  

we found that 3-5 year cycles were much more evident in sheltered subregions than in 653	
  

exposed regions (compare subregion A to subregion D in Figure 8).  Exposed coastlines 654	
  

experienced regular annual cycles of winter mortality and spring recovery.  The increased 655	
  

regularity of the annual cycles we observed compared to those observed by Graham et al. 656	
  

(1997) in central California may have been due to the difference in the spatial scales of 657	
  

our studies.  In exposed regions, recovery lags that produce irregular cycles at local scales 658	
  

(as in Graham et al. 1997) may be averaged out at the regional scale.  A regional cycle 659	
  

will be apparent if mortality is consistent across the entire region and enough local 660	
  

populations recover each year. 661	
  

Long-term time series data from sensors such as LANDSAT is becoming 662	
  

increasingly available at little to no cost.  While the benefits of increased spatial coverage 663	
  

have been well recognized, the temporal coverage of these datasets has been under-664	
  

utilized.  Given the time and costs involved in collecting field data in situ there is great 665	
  

potential for satellite data such as LANDSAT to provide much needed insight into the 666	
  

patterns and controls of dynamic systems like giant kelp forests over large spatial and 667	
  

long temporal scales.   668	
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Figure 1.  LANDSAT TM scene displaying study area, Pt. Arguello, Harvest, and Harvest Platform buoys, and LTER diver 
transects at the Arroyo Quemado (AQUE) and Mohawk (MOHK) kelp forests. 
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Figure 2.  Satellite kelp fraction analysis.  (A) LANDSAT false color image of giant kelp beds off Santa Barbara coast.  Note 
variability of water reflectance resulting from sediment runoff in the Feb. 23, 2005 image and glint in the July 4, 2006 image.  
(B)  Kelp fraction images from spectral unmixing process.  Brighter pixels correspond to higher kelp fractions.  The slight 
banding apparent in the water is noise that occurs when the detector transitions from bright land targets to dark ocean targets. 
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Figure 3. Validation of LANDSAT satellite biomass estimates.  Linear regression analysis between LANDSAT kelp fractions 
and diver measured canopy biomass (kg/m2) measurements for Arroyo Quemado and Mohawk (n=96).  The gray lines 
represent 95% confidence intervals for the relationship. 
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Figure 4.  Santa Barbara Channel regional mean time series of (A) giant kelp canopy biomass and NPGO anomalies.  Kelp canopy biomass was 
summed across the entire study area for each image date.  1 month running mean of (B) SST and (C) significant wave height from Pt. Arguello 
buoy, Harvest platform, and Harvest buoy data. (D) Monthly SOI and PDO anomalies.  Asterisks in (A) represent strong El Niño events, with the 
two asterisks in 1997-1998 identifying the strongest El Niño on record, while triangles represent strong La Niña events (as classified by Smith and 
Sardeshmukh 2000) 
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sqrt(kelp) npgo pdo soi waves 
sst -0.25 0.26 0.09 0.19 -0.37 
waves -0.26 -0.17 -0.01 -0.05 
soi -0.03 0.34 0.39 
pdo -0.19 0.31 
npgo 0.00 

sqrt(kelp) npgo pdo soi waves 
sst -0.06 0.60 0.53 0.62 -0.40 
waves -0.30 -0.39 0.10 -0.16 
soi 0.19 0.60 0.60 
pdo -0.25 0.54 
npgo 0.13 

Monthly Correlations 

Annual Correlations 

A. 

B. 

Table 1.  Pearson correlation coefficients for regional giant kelp and climactic forcing data calculated on (A) monthly and (B) 
annual timescales.  For the monthly comparisons regional kelp canopy biomass from each image date was correlated to the 
mean of the physical and climate data from 30 days before the image date.  For the annual comparisons the annual mean of 
kelp was compared to the annual means of SST, SOI, PDO, and NPGO and the annual maximum of wave height.  Bold 
values are significant at the 99% confidence level.  
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Figure 5. Regression analysis between (A) winter kelp canopy biomass losses and maximum wave height and (B) spring/summer kelp canopy 
biomass recovery and mean SST.  Winter losses were calculated as the change in kelp canopy biomass from the fall (Sept.-Nov.) maximum to the 
winter/spring (Dec-May) minimum.  Recovery represents change in kelp canopy biomass from the winter/spring (Dec-May) minimum to the 
summer (June-Aug.) maximum.  Maximum wave height and mean sst for each year were calculated over the same periods.   
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Figure 6. Cross-correlation analysis (at lags of 0-6 years) of climate indices and physical variables on annual mean kelp 
canopy biomass.  Annual mean kelp was compared to mean SST, SOI, PDO, and NPGO and maximum wave height for each 
year.  Bold bars are significant at the 95% level. 
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Figure 7.  Results from k-means cluster analysis (N=4 clusters) on monthly canopy biomass data binned into 1 km sections 
of coastline.  Subregions are labeled A-D in order of decreasing exposure.  Histograms of significant wave height (Hs) and 
direction for swells with periods larger than 12 seconds are provided for winter (Dec-Feb) and summer (June-August). 
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Figure 8.  Timeseries of kelp canopy biomass summed across each subregion identified in Figure 7.  Subregions are labeled 
A-D in order of decreasing exposure. 
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Figure 9.  Box and whisker plots of the seasonal cycle in canopy biomass for each subregion.  For each year between 
1984-2009 the proportion of that year’s maximum biomass was calculated for each month.  Boxes represent the lower 
quartile, median, and upper quartile of the proportion of annual maximum biomass and whiskers extend to the lower and 
upper extremes of the data.  Longer boxes represent months with higher variability in their relative canopy biomass levels.  
Boxes whose notches (not whiskers) do not overlap have significantly different medians at a 95% confidence level.   
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Table 2.  Mean exposure index and correlation to physical data for each subregion.  Subregional kelp from each image date 
was correlated to the mean of the physical and climate data from 30 days before the image date.  Bold values are significant 
at 99% level.  

A B C D 
exposure  11.8 11.6 6.2 4.5 
sst corr -0.04 -0.17 -0.26 -0.40 
wave corr -0.46 -0.24 -0.15 0.00 
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Figure 10.  Conceptual model of factors that influence regional giant kelp canopy biomass 
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